Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2743: 43-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147207

RESUMO

Alteration of protein tyrosine phosphatase (PTP) gene expression is a commonly used approach to experimentally analyze their function in the cell physiology of mammalian cells. Here, exemplified for receptor-type PTPRJ (Dep-1, CD148) and PPTRC (CD45), we provide the CRISPR/Cas9-mediated approaches for their inactivation and transcriptional activation using genome editing. These methods are generally applicable to any other protein of interest.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Ativação Transcricional , Mamíferos
3.
Front Oncol ; 12: 1017947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452504

RESUMO

The receptor protein tyrosine phosphatase (RPTP) PTPRJ (also known as DEP-1) has been identified as a negative regulator of the receptor tyrosine kinase FLT3 signalling in vitro. The inactivation of the PTPRJ gene in mice expressing the constitutively active, oncogenic receptor tyrosine kinase FLT3 ITD aggravated known features of leukaemogenesis, revealing PTPRJ's antagonistic role. FLT3 ITD mutations resulting in constitutively kinase activity and cell transformation frequently occur in patients with acute myeloid leukaemia (AML). Thus, in situ activation of PTPRJ could be used to abrogate oncogenic FLT3 signalling. The activity of PTPRJ is suppressed by homodimerization, which is mediated by transmembrane domain (TMD) interactions. Specific Glycine-to-Leucine mutations in the TMD disrupt oligomerization and inhibit the Epidermal Growth Factor Receptor (EGFR) and EGFR-driven cancer cell phenotypes. To study the effects of PTPRJ TMD mutant proteins on FLT3 ITD activity in cell lines, endogenous PTPRJ was inactivated and replaced by stable expression of PTPRJ TMD mutants. Autophosphorylation of wild-type and ITD-mutated FLT3 was diminished in AML cell lines expressing the PTPRJ TMD mutants compared to wild-type-expressing cells. This was accompanied by reduced FLT3-mediated global protein tyrosine phosphorylation and downstream signalling. Further, PTPRJ TMD mutant proteins impaired the proliferation and in vitro transformation of leukemic cells. Although PTPRJ's TMD mutant proteins showed impaired self-association, the specific phosphatase activity of immunoprecipitated proteins remained unchanged. In conclusion, this study demonstrates that the destabilization of PTPRJ TMD-mediated self-association increases the activity of PTPRJ in situ and impairs FLT3 activity and FLT3-driven cell phenotypes of AML cells. Thus, disrupting the oligomerization of PTPRJ in situ could prove a valuable therapeutic strategy to restrict oncogenic FLT3 activity in leukemic cells.

4.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326163

RESUMO

Acute myeloid leukemia (AML) cells harbor elevated levels of reactive oxygen species (ROS), which promote cell proliferation and cause oxidative stress. Therefore, the inhibition of ROS formation or elevation beyond a toxic level have been considered as therapeutic strategies. ROS elevation has recently been linked to enhanced NADPH oxidase 4 (NOX4) activity. Therefore, the compound Setanaxib (GKT137831), a clinically advanced ROS-modulating substance, which has initially been identified as a NOX1/4 inhibitor, was tested for its inhibitory activity on AML cells. Setanaxib showed antiproliferative activity as single compound, and strongly enhanced the cytotoxic action of anthracyclines such as daunorubicin in vitro. Setanaxib attenuated disease in a mouse model of FLT3-ITD driven myeloproliferation in vivo. Setanaxib did not significantly inhibit FLT3-ITD signaling, including FLT3 autophosphorylation, activation of STAT5, AKT, or extracellular signal regulated kinase 1 and 2 (ERK1/2). Surprisingly, the effects of Setanaxib on cell proliferation appeared to be independent of the presence of NOX4 and were not associated with ROS quenching. Instead, Setanaxib caused elevation of ROS levels in the AML cells and importantly, enhanced anthracycline-induced ROS formation, which may contribute to the combined effects. Further assessment of Setanaxib as potential enhancer of cytotoxic AML therapy appears warranted.

6.
Oncogene ; 38(24): 4773-4787, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30820040

RESUMO

The receptor tyrosine kinase FLT3 is expressed in myeloid and lymphoid progenitor cells. Activating mutations in FLT3 occur in 25-30% of acute myeloid leukaemia (AML) patients. Most common are internal tandem duplications of sequence (ITD) leading to constitutive FLT3-ITD kinase activity with an altered signalling quality promoting leukaemic cell transformation. Here, we observed the attenuating role of the receptor-like protein tyrosine phosphatase (RPTP) CD45/Ptprc in FLT3 signalling in vivo. Low level expression of this abundant RPTP correlates with a poor prognosis of FLT3-ITD-positive AML patients. To get a further insight into the regulatory role of Ptprc in FLT3-ITD activity in vivo, Ptprc knock-out mice were bred with FLT3-ITD knock-in mice. Inactivation of the Ptprc gene in FLT3-ITD mice resulted in a drastically shortened life span and development of severe monocytosis, a block in B-cell development and anaemia. The myeloproliferative phenotype was associated with extramedullary haematopoiesis, splenohepatomegaly and severe alterations of organ structures. The phenotypic alterations were associated with increased transforming signalling of FLT3-ITD, including activation of its downstream target STAT5. These data reveal the capacity of Ptprc for the regulation of FLT3-ITD signalling activity in vivo. In addition, histopathology and computed tomography (CT) revealed an unexpected bone phenotype; the FLT3-ITD Ptprc-/- mice, but none of the controls, showed pronounced alterations in bone morphology and, in part, apparent features of osteoporosis. In the spleen, ectopic bone formation was observed. The observed bone phenotypes suggest a previously unappreciated capacity of FLT3-ITD (and presumably FLT3) to regulate bone development/remodelling, which is under negative control of CD45/Ptprc.


Assuntos
Osso e Ossos , Antígenos Comuns de Leucócito/genética , Transtornos Mieloproliferativos/genética , Osteoporose/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Desenvolvimento Ósseo/genética , Remodelação Óssea/genética , Transformação Celular Neoplásica , Células Cultivadas , Coristoma/genética , Coristoma/metabolismo , Embrião de Mamíferos , Feminino , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Antígenos Comuns de Leucócito/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/patologia , Osteogênese/genética , Osteoporose/metabolismo , Osteoporose/patologia , Fenótipo , Porosidade , Sequências de Repetição em Tandem/genética
7.
Leukemia ; 33(11): 2628-2639, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31576004

RESUMO

To date, only one subtype of acute myeloid leukemia (AML), acute promyelocytic leukemia (APL) can be effectively treated by differentiation therapy utilizing all-trans retinoic acid (ATRA). Non-APL AMLs are resistant to ATRA. Here we demonstrate that the acetyltransferase GCN5 contributes to ATRA resistance in non-APL AML via aberrant acetylation of histone 3 lysine 9 (H3K9ac) residues maintaining the expression of stemness and leukemia associated genes. We show that inhibition of GCN5 unlocks an ATRA-driven therapeutic response. This response is potentiated by coinhibition of the lysine demethylase LSD1, leading to differentiation in most non-APL AML. Induction of differentiation was not correlated to a specific AML subtype, cytogenetic, or mutational status. Our study shows a previously uncharacterized role of GCN5 in maintaining the immature state of leukemic blasts and identifies GCN5 as a therapeutic target in AML. The high efficacy of the combined epigenetic treatment with GCN5 and LSD1 inhibitors may enable the use of ATRA for differentiation therapy of non-APL AML. Furthermore, it supports a strategy of combined targeting of epigenetic factors to improve treatment, a concept potentially applicable for a broad range of malignancies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/farmacologia , Fatores de Transcrição de p300-CBP/metabolismo , Apoptose , Medula Óssea/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Epigênese Genética , Genótipo , Células HEK293 , Células HL-60 , Histona Desmetilases/antagonistas & inibidores , Histonas/química , Humanos , Leucócitos Mononucleares/citologia
8.
Oncotarget ; 9(10): 9442-9455, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507701

RESUMO

The introduction of second-generation tyrosine kinase inhibitors (TKIs) targeting the protein-tyrosine kinase (PTK) BCR-ABL1 has improved treatment response in chronic myeloid leukemia (CML). However, in some patients response still remains suboptimal. Protein-tyrosine phosphatases (PTPs) are natural counter-actors of PTK activity and can affect TKI sensitivity, but the impact of PTPs on treatment response to second-generation TKIs is unknown. We assessed the mRNA expression level of 38 PTPs in 66 newly diagnosed CML patients and analyzed the potential relation with treatment outcome after 9 months of nilotinib medication. A significantly positive association with response was observed for higher PTPN13, PTPRA, PTPRC (also known as CD45), PTPRG, and PTPRM expression. Selected PTPs were then subjected to a functional analysis in CML cell line models using PTP gene knockout by CRISPR/Cas9 technology or PTP overexpression. These analyses revealed PTPRG positively and PTPRC negatively modulating nilotinib response. Consistently, PTPRG negatively and PTPRC positively affected BCR-ABL1 dependent transformation. We identified BCR-ABL1 signaling events, which were affected by modulating PTP levels or nilotinib treatment in the same direction. In conclusion, the PTP status of CML cells is important for the response to second generation TKIs and may help in optimizing therapeutic strategies.

9.
Immunol Lett ; 180: 9-16, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27720677

RESUMO

Due to their ability to phagocytise invading microbes macrophages play a key role in the innate and acquired immune system. In this article the role of phosphoinositide 3-kinase gamma (PI3Kγ) for phagocytosis was studied in bone marrow derived macrophages (BMDM). By using genetic and pharmacological approaches our data clearly demonstrate PI3Kγ is acting as a mediator of macrophage phagocytosis. Phagocytosis of LPS activated BMDM was reduced in PI3Kγ depleted primary BMDM or macrophage cell line J774. Depletion of other class I phosphoinositide 3-kinases did not alter phagocytic activity. Partial reduction of the phagocytic index of BMDM expressing kinase inactive PI3Kγ indicate a lipid-kinase independent role of the PI3Kγ protein. Since inhibition of PI3Kγ interaction partner phosphodiesterase PDE3B reduced BMDM phagocytosis and PI3Kγ knock out super stimulated cAMP level, our data reveal that PI3Kγ protein mediated suppression of cAMP signalling is a critical for efficient phagocytosis of macrophages.


Assuntos
Medula Óssea/metabolismo , Medula Óssea/fisiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Fagocitose/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa