Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FASEB J ; 34(12): 15701-15717, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33136328

RESUMO

While the involvement of protease-activated receptors (PARs) in the physiological regulation of human placenta development, as in tumor biology, is recognized, the molecular pathway is unknown. We evaluated the impact of PAR1 and PAR2 function in cytotrophoblast (CTB) proliferation and invasion in a system of extravillous trophoblast (EVT) organ culture and in human cell-lines. Activation of PAR1 - and PAR2 -induced EVT invasion and proliferation, while the shRNA silencing of low-density lipoprotein receptor-related protein 5/6 (LRP5/6) inhibited these processes. PAR1 and PAR2 effectively induce ß-catenin stabilization in a manner similar to that shown for the canonical ß-catenin stabilization pathway yet independent of Wnts. Immunoprecipitation analyses and protein-protein docking demonstrated the co-association between either PAR1 or PAR2 with LRP5/6 forming an axis of PAR-LRP5/6-Axin. Noticeably, in PAR1 -PAR2 heterodimers a dominant role is assigned to PAR2 over PAR1 as shown by inhibition of PAR1 -induced ß-catenin levels, and Dvl nuclear localization. This inhibition takes place either by shRNA silenced hPar2 or in the presence of a TrPAR2 devoid its cytoplasmic tail. Indeed, TrPAR2 cannot form the PAR1 -PAR2 complex, obstructing thereby the flow of signals downstream. Elucidation of the mechanism of PAR-induced invasion contributes to therapeutic options highlighting key partners in the process.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Placenta/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Linhagem Celular , Células Cultivadas , Citoplasma/metabolismo , Feminino , Células HEK293 , Humanos , Placentação/fisiologia , Gravidez , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Trofoblastos/metabolismo , beta Catenina/metabolismo
2.
Bioorg Med Chem ; 23(13): 3237-47, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25979376

RESUMO

An efficient assay for monitoring the activity of the key autophagy-initiating enzyme ATG4B based on a small peptide substrate has been developed. A number of putative small fluorogenic peptide substrates were prepared and evaluated and optimized compounds showed reasonable rates of cleavage but required high enzyme concentrations which limited their value. A modified peptide substrate incorporating a less sterically demanding self-immolative element was designed and synthesized and was shown to have enhanced properties useful for evaluating inhibitors of ATG4B. Substrate cleavage was readily monitored and was linear for up to 4h but enzyme concentrations of about ten-fold higher were required compared to assays using protein substrate LC3 or analogs thereof (such as FRET-LC3). Several known inhibitors of ATG4B were evaluated using the small peptide substrate and gave IC50 values 3-7 fold higher than previously obtained values using the FRET-LC3 substrate.


Assuntos
Bioensaio , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Corantes Fluorescentes/síntese química , Peptídeos/síntese química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Autofagia , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Proteínas Associadas aos Microtúbulos/química , Dados de Sequência Molecular , Peptídeos/química , Proteólise , Proteínas Recombinantes de Fusão/genética
3.
Bioorg Med Chem ; 22(5): 1708-25, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508307

RESUMO

A novel series of bis-indoles derived from naturally occurring marine alkaloid 4 were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK is not only critical for bacterial survival which would make it a target for development of novel antibiotics, but it is reported to be one of the most highly connected 'hub proteins' in MRSA, and thus should be very sensitive to mutations and making it difficult for the bacteria to develop resistance. From the co-crystal structure of cis-3-4-dihydrohamacanthin B (4) bound to S. aureus PK we were able to identify the pharmacophore needed for activity. Consequently, we prepared simple direct linked bis-indoles such as 10b that have similar anti-MRSA activity as compound 4. Structure-activity relationship (SAR) studies were carried out on 10b and led us to discover more potent compounds such as 10c, 10d, 10k and 10 m with enzyme inhibiting activities in the low nanomolar range that effectively inhibited the bacteria growth in culture with minimum inhibitory concentrations (MIC) for MRSA as low as 0.5 µg/ml. Some potent PK inhibitors, such as 10b, exhibited attenuated antibacterial activity and were found to be substrates for an efflux mechanism in S. aureus. Studies comparing a wild type S. aureus with a construct (S. aureus LAC Δpyk::Erm(R)) that lacks PK activity confirmed that bactericidal activity of 10d was PK-dependant.


Assuntos
Staphylococcus aureus Resistente à Meticilina/química , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/uso terapêutico , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Estrutura Molecular , Infecções Estafilocócicas/microbiologia , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 20(24): 7069-82, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23141418

RESUMO

A novel series of hydrazones were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK has been identified as one of the most highly connected 'hub proteins' in MRSA. PK has been shown to be critical for bacterial survival which makes it a potential target for development of novel antibiotics and the high degree of connectivity implies it should be very sensitive to mutations and thus less able to develop resistance. PK is not unique to bacteria and thus a critical requirement for such a PK inhibitor would be that it does not inhibit the homologous human enzyme(s) at therapeutic concentrations. Several MRSA PK inhibitors (including 8d) were identified using in silico screening combined with enzyme assays and were found to be selective for bacterial enzyme compared to four human PK isoforms (M1, M2, R and L). However these lead compounds did not show significant inhibitory activity for MRSA growth presumably due to poor bacterial cell penetration. Structure-activity relationship (SAR) studies were carried out on 8d and led us to discover more potent compounds with enzyme inhibiting activities in the low nanomolar range and some were found to effectively inhibit bacteria growth in culture with minimum inhibitory concentrations (MIC) as low as 1 µg/mL. These inhibitors bind in two elongated flat clefts found at the minor interfaces in the homo-tetrameric enzyme complex and the observed SAR is in keeping with the size and electronic constraints of these binding sites. Access to the corresponding sites in the human enzyme is blocked.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piruvato Quinase/antagonistas & inibidores , Humanos , Modelos Moleculares , Piruvato Quinase/metabolismo , Relação Estrutura-Atividade
5.
Antimicrob Agents Chemother ; 55(5): 2042-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357306

RESUMO

Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme. In silico library screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 µM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity and S. aureus growth in vitro (MIC of 1 to 5 µg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistant S. aureus (MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Piruvato Quinase/metabolismo , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinase/química , Piruvato Quinase/genética , Homologia de Sequência de Aminoácidos
6.
Nat Commun ; 12(1): 4269, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257284

RESUMO

The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall (QAH) effect and topologically protected chiral edge states which can carry dissipationless current. Current realizations of the QAH state often require complex heterostructures and sub-Kelvin temperatures, making the discovery of intrinsic, high temperature QAH systems of significant interest. In this work we show that time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust chiral edge states. We present combined scanning tunneling spectroscopy and theoretical investigations of the magnetic Weyl semimetal, Co3Sn2S2. Using modeling and numerical simulations we find that depending on the strength of the interlayer coupling, chiral edge states can be localized on partially exposed kagome planes on the surfaces of a Weyl semimetal. Correspondingly, our dI/dV maps on the kagome Co3Sn terraces show topological states confined to the edges which display linear dispersion. This work provides a new paradigm for realizing chiral edge modes and provides a pathway for the realization of higher temperature QAH effect in magnetic Weyl systems in the two-dimensional limit.

7.
Bioorg Med Chem ; 17(15): 5388-95, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19604700

RESUMO

A novel radioisotope-free photo-affinity probe containing the 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group was designed and synthesized. This very compact functionality is envisaged to allow photochemically-induced coupling of a compound to its target followed by click reaction coupling with an azido-biotin reagent in order to facilitate purification of the labeled target. In a proof-of-concept study we have shown that 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group could be photolyzed to efficiently furnish the methanol adduct 23 and that the generated highly unstable carbene does not react with the neighboring acetylene moiety. A subsequent click reaction with the azido-biotin derivative 25 proceeded smoothly to give triazole 26. This chemical probe should thus be of unique value for facilitating identification of the molecular structure of the target of a bioactive compound.


Assuntos
Azirinas/síntese química , Hidrocarbonetos Fluorados/síntese química , Marcadores de Fotoafinidade/síntese química , Azidas/química , Azirinas/química , Biotina/química , Hidrocarbonetos Fluorados/química , Metanol/química , Estrutura Molecular , Marcadores de Fotoafinidade/química , Fotoquímica
8.
Proteins ; 71(3): 1484-96, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18076078

RESUMO

Retaining glycosidases operate by a two-step catalytic mechanism in which the transition states are characterized by buildup of a partial positive charge at the anomeric center. Sulfonium-ion analogues of the naturally occurring glycosidase inhibitors, swainsonine and 8-epi-lentiginosine, in which the bridgehead nitrogen atom is replaced by a sulfonium-ion, were synthesized in order to test the hypothesis that a sulfonium salt carrying a permanent positive charge would be an effective glycosidase inhibitor. Initial prediction based on computational docking indicated three plausible binding modes to Drosophila Golgi alpha-mannosidase II (dGMII), the most likely being close to that of swainsonine. Observation of the binding of di-epi-thioswainsonine and 8-epi-thiolentiginosine to dGMII from crystallographic data, however, revealed an orientation different from swainsonine in the active site. Screening these two compounds against dGMII shows that they are inhibitors with IC(50) values of 2.0 and 0.014 mM, respectively. This dramatic difference in affinity between the two compounds, which differ by only one hydroxyl group, is rationalized in terms of bound water molecules and the water molecule substructure in the active site, as identified by comparison of high resolution X-ray crystal structures of several dGMII-inhibitor complexes.


Assuntos
Alcaloides/química , Proteínas de Drosophila/química , Manosidases/química , Compostos de Sulfônio/química , Swainsonina/análogos & derivados , Swainsonina/química , Água/química , Alcaloides/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Manosidases/antagonistas & inibidores , Manosidases/metabolismo , Ligação Proteica , Compostos de Sulfônio/metabolismo , Swainsonina/metabolismo , Água/fisiologia
9.
Carbohydr Res ; 342(12-13): 1934-42, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17572396

RESUMO

The syntheses of polyhydroxylated imino- and anhydro thio-alditol compounds related to the naturally occurring glycosidase inhibitor, salacinol, containing a phosphate group in the side chain are described. The compounds lack hydroxyl groups on the acyclic side chain and are prototypes of the exact salacinol analogue. The synthetic strategy relies on the Mitsunobu reaction of N- and S-hydroxyalkyl derivatives of 2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino-D-arabinitol and 1,4-anhydro-2,3,5-tri-O-benzyl-1-thio-D-arabinitol with dibenzyl phosphate to yield the corresponding protected heteroalditol phosphates. Screening of these compounds against recombinant human maltase glucoamylase (MGA), a critical intestinal glucosidase involved in the processing of oligosaccharides of glucose into glucose itself, shows that they are not effective inhibitors of MGA and demonstrates the importance of the hydroxyl and/or sulfate substituents present on the side chain for effective inhibition. The attempted synthesis of the exact analogue of salacinol by opening of cyclic phosphates is also described.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Fosfatos/síntese química , Fosfatos/farmacologia , Álcoois Açúcares/síntese química , Sulfatos/síntese química , Inibidores Enzimáticos/química , Indicadores e Reagentes , Modelos Moleculares , Fosfatos/química , Álcoois Açúcares/química , Álcoois Açúcares/farmacologia , Sulfatos/química , Sulfatos/farmacologia
10.
FEBS J ; 273(12): 2673-83, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16817895

RESUMO

Inhibitors targeting pancreatic alpha-amylase and intestinal alpha-glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase-glucoamylase (MGA), a family 31 glycoside hydrolase, is an alpha-glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective alpha-glucosidase inhibitors modeled after salacinol, a naturally occurring alpha-glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five-membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six-membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Álcoois Açúcares/química , Álcoois Açúcares/farmacologia , Sulfatos/química , Sulfatos/farmacologia , Acarbose/metabolismo , Acarbose/farmacologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Cinética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Álcoois Açúcares/síntese química , Sulfatos/síntese química , Transfecção , alfa-Glucosidases/metabolismo
11.
Carbohydr Res ; 341(10): 1685-91, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-16678808

RESUMO

The synthesis of a bicyclic sulfonium-ion analogue of a naturally occurring glycosidase inhibitor, swainsonine, in which the bridgehead nitrogen atom is replaced by a sulfonium ion, has been achieved by a multi-step synthesis starting from 1,4-anhydro-2,3-di-O-benzyl-4-thio-D-lyxitol. The synthetic strategy relies on the intramolecular displacement of a leaving group on a pendant acyclic chain by a cyclic thioether. This bicyclic sulfonium salt will serve as a candidate to test the hypothesis that a sulfonium salt carrying a permanent positive charge would be an effective glycosidase inhibitor.


Assuntos
Inibidores Enzimáticos/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Swainsonina/análogos & derivados , Swainsonina/síntese química , Swainsonina/farmacologia
12.
Eur J Med Chem ; 120: 64-73, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27187859

RESUMO

The development of treatments for influenza that inhibit the M2 proton channel without being susceptible to the widespread resistance mechanisms associated with the adamantanes is an ongoing challenge. Using a yeast high-throughput yeast growth restoration assay designed to identify M2 channel inhibitors, a single screening hit was uncovered. This compound (3), whose structure was incorrectly identified in the literature, is an inhibitor with similar potency to amantadine against WT M2. A library of derivatives of 3 was prepared and activity against WT M2 and the two principal mutant strains (V27A and S31N) was assessed in the yeast assay. The best compounds were further evaluated in an antiviral plaque reduction assay using engineered WT, V27A and S31N M2 influenza A strains with otherwise identical genetic background. Compound 63 was found to inhibit all three virus strains in this cell based antiviral assay at micromolar concentrations, possibly through a mechanism other than M2 inhibition.


Assuntos
Amantadina/farmacologia , Antivirais/química , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/química , Antivirais/farmacologia , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Mutação , Prótons , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
13.
Carbohydr Res ; 340(17): 2612-9, 2005 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-16198322

RESUMO

The synthesis of analogues of the naturally occurring glycosidase inhibitor, salacinol, in which the D-arabinitol ring has been replaced by D-lyxitol or D-ribitol, is described. Salacinol is one of the active principles in the aqueous extracts of Salacia reticulata, which are traditionally used in India and Sri Lanka for the treatment of Type II diabetes. The synthetic strategy relies on the nucleophilic attack of 1,4-anhydro-2,3,5-tri-O-p-methoxybenzyl-4-thio-D-lyxitol or 1,4-anhydro-2,3,5-tri-O-p-methoxybenzyl-4-thio-D-ribitol at the least hindered carbon of the benzylidene-protected L-cyclic sulfate derived from L-erythritol. Screening of these compounds against recombinant human maltase glucoamylase (MGA), a critical intestinal glucosidase involved in the processing of oligosaccharides of glucose into glucose itself, shows that they are not effective inhibitors of MGA and demonstrates the importance of the d-arabinitol configuration in the heterocyclic ring for effective inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Oligossacarídeos/farmacologia , Ribitol/química , Álcoois Açúcares/farmacologia , Sulfatos/farmacologia , Configuração de Carboidratos , Sequência de Carboidratos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indicadores e Reagentes , Modelos Moleculares , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Álcoois Açúcares/síntese química , Álcoois Açúcares/química , Sulfatos/síntese química , Sulfatos/química
15.
J Bone Miner Res ; 30(4): 670-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25284325

RESUMO

Current treatments for postmenopausal osteoporosis aim to either promote bone formation or inhibit bone resorption. The C1 conjugate drug represents a new treatment approach by chemically linking the antiresorptive compound alendronate (ALN) with the anabolic agent prostanoid EP4 receptor agonist (EP4a) through a linker molecule (LK) to form a conjugate compound. This enables the bone-targeting ability of ALN to deliver EP4a to bone sites and mitigate the systemic side effects of EP4a, while also facilitating dual antiresorptive and anabolic effects. In vivo hydrolysis is required to release the EP4a and ALN components for pharmacological activity. Our study investigated the in vivo efficacy of this drug in treating established bone loss using an ovariectomized (OVX) rat model of postmenopausal osteopenia. In a curative experiment, 3-month-old female Sprague-Dawley rats were OVX, allowed to lose bone for 7 weeks, then treated for 6 weeks. Treatment groups consisted of C1 conjugate at low and high doses, vehicle-treated OVX and sham, prostaglandin E2 (PGE2 ), and mixture of unconjugated ALN-LK and EP4a to assess the effect of conjugation. Results showed that weekly administration of C1 conjugate dose-dependently increased bone volume in trabecular bone, which partially or completely reversed OVX-induced bone loss in the lumbar vertebra and improved vertebral mechanical strength. The conjugate also dose-dependently stimulated endocortical woven bone formation and intracortical resorption in cortical bone, with high-dose treatment increasing the mechanical strength but compromising the material properties. Conjugation between the EP4a and ALN-LK components was crucial to the drug's anabolic efficacy. To our knowledge, the C1 conjugate represents the first time that a combined therapy using an anabolic agent and the antiresorptive compound ALN has shown significant anabolic effects which reversed established osteopenia.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Difosfonatos/uso terapêutico , Modelos Animais de Doenças , Osteoporose Pós-Menopausa/tratamento farmacológico , Ovariectomia , Receptores de Prostaglandina E Subtipo EP4/agonistas , Coluna Vertebral/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Remodelação Óssea , Difosfonatos/farmacologia , Feminino , Humanos , Osteoporose Pós-Menopausa/fisiopatologia , Ratos , Ratos Sprague-Dawley
16.
Assay Drug Dev Technol ; 12(3): 176-89, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24735444

RESUMO

The cysteine protease ATG4B plays a role in key steps of the autophagy process and is of interest as a potential therapeutic target. At an early step, ATG4B cleaves proLC3 isoforms to form LC3-I for subsequent lipidation to form LC3-II and autophagosome membrane insertion. ATG4B also cleaves phosphatidylethanolamine (PE) from LC3-II to regenerate LC3-I, enabling its recycling for further membrane biogenesis. Here, we report several novel assays for monitoring the enzymatic activity of ATG4B. An assay based on mass spectrometric analysis and quantification of cleavage of the substrate protein LC3-B was developed and, while useful for mechanistic studies, was not suitable for high throughput screening (HTS). A doubly fluorescent fluorescence resonance energy transfer (FRET) ligand YFP-LC3B-EmGFP (FRET-LC3) was constructed and shown to be an excellent substrate for ATG4B with rates of cleavage similar to that for LC3B itself. A HTS assay to identify candidate inhibitors of ATG4B utilizing FRET-LC3 as a substrate was developed and validated with a satisfactory Z' factor and high signal-to-noise ratio suitable for screening small molecule libraries. Pilot screens of the 1,280-member library of pharmacologically active compounds (LOPAC(™)) and a 3,481-member library of known drugs (KD2) gave hit rates of 0.6% and 0.5% respectively, and subsequent titrations confirmed ATG4B inhibitory activity for three compounds, both in the FRET and mass spectrometry assays. The FRET- and mass spectrometry-based assays we have developed will allow for both HTS for inhibitors of ATG4B and mechanistic approaches to study inhibition of a major component of the autophagy pathway.


Assuntos
Cisteína Endopeptidases/química , Avaliação Pré-Clínica de Medicamentos/métodos , Recuperação de Fluorescência Após Fotodegradação/métodos , Corantes Fluorescentes/química , Espectrometria de Massas/métodos , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases/análise , Ativação Enzimática , Especificidade por Substrato
17.
ACS Chem Biol ; 7(2): 350-9, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22066782

RESUMO

We have recently mapped the protein interaction network of methicillin-resistant Staphylococcus aureus (MRSA), which revealed its scale-free organization with characteristic presence of highly connected hub proteins that are critical for bacterial survival. Here we report the discovery of inhibitors that are highly potent against one such hub target, staphylococcal pyruvate kinase (PK). Importantly, the developed compounds demonstrate complete selectivity for the bacterial enzyme compared to all human orthologues. The lead 91nM inhibitor IS-130 has been identified through ligand-based cheminformatic exploration of a chemical space around micromolar hits initially generated by experimental screening. The following crystallographic study resulted in identification of a tetrameric MRSA PK structure where IS-130 is bound to the interface between the protein's subunits. This newly described binding pocket is not present in otherwise highly similar human orthologues and can be effectively utilized for selective inhibition of bacterial PK. The following synthetic modifications of IS-130, guided by structure-based molecular modeling, resulted in the development of MRSA PK inhibitors with much improved antimicrobial properties. Considering a notable lack of recent reports on novel antibacterial targets and cognate antibacterial compounds, this study provides a valuable perspective on the development of a new generation of antimicrobials. Equally noteworthy, the results of the current work highlight the importance of rigorous cheminformatics-based exploration of the results of high-throughput experiments.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/metabolismo , Sequência de Aminoácidos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Piruvato Quinase/química , Alinhamento de Sequência , Infecções Estafilocócicas/tratamento farmacológico
18.
J Org Chem ; 71(8): 2935-43, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16599585

RESUMO

The syntheses of eight sulfonium compounds with structures related to the naturally occurring pyrrolizidine alkaloid, australine, in which the bridgehead nitrogen atom is replaced by a sulfonium ion, are described. The synthetic strategy relies on the intramolecular attack of a cyclic thioether across a terminal double bond in the presence of a suitable electrophile. We postulate that these compounds, having a permanent positive charge on the sulfur atom, will mimic the highly unstable oxacarbenium ion transition state in a glycosidase-catalyzed hydrolysis reaction. The conformational preferences of these compounds, based on analysis of 1H-1H vicinal coupling constants and 1D-NOESY data, are attributed to both steric and electrostatic interactions. These compounds will be used in the study of structure-activity relationships with glycosidase enzymes.


Assuntos
Inibidores Enzimáticos/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos de Sulfônio/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/metabolismo , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Espectroscopia de Ressonância Magnética , Conformação Molecular , Alcaloides de Pirrolizidina , Relação Estrutura-Atividade , Compostos de Sulfônio/química , Compostos de Sulfônio/farmacologia
19.
J Org Chem ; 71(3): 1262-4, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16438551

RESUMO

The synthesis of a bicyclic sulfonium ion analogue of a naturally occurring indolizidine alkaloid, swainsonine, in which the bridgehead nitrogen atom is replaced by a sulfonium ion, has been achieved by a multistep synthesis starting from (2S,3S,4R)-2,3-dibenzyloxy-4-formaldehyde-thiolane. The synthetic strategy relies on the intramolecular displacement of a leaving group on a pendant acyclic chain by a cyclic thioether. This bicyclic sulfonium salt provides a candidate with which to further probe the hypothesis that a sulfonium salt carrying a permanent positive charge would be an effective glycosidase inhibitor.


Assuntos
Inibidores Enzimáticos/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Compostos de Sulfônio/síntese química , Swainsonina/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Íons/química , Estrutura Molecular , Compostos de Sulfônio/química , Compostos de Sulfônio/farmacologia , Swainsonina/síntese química , Swainsonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa