Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Nature ; 623(7989): 927-931, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968403

RESUMO

In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the 'Tasmanian Devil'). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole.

2.
Nature ; 612(7940): 430-434, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450988

RESUMO

Tidal disruption events (TDEs) are bursts of electromagnetic energy that are released when supermassive black holes at the centres of galaxies violently disrupt a star that passes too close1. TDEs provide a window through which to study accretion onto supermassive black holes; in some rare cases, this accretion leads to launching of a relativistic jet2-9, but the necessary conditions are not fully understood. The best-studied jetted TDE so far is Swift J1644+57, which was discovered in γ-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical detection of AT2022cmc, a rapidly fading source at cosmological distance (redshift z = 1.19325) the unique light curve of which transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-ray, submillimetre and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron 'afterglow', probably launched by a supermassive black hole with spin greater than approximately 0.3. Using four years of Zwicky Transient Facility10 survey data, we calculate a rate of [Formula: see text] per gigapascals cubed per year for on-axis jetted TDEs on the basis of the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations11. Correcting for the beaming angle effects, this rate confirms that approximately 1 per cent of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs.

3.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338279

RESUMO

The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Nicho de Células-Tronco/fisiologia , Proteínas 14-3-3/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Eucariotos/metabolismo , Eucariotos/fisiologia , Fusão de Membrana/fisiologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia
5.
Arch Microbiol ; 205(1): 50, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598589

RESUMO

Crude oil pollution is one of the most arduous issues to address, as it is hazardous to both public health and the environment. The discovery of novel biosurfactants-producing fungi and bacteria is in high demand due to their excellent properties and wide range of applications. The aim of this research is to isolate a powerful biosurfactant-producing fungus from the crude oil site near Barauni oil refinery in Bihar, India. Standard protocols were used to collect samples from the site. An integrative taxonomic approach was used, which included morphological, molecular, and phylogenetic analysis. The use of plating samples on Bushnell-Hass (BH) media aided in the isolation of a fungal strain from an enrichment culture. Two fungal strains isolated from contaminated soils, Penicillium citrinum and Paecilomyces variotti, showed potent oil degrading activity in a single culture. For preliminary biosurfactants screening, drop collapse assays, oil spreading, and emulsification activity tests were used. The results showed that the cultures performed well in the screening test and were further evaluated for degradation capacity. Different treatment periods (0, 3, 6, 9, 12, and 15 days) were used to observe degradation in single cultures. A steady drop in pH, an alteration in optical density and an increase in carbon dioxide release showed the ability of fungal strain to degrade the crude oil in a single culture. Fungi mycelia provide a larger surface area for absorption and degradation of the pollutants in contaminated environment. They produce extracellular enzymes to degrade the oil, and at the same time absorb and utilise carbon, allowing them to remove toxic substances from the oil. Thus, they could be candidates for bioremediation of a hydrocarbon-contaminated site.


Assuntos
Eurotiales , Petróleo , Filogenia , Eurotiales/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Hidrocarbonetos/metabolismo
6.
Crit Rev Food Sci Nutr ; 63(19): 3943-3958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34748444

RESUMO

Probiotics consumption has been associated with various health promoting benefits, including disease prevention and even treatment by modulating gut microbiota. Contrary to this, probiotics may also overstimulate the immune system, trigger systemic infections, harmful metabolic activities, and promote gene transfer. In children, the fragile immune system and impaired intestinal barrier may boost the occurrence of adverse effects following probiotics' consumption. To overcome these health challenges, the key focus has been shifted toward non-viable probiotics, also called paraprobiotics. Cell wall polysaccharides, peptidoglycans, surface proteins and teichoic acid present on cell's surface are involved in the interaction of paraprobiotics with the host, ultimately providing health benefits. Among other benefits, paraprobiotics possess the ability to regulate innate and adaptive immunity, exert anti-adhesion, anti-biofilm, anti-hypertensive, anti-inflammatory, antioxidant, anti-proliferative, and antagonistic effects against pathogens, while also enhance clinical impact and general safety when administered in children in comparison to probiotics. Clinical evidence have underlined the paraprobiotics impact in children and young infants against atopic dermatitis, respiratory and gastrointestinal infections, in addition to be useful for immunocompromised individuals. Therefore, this review focuses on probiotics-related issues in children's health and also discusses the Lactobacillus and Bifidobacterium spp. qualities for qualifying as paraprobiotics and their role in promoting the children's health.


Assuntos
Saúde da Criança , Probióticos , Lactente , Criança , Humanos , Suplementos Nutricionais , Probióticos/uso terapêutico , Intestinos/microbiologia , Lactobacillus/fisiologia
7.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063355

RESUMO

Spices are a rich source of vitamins, polyphenols, proteins, dietary fiber, and minerals such as calcium, magnesium, iron, and zinc, all of which play an important role in biological functions. Since ancient times, spices have been used in our kitchen as a food coloring agent. Spices like cinnamon and turmeric allegedly contain various functional ingredients, such as phenolic and volatile compounds. Therefore, this review aims to summarize the current knowledge about the nutritional profiles of cinnamon and turmeric, as well as to analyze the clinical studies on their extracts and essential oils in animals and humans. Furthermore, their enrichment applications for food products and animal feed have also been investigated in terms of safety and toxicity. Numerous studies have shown that cinnamon and turmeric have various health benefits, including the reduction of insulin resistance and insulin signaling pathways in diabetic patients, the reduction of inflammatory biomarkers, and the maintenance of gut microflora in both animals and humans. The food and animal feed industries have taken notice of these health benefits and have begun to promote cinnamon and turmeric as healthy foods. This has resulted in the development of new food products and animal feeds that contain cinnamon and turmeric as primary ingredients, which have been deemed an effective means of promoting cinnamon and turmeric's health benefits.

8.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811640

RESUMO

Nowadays, fruits are gaining high demand due to their promising advantages on human health. Astonishingly, their by-products, that is, seeds and peels, account for 10-35% of fruit weight and are usually thrown as waste after consumption or processing. But it is neglected that fruit seeds also have functional properties and nutritional value, and thus could be utilized for dietary and therapeutic purposes, ultimately reducing the waste burden on the environment. Owing to these benefits, researchers have started to assess the nutritional value of different fruits seeds, in addition to the chemical composition in various bioactive constituents, like carotenoids (lycopene), flavonoids, proteins (bioactive peptides), vitamins, etc., that have substantial health benefits and can be used in formulating different types of food products with noteworthy functional and nutraceutical potential. The current review aims to comprehend the known information of nutritional and phytochemical profiling of non-edible fruits seeds, viz. apple, apricot, avocado, cherry, date, jamun, litchi, longan, mango, and papaya. Additionally, clinical studies conducted on these selected non-edible fruit seed extracts, their safety issues and their enrichment in food products as well as animal feed has also been discussed. This review aims to highlight the potential applications of the non-edible fruit seeds in developing new food products and also provide a viable alternative to reduce the waste disposal issue faced by agro-based industries.

9.
Appl Microbiol Biotechnol ; 106(13-16): 4831-4843, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781838

RESUMO

Aging is a progressive, unalterable physiological degradation process of living organisms, which leads to deterioration of biological function and eventually to senescence. The most prevalent factor responsible for aging is the accumulation of damages resulting from oxidative stress and dysbiosis. D-galactose-induced aging has become a hot topic, and extensive research is being conducted in this area. Published literature has reported that the continuous administration of D-galactose leads to the deterioration of motor and cognitive skills, resembling symptoms of aging. Hence, this procedure is employed as a model for accelerated aging. This review aims to emphasize the effect of D-galactose on various bodily organs and underline the role of the Lactobacillus sp. in the aging process, along with its anti-oxidative potential. A critical consideration to the literature describing animal models that have used the Lactobacillus sp. in amending D-galactose-induced aging is also given. KEY POINTS: • D-Galactose induces the aging process via decreasing the respiratory chain enzyme activity as well as ATP synthesis, mitochondrial dysfunction, and increased ROS production. • D-Galactose induced aging primarily affects the brain, heart, lung, liver, kidney, and skin. • The anti-oxidative potential of Lactobacillus sp. in improving D-galactose-induced aging in animal models via direct feeding and feeding of Lactobacillus-fermented food.


Assuntos
Antioxidantes , Galactose , Envelhecimento , Animais , Antioxidantes/metabolismo , Lactobacillus/metabolismo , Estresse Oxidativo
10.
Molecules ; 27(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684416

RESUMO

Cholesterol is essential for normal human health, but elevations in its serum levels have led to the development of various complications, including hypercholesterolemia (HC). Cholesterol accumulation in blood circulation formsplaques on artery walls and worsens the individuals' health. To overcome this complication, different pharmacological and non-pharmacological approaches are employed to reduce elevated blood cholesterol levels. Atorvastatin and rosuvastatin are the most commonly used drugs, but their prolonged use leads to several acute side effects. In recent decades, the potential benefit of ingesting yogurt on lipid profile has attracted the interest of researchers and medical professionals worldwide. This review aims to give an overview of the current knowledge about HC and the different therapeutic approaches. It also discusses the health benefits of yogurt consumption and highlights the overlooked phyto-enrichment option to enhance the yogurt's quality. Finally, clinical studies using different phyto-enriched yogurts for HC management are also reviewed. Yogurt has a rich nutritional value, but its processing degrades the content of minerals, vitamins, and other vital constituents with beneficial health effects. The option of enriching yogurt with phytoconstituents has drawn a lot of attention. Different pre-clinical and clinical studies have provided new insights on their benefits on gut microbiota and human health. Thus, the yogurtphyto-enrichment with stanol and ß-glucan have opened new paths in functional food industries and found healthy andeffective alternatives for HC all along with conventional treatment approaches.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Colesterol , Alimento Funcional , Humanos , Iogurte
11.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235304

RESUMO

Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole family, have generated special interest in terms of their synthetic chemistry, which is attributable to their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelmingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays a central role in the biological functioning of several essential molecules. The availability of substitutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the period from 2010 to the present date, along with their molecular mechanisms and the information on patents granted to TZD analogues.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Compostos Heterocíclicos , Tiazolidinedionas , Agroquímicos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligases , Nitrogênio , PPAR gama , Preparações Farmacêuticas , Espécies Reativas de Oxigênio , Enxofre , Tiazóis , Tiazolidinedionas/química
12.
J Cell Sci ; 132(14)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31221728

RESUMO

Cytokinesis is the final step of cell division following chromosome segregation that generates two daughter cells. The conserved exocyst complex is required for scission of the intercellular cytokinetic bridge, although the molecular mechanisms it employs in this process are unclear. We identify and validate the early endocytic GTPase Rab5 as interacting with the exocyst complex in mammalian cells. Rab5 localizes in the cytokinetic bridge and on the midbody ring in a manner similar to the exocyst complex. Depletion of Rab5 led to delayed abscission. Caenorhabditis elegans orthologs of both exocyst complex subunits and Rab5 localize along the cleavage furrow and are required for cytokinesis in early embryos. Cytokinetic cells depleted of either Rab5 or the exocyst subunits Exoc3 and Exoc4 showed impaired deposition of the endosomal sorting complexes required for transport (ESCRT) III subunits CHMP2B and/or CHMP4B near the midbody ring. The study reveals an evolutionarily conserved role for the early endocytic marker Rab5 in cytokinetic abscission. In addition, it uncovers a key requirement of the exocyst and Rab5 for the delivery of components of the membrane-severing ESCRT III machinery to complete cytokinesis.


Assuntos
Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Subunidades Proteicas/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endocitose , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Corpos Polares/citologia , Ligação Proteica , Proteínas de Transporte Vesicular/metabolismo
13.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917354

RESUMO

Leptospirosis is an underestimated tropical disease caused by the pathogenic Leptospira species and responsible for several serious health problems. Here, we aimed to develop an ultrasensitive DNA biosensor for the rapid and on-site detection of the Loa22 gene of Leptospira interrogans using a gold nanoparticle-carbon nanofiber composite (AuN/CNF)-based screen-printed electrode. Cyclic voltammetry and electrochemical impedance were performed for electrochemical analysis. The sensitivity of the sensor was 5431.74 µA/cm2/ng with a LOD (detection limit) of 0.0077 ng/µL using cyclic voltammetry. The developed DNA biosensor was found highly specific to the Loa22 gene of L. interrogans, with a storage stability at 4 °C for 180 days and a 6% loss of the initial response. This DNA-based sensor only takes 30 min for rapid detection of the pathogen, with a higher specificity and sensitivity. The promising results obtained suggest the application of the developed sensor as a point of care device for the diagnosis of leptospirosis.


Assuntos
Leptospira interrogans , Leptospirose , Nanopartículas Metálicas , Ouro , Humanos , Leptospira interrogans/genética , Leptospirose/diagnóstico , Proteínas de Membrana
14.
Molecules ; 26(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204121

RESUMO

The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed.


Assuntos
Bactérias/efeitos dos fármacos , Frutas/química , Polifenóis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Microbiologia de Alimentos , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Humanos , Nanopartículas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química
15.
J Biol Chem ; 294(18): 7177-7193, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30877198

RESUMO

Tunneling nanotubes (TNTs) are membrane conduits that mediate long-distance intercellular cross-talk in several organisms and play vital roles during development, pathogenic transmission, and cancer metastasis. However, the molecular mechanisms of TNT formation and function remain poorly understood. The protein MSec (also known as TNFα-induced protein 2 (TNFAIP2) and B94) is essential for TNT formation in multiple cell types. Here, using affinity protein purification, mass spectrometric identification, and confocal immunofluorescence microscopy assays, we found that MSec interacts with the endoplasmic reticulum (ER) chaperone ERp29. siRNA-mediated ERp29 depletion in mammalian cells significantly reduces TNT formation, whereas its overexpression induces TNT formation, but in a strictly MSec-dependent manner. ERp29 stabilized MSec protein levels, but not its mRNA levels, and the chaperone activity of ERp29 was required for maintaining MSec protein stability. Subcellular ER fractionation and subsequent limited proteolytic treatment suggested that MSec is associated with the outer surface of the ER. The ERp29-MSec interaction appeared to require the presence of other bridging protein(s), perhaps triggered by post-translational modification of ERp29. Our study implicates MSec as a target of ERp29 and reveals an indispensable role for the ER in TNT formation, suggesting new modalities for regulating TNT numbers in cells and tissues.


Assuntos
Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Nanotubos , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Humanos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
16.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244581

RESUMO

The intake of microbial-contaminated food poses severe health issues due to the outbreaks of stern food-borne diseases. Therefore, there is a need for precise detection and identification of pathogenic microbes and toxins in food to prevent these concerns. Thus, understanding the concept of biosensing has enabled researchers to develop nanobiosensors with different nanomaterials and composites to improve the sensitivity as well as the specificity of pathogen detection. The application of nanomaterials has enabled researchers to use advanced technologies in biosensors for the transfer of signals to enhance their efficiency and sensitivity. Nanomaterials like carbon nanotubes, magnetic and gold, dendrimers, graphene nanomaterials and quantum dots are predominantly used for developing biosensors with improved specificity and sensitivity of detection due to their exclusive chemical, magnetic, mechanical, optical and physical properties. All nanoparticles and new composites used in biosensors need to be classified and categorized for their enhanced performance, quick detection, and unobtrusive and effective use in foodborne analysis. Hence, this review intends to summarize the different sensing methods used in foodborne pathogen detection, their design, working principle and advances in sensing systems.


Assuntos
Bactérias/isolamento & purificação , Técnicas Biossensoriais , Doenças Transmitidas por Alimentos/diagnóstico , Nanotecnologia/tendências , Bactérias/patogenicidade , Doenças Transmitidas por Alimentos/microbiologia , Grafite/química , Humanos , Nanopartículas/química , Nanoestruturas/química , Nanotubos de Carbono/química
17.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187086

RESUMO

Fruit extracts have natural bioactive molecules that are known to possess significant therapeutic potential. Traditionally, metallic nanoparticles were synthesized via chemical methods, in which the chemical act as the reducing agent. Later, these traditional metallic nanoparticles emerged as the biological risk, which prompted researchers to explore an eco-friendly approach. There are different eco-friendly methods employed for synthesizing these metallic nanoparticles via the usage of microbes and plants, primarily via fruit extract. These explorations have paved the way for using fruit extracts for developing nanoparticles, as they eliminate the usage of reducing and stabilizing agents. Metallic nanoparticles have gained significant attention, and are used for diverse biological applications. The present review discusses the potential activities of phytochemicals, and it intends to summarize the different metallic nanoparticles synthesized using fruit extracts and their associated pharmacological activities like anti-cancerous, antimicrobial, antioxidant and catalytic efficiency.


Assuntos
Frutas/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Animais , Química Verde/métodos , Humanos , Compostos Fitoquímicos/química
18.
Molecules ; 25(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570836

RESUMO

Fruits and vegetables are the highly used food products amongst the horticultural crops. These items are consumed uncooked, nominally cooked or fully cooked, according to their nature and cooking process. With the change in diet habits and rising population, the production, as well as the processing of horticultural crops, has exponentially improved to meet its increasing demand. A large amount of peel waste is generated from fruit and vegetable-based industries and household kitchen and has led to a big nutritional and economic loss and environmental problems. Processing of fruits and vegetables alone generates a significant waste, which amounts to 25-30% of the total product. Most common wastes include pomace, peels, rind and seeds, which are highly rich in valuable bioactive compounds such as carotenoids, enzymes, polyphenols, oils, vitamins and many other compounds. These bioactive compounds show their application in various industries such as food to develop edible films, food industries for probiotics and other industries for valuable products. The utilization of these low-cost waste horticultural wastes for producing the value-added product is a novel step in its sustainable utilization. The present review intends to summarize the different types of waste originating from fruits as well as vegetables peels and highlight their potential in developing edible films, probiotics, nanoparticles, carbon dots, microbial media, biochar and biosorbents.


Assuntos
Agricultura , Carotenoides , Frutas/química , Resíduos Industriais , Óleos de Plantas , Polifenóis , Verduras/química , Carotenoides/química , Carotenoides/isolamento & purificação , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação
19.
Physiol Mol Biol Plants ; 25(2): 407-419, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956424

RESUMO

Salt tolerance status at early seedling stage in 30 rice varieties including two tolerant (Pokkali and CSR-36) and two susceptible (IR-29 and IR-64) checks was assessed under different levels of salinity (0, 4, 8 and 16 dS m-1) created by salt mixture of NaCl, CaCl2, Na2SO4 in 7:2:1 ratio. Overall salinity tolerance indices clearly reflected that 17 varieties including the two tolerant checks were highly tolerant, seven varieties exhibited moderately tolerant, whereas six varieties including the two susceptible checks had highly susceptible response to salt stress. Molecular profiling of 13 tolerant and 5 susceptible rice varieties by using 24 SSR markers revealed 8.5 alleles per primer with altogether 114 shared and 91 unique allelic variants. Considering the allele number, polymorphism information content and polymorphism percent, SSR primers RM 302, RM 8094, RM 10665, RM 10694, RM 10748 and RM 10825 appeared to be highly polymorphic and comparatively more informative. Hierarchical classification and spatial distribution patterns based on amplification profiles dependent similarity indices unambiguously discriminated these 18 varieties in accordance with their salt tolerance response. Sequential exclusion of primers in further analysis led to validation of RM 140, RM 1287, RM 3412, RM 10745, RM 10764 and RM 10772 for their efficiency to distinguish salt tolerant varieties from susceptible ones. A specific combination of either four (RM 1287, RM 3412, RM 10764 and RM 10772) or even two markers (RM 1287 and RM 3412) also seemed to be equally effective in discrimination of entries according to their salt stress responsiveness. Principal coordinate analysis completely corroborated hierarchical classification of the varieties. Salt tolerance donors identified and SSR primers validated in the present study may be further utilized in the development of salt stress tolerant varieties of rice.

20.
Environ Monit Assess ; 187(1): 4134, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25389023

RESUMO

Development of multidrug-resistant pattern in the bacterial community is a major threat to the society. Staphylococcus aureus is perhaps the pathogen of the greatest concern because of its inherent virulence, its ability to cause a diverse array of life-threatening situations and capacity to adapt to different environmental conditions. The aims of this study is to investigate the multidrug-resistant pattern of the coagulase-positive S. aureus isolated from nasal carriage, food, paper currency and wastewater samples. We had also studied the multiple antibiotic resistance index and in vitro production of ß-lactamase. The study had found out 130 coagulase-positive S. aureus strains isolated from total of 595 samples such as anterior nares of preschool children (195), hospital nurses (100), drivers (76), food (86), wastewater (3) and paper currency (135) (Indian rupee). The biotypes pattern were as follows; A > D > B > C> UT. Multiple antibiotic resistance (MAR) value clearly defines the multidrug-resistant pattern of the S. aureus among different sources. Statistical analysis (one-way ANOVA) of results obtained indicated that the difference in the antibiotic resistance observed in the 130 bacterial isolates against the 23 different antibiotics used in this study was statically significant (p < 0.01).


Assuntos
Monitoramento Ambiental , Microbiologia de Alimentos , Mucosa Nasal/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Pré-Escolar , Coagulase/metabolismo , Humanos , Índia , Testes de Sensibilidade Microbiana , Prevalência , Staphylococcus aureus/classificação , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/fisiologia , Águas Residuárias/química , Águas Residuárias/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa