Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 38(7): 1221-1230, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900172

RESUMO

ABSTRACT: Larsen, S, de Zee, M, Kristiansen, EL, and van den Tillaar, R. A biomechanical comparison between a high and low barbell placement on net joint moments, kinematics, muscle forces, and muscle-specific moments in 3 repetition maximum back squats. J Strength Cond Res 38(7): 1221-1230, 2024-This study aimed to investigate the impact of a high barbell vs. low barbell placement on net joint moments, muscle forces, and muscle-specific moments in the lower extremity joints and muscles during maximum back squats. Twelve recreationally trained men (age = 25.3 ± 2.9 years, height = 1.79 ± 7.7 m, and body mass = 82.8 ± 6.9 kg) volunteered for the study. A marker-based motion capture system and force plate data were used to calculate the net joint moments, and individual muscle forces were estimated using static optimization. Muscle forces were multiplied by their corresponding internal moment arms to determine muscle-specific moments. Statistical parametric mapping was used to analyze the effect of barbell placement as time-series data during the concentric phase. The 3 repetition maximum barbell load lifted by the subjects was 129.1 ± 13.4 kg and 130.2 ± 12.7 kg in the high bar and low bar, which were not significantly different from each other. Moreover, no significant differences were observed in net joint moments, muscle forces, or muscle-specific moments for the hip, knee, or ankle joint between the low- and high bar placements. The findings of this study suggest that barbell placement plays a minor role in lower extremity muscle forces and moment-specific moments when stance width is standardized, and barbell load lifted does not differ between barbell placements among recreationally resistance-trained men during maximal back squats. Therefore, the choice of barbell placement should be based on individual preference and comfort.


Assuntos
Músculo Esquelético , Humanos , Masculino , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia , Adulto , Adulto Jovem , Articulação do Tornozelo/fisiologia , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Levantamento de Peso/fisiologia , Força Muscular/fisiologia , Treinamento Resistido/métodos , Equipamentos Esportivos
2.
Eur J Nutr ; 62(7): 2963-2975, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37450275

RESUMO

PURPOSE: The aim of this study was to explore the isolated and combined effects of caffeine and citrulline malate (CitMal) on jumping performance, muscular strength, muscular endurance, and pain perception in resistance-trained participants. METHODS: Using a randomized and double-blind study design, 35 resistance-trained males (n = 18) and females (n = 17) completed four testing sessions following the ingestion of isolated caffeine (5 mg/kg), isolated CitMal (12 g), combined doses of caffeine and CitMal, and placebo. Supplements were ingested 60 min before performing a countermovement jump (CMJ) test (outcomes included jump height, rate of force development, peak force, and peak power), one-repetition maximum (1RM) squat and bench press, and repetitions to muscular failure in the squat and bench press with 60% of 1RM. Pain perception was evaluated following the repetitions to failure tests. The study was registered at ISRCTN (registration number: ISRCTN11694009). RESULTS: Compared to the placebo condition, isolated caffeine ingestion and co-ingestion of caffeine and CitMal significantly enhanced strength in 1RM bench press (Cohen's d: 0.05-0.06; 2.5-2.7%), muscular endurance in the squat (d: 0.46-0.58; 18.6-18.7%) and bench press (d: 0.48-0.64; 9.3-9.5%). However, there was no significant difference between isolated caffeine ingestion and caffeine co-ingested with CitMal, and isolated CitMal supplementation did not have an ergogenic effect in any outcome. No main effect of condition was found in the analysis for CMJ-derived variables, 1RM squat and pain perception. CONCLUSION: Caffeine ingestion appears to be ergogenic for muscular strength and muscular endurance, while adding CitMal does not seem to further enhance these effects.


Assuntos
Substâncias para Melhoria do Desempenho , Treinamento Resistido , Masculino , Feminino , Humanos , Cafeína/farmacologia , Estudos Cross-Over , Resistência Física , Método Duplo-Cego , Força Muscular , Substâncias para Melhoria do Desempenho/farmacologia , Ingestão de Alimentos
3.
J Sports Sci ; 40(20): 2225-2232, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36413441

RESUMO

The aim of the present study was to examine whether relative strength influences lifting kinematics (e.g., lifting time, barbell velocity, vertical displacement) during the bench press (BP) exercise with healthy men. Loaded BP 6-repetition maximum normalized to body mass (i.e., relative strength) was examined in 110 resistance-trained men (age: 22.9 ± 2.5 years, height: 180.9 ± 6.9 cm, body mass: 80.3 ± 7.9 kg), by analysing lifting kinematics using a linear encoder. According to relative BP strength, subjects were classified as beginners, recreationally trained, intermediate, and advanced. Results showed that in the intermediate (p = 0.004, ES = 0.85) and advanced (p = 0.016, ES = 0.81) groups barbell velocity was lower in the sticking region of the BP action, compared with beginners, however there were no significant differences between groups for vertical displacement (p = 0.122-1.000) and lifting time (p = 0.052-1.000). These findings suggest that greater relative strength improves the capacity to perform the eccentric but not the concentric phase of BP. Enhanced barbell lowering indicates that the sticking region is caused by a high demand for eccentric force production during biomechanically disadvantageous conditions.


Assuntos
Músculo Esquelético , Treinamento Resistido , Masculino , Humanos , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Força Muscular , Treinamento Resistido/métodos , Levantamento de Peso
4.
J Hum Kinet ; 91(Spec Issue): 105-119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38689586

RESUMO

This study compared the kinematics, surface electromyography (sEMG) and kinetics among isometric squats performed at 10 different heights of the upward part and a one-repetition maximum (1-RM) squat. Eleven males (age: 27.5 ± 3.4 years, body mass: 84.9 ± 8.1 kg, body height: 1.79 ± 0.06 m, 1-RM squat: 152.2 ± 20.55 kg) took part in this study. It was found that force output was lowest in the sticking region at around the event of peak deceleration for the 1-RM trial with force output at 2179 ± 212 N. For the isometric trial, the lowest force output occurred at the lowest barbell height (1735 ± 299 N). In addition, for the 1-RM condition hip extension moments peaked at the first four barbell heights (6.5-6.2 Nm/kg) representing the pre-sticking and the sticking region before significantly decreasing during the events representing the post-sticking region. Additionally, the sEMG amplitude peaked for the hip extensors at the barbell heights corresponding to the post-sticking region. Moreover, the sEMG amplitude was significantly higher for the 1-RM condition for all hip extensors, vastus lateralis, and calf muscles (F ≥ 2.7, p ≤ 0.01, ηp2 ≥ 0.25). Therefore, we suggest that the sticking region occurs because of reduced force output in the pre-sticking and the sticking region in back squats among resistance-trained males. The reduced force output is probably a combination of suboptimal internal moment arms, length-tension relationships of the gluteus maximus, hamstring and vastii muscles in the pre-sticking and sticking regions to overcome the large extensor moments together with diminishing potentiation from the pre-sticking to the sticking region.

5.
PeerJ ; 12: e16865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313010

RESUMO

Background: The barbell squat is an exercise used to strengthen the lower limbs, with implications for both performance in sports and improving movement during everyday tasks. Although the exercise is being trained across a variety of repetition ranges, the technical requirements may vary, affecting appropriate repetition range for specific training goals. Methods: A randomised within-subject design was used to compare kinematics and surface electromyography (EMG) in the lower extremities during different concentric phases (pre-, sticking- and post-sticking region) of the last repetition when performing squats at different repetition maximums (RMs). Thirteen strength-trained men (age: 23.6 ± 1.9 years; height: 181.1 ± 6.5 cm; body mass: 82.2 kg, 1RM: 122.8 ± 16.2, relative strength: 1.5 ± 0.2 x body mass in external load) performed a 1, 3, 6, and 10RM squat, in a randomised order. Results: The main findings were that barbell-, ankle-, knee- and hip kinematics were similar across different repetition ranges, except for a smaller trunk lean at 1RM in the pre-sticking region compared to other repetitions and in the sticking region compared to 10RM (p ≤ 0.04). Furthermore, 1RM revealed significantly higher EMG amplitude in the vastus lateralis, gastrocnemius and soleus in the sticking and post-sticking regions when compared to 10RM. It was concluded that 10RM may locally fatigue the vastus lateralis and plantar flexors, explaining the lower EMG amplitude. The observed differences indicate that requirements vary for completing the final repetition of the 10RM compared to the 1RM, an important aspect to consider in training to enhance 1RM strength.


Assuntos
Treinamento Resistido , Levantamento de Peso , Adulto , Humanos , Masculino , Adulto Jovem , Fenômenos Biomecânicos , Eletromiografia/métodos , Músculo Esquelético , Treinamento Resistido/métodos
6.
J Funct Morphol Kinesiol ; 8(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36810503

RESUMO

Individual differences in the appropriate percentage of 1-RM for a given repetition range could be a result of variation in anthropometrics and/or sex. Strength endurance is the term used to describe the ability to perform a number of repetitions prior to failure (AMRAP) in sub-maximal lifts and is important in determining the appropriate load for the targeted repetition range. Earlier research investigating the association of AMRAP performance and anthropometric variables was often performed in a sample of pooled sexes or one sex only or by utilizing tests with low ecological validity. As such, this randomized cross-over study investigates the association of anthropometrics with different measures of strength (maximal and relative strength and AMRAP) in the squat and bench press for resistance-trained males (n = 19, 24.3 ± 3.5 years, 182 ± 7.3 cm, 87.1 ± 13.3 kg) and females (n = 17, 22.1 ± 3 years, 166.1 ± 3.7 cm, 65.5 ± 5.6 kg) and whether the association differs between the sexes. Participants were tested for 1-RM strength and AMRAP performance, with 60% of 1-RM in the squat and bench press. Correlational analysis revealed that for all participants, lean mass and body height were associated with 1-RM strength in the squat and bench press (0.66, p ≤ 0.01), while body height was inversely associated with AMRAP performance (r ≤ -0.36, p ≤ 0.02). Females had lower maximal and relative strength with a greater AMRAP performance. In the AMRAP squat, thigh length was inversely associated with performance in males, while fat percentage was inversely associated with performance in females. It was concluded that associations between strength performance and anthropometric variables differed for males and females in fat percentage, lean mass, and thigh length.

7.
Sports Med Open ; 9(1): 66, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523092

RESUMO

BACKGROUND: One of the most popular time-efficient training methods when training for muscle hypertrophy is drop sets, which is performed by taking sets to concentric muscle failure at a given load, then making a drop by reducing the load and immediately taking the next set to concentric or voluntary muscle failure. The purpose of this systematic review and meta-analysis was to compare the effects of drop sets over traditional sets on skeletal muscle hypertrophy. METHODS: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The SPORTDiscus and MEDLINE/PubMed databases were searched on April 9, 2022, for all studies investigating the effects of the drop set training method on muscle hypertrophy that meets the predefined inclusion criteria. Comprehensive Meta-Analysis Version 3 (Biostat Inc., Englewood Cliffs, NJ, USA) was used to run the statistical analysis. Publication bias was assessed through visual inspection of the funnel plots for asymmetry and statistically by Egger's regression test with an alpha level of 0.10. RESULTS: Six studies met the predefined inclusion criteria. The number of participants in the studies was 142 (28 women and 114 men) with an age range of 19.2-27 years. The average sample size was 23.6 ± 10.9 (range 9-41). Five studies were included in the quantitative synthesis. Meta-analysis showed that both the drop set and traditional training groups increased significantly from pre- to post-test regarding muscle hypertrophy (drop set standardized mean difference: 0.555, 95% CI 0.357-0.921, p < 0.0001; traditional set standardized mean difference: 0.437, 95% CI 0.266-0.608, p < 0.0001). No significant between-group difference was found (standardized mean difference: 0.155, 95% CI - 0.199 to - 0.509, p = 0.392). CONCLUSIONS: The results of this systematic review and meta-analysis indicate that drop sets present an efficient strategy for maximizing hypertrophy in those with limited time for training. There was no significant difference in hypertrophy measurements between the drop set and traditional training groups, but some of the drop set modalities took half to one-third of the time compared with traditional training.

8.
BMC Sports Sci Med Rehabil ; 15(1): 103, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582807

RESUMO

BACKGROUND: The effectiveness of strength training with free-weight vs. machine equipment is heavily debated. Thus, the purpose of this meta-analysis was to summarize the data on the effect of free-weight versus machine-based strength training on maximal strength, jump height and hypertrophy. METHODS: The review was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, and the systematic search of literature was conducted up to January 1st, 2023. Studies that directly compared free-weight vs. machine-based strength training for a minimum of 6 weeks in adults (18-60 yrs.) were included. RESULTS: Thirteen studies (outcomes: maximal strength [n = 12], jump performance [n = 5], muscle hypertrophy [n = 5]) with a total sample of 1016 participants (789 men, 219 women) were included. Strength in free-weight tests increased significantly more with free-weight training than with machines (SMD: -0.210, CI: -0.391, -0.029, p = 0.023), while strength in machine-based tests tended to increase more with machine training than with free-weights (SMD: 0.291, CI: -0.017, 0.600, p = 0.064). However, no differences were found between modalities in direct comparison (free-weight strength vs. machine strength) for dynamic strength (SMD: 0.084, CI: -0.106, 0.273, p = 0.387), isometric strength (SMD: -0.079, CI: -0.432, 0.273, p = 0.660), countermovement jump (SMD: -0.209, CI: -0.597, 0.179, p = 0.290) and hypertrophy (SMD: -0.055, CI: -0.397, 0.287, p = 0.751). CONCLUSION: No differences were detected in the direct comparison of strength, jump performance and muscle hypertrophy. Current body of evidence indicates that strength changes are specific to the training modality, and the choice between free-weights and machines are down to individual preferences and goals.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36361121

RESUMO

The barbell bench press is often performed at different repetition maximums (RM). However, little is known about the last repetition of these repetition maximums in terms of movement kinematics and electromyographic activity in the bench press. This study compared kinematics and electromyographic activity during the last repetition of 1-RM, 3-RM, 6-RM, and 10-RM on the barbell bench press. Twelve healthy recreationally bench press-trained males (body mass: 84.3 ± 7.8 kg, age: 23.5 ± 2.6 years, height: 183.8 ± 4.2 cm) performed the bench press with a self-chosen grip width with four different repetition maximums. The participants bench pressed 96.5 ± 14.1, 88.5 ± 13.0, 81.5 ± 12.3, and 72.8 ± 10.5 kg with the 1-RM, 3-RM, 6-RM, and 10-RM. No differences were found between the bench press conditions in kinematic or electromyographic activity, except for the 10-RM, where a higher barbell velocity was observed at peak barbell deacceleration and first minimum barbell velocity (p ≤ 0.05) compared to the 1-RM and 3-RM. Overall, triceps medialis activity increased, whereas biceps brachii activity decreased from the pre-sticking to post-sticking region for all bench conditions (p ≤ 0.05). Since slower barbell velocity was observed in the sticking region for the 1-RM and 3-RM conditions compared to the 10-RM condition, we suggest training with these repetition maximums to learn how to grind through the sticking region due to the principle of specificity when the goal is to enhance maximal strength.


Assuntos
Treinamento Resistido , Levantamento de Peso , Masculino , Humanos , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Força Muscular , Músculo Esquelético
10.
Sports Biomech ; : 1-15, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35686617

RESUMO

Shortly after beginning the upward phase of a free-weight barbell back squat there is often a deacceleration phase (sticking region) that may lead to repetition failure. The cause for this region is not well understood. Therefore, this study investigated the effects of 90%, 100%, and 102% of 1-RM barbell loads on kinematics, kinetics, and myoelectric activity in back squats. Twelve resistance-trained healthy males (body mass: 83.5 ± 7.8 kg, age: 27.3 ± 3.8 years, height: 180.3 ± 6.7 cm) participated in the study and lifted 134 ± 17 kg at 90% and 149 ± 19 kg at 100%, while they failed at 153 ± 19 kg with 102% load. The main findings were that barbell displacement and barbell velocity in the sticking region decreased with increasing loads. Moreover, the external hip extensor moment increased with heavier loads, whereas the knee extension and ankle plantarflexion moments were similar during the concentric phase. Also, reduced hip and knee extension together with lower myoelectric activity for all hip extensors and vastus lateralis were found for the 102% load compared to the others. Our finding suggests that the increased external hip extensor moment together with lower hip extensor myoelectric activity due to a reduced hip extension and thereby are responsible for lifting failure among resistance-trained males.

11.
Sports (Basel) ; 10(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36548496

RESUMO

The purpose of this study was to improve our understanding of the relative contributions of biomechanical, anthropometric, and psychological factors in explaining maximal bench press (BP) strength in a heterogeneous, resistance-trained sample. Eighteen college-aged participants reported to the laboratory for three visits. The first visit consisted of psychometric testing. The second visit assessed participants' anthropometrics, additional psychometric outcomes, and bench press one repetition maximum (1RM). Participants performed isometric dynamometry testing for horizontal shoulder adduction and elbow extension at a predicted sticking point joint position. Multiple linear regression was used to examine the relationships between the biomechanical, anthropometric, and psychological variables and BP 1RM. Our primary multiple linear regression accounted for 43% of the variance in BP strength (F(3,14) = 5.34, p = 0.01; R2 = 0.53; adjusted R2 = 0.43). The sum of peak isometric net joint moments from the shoulder and elbow had the greatest standardized effect (0.59), followed by lean body mass (0.27) and self-efficacy (0.17). The variance in BP 1RM can be similarly captured (R2 = 0.48) by a single principal component containing anthropometric, biomechanics, and psychological variables. Pearson correlations with BP strength were generally greater among anthropometric and biomechanical variables as compared to psychological variables. These data suggest that BP strength among a heterogeneous, resistance-trained population is explained by multiple factors and is more strongly associated with physical than psychological variables.

12.
Front Sports Act Living ; 3: 691459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169277

RESUMO

The aim of this study was to investigate barbell, joint kinematics, joint kinetics of hip, knee, and ankle in tandem with myoelectric activity around the sticking region in three-repetition maximum (3-RM) back squats among recreationally trained lifters. Unlike previous literature, this study also investigated the event of first-peak deacceleration, which was expected to be the event with the lowest force output. Twenty-five recreationally trained lifters (body mass: 70.8 ± 10.5, age: 24.6 ± 3.4, height: 172 ± 8.5) were tested in 3-RM back squats. A repeated one-way analysis of variance showed that ground reaction force output decreased at first peak deacceleration compared with the other events. Moreover, torso forward lean, hip moment arm, and hip contribution to total moment increased, whereas the knee moment arms and moment contribution to total moment decreased in the sticking region. Also, stable moment arms and moment contributions to total moment were observed for the ankle in the sticking region. Furthermore, the knee extensors together with the soleus muscle decreased myoelectric activity in the post-sticking region, while the gluteus maximus and biceps femoris increased myoelectric activity in the post-sticking region. Our findings suggest that the large hip moment arms and hip contributions to total moment together with a lower myoelectric activity for the hip extensors contribute to a poor biomechanical region for force output and, thereby, to the sticking region among recreationally trained lifters in 3-RM back squats.

13.
PeerJ ; 9: e10663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520457

RESUMO

BACKGROUND: Maximal strength is a critical determinant of performance in numerous sports. Autoregulation is a resistance training prescription approach to adjust training variables based on the individuals' daily fluctuations in performance, which are a result of training-induced fitness and fatigue, together with readiness from daily non-training stressors. OBJECTIVE: This review aimed to summarise the effects of different subjective and objective autoregulation methods for intensity and volume on enhancing maximal strength. MATERIALS AND METHODS: A comprehensive literature search was conducted through SPORTDiscus, PubMed and Google Scholar. Studies had to meet the following criteria to be included in the review: (1) estimation of 1-RM or a 1-RM test for both pre-test and post-test to measure progression in strength assessment during the training intervention, (2) a training comparison group, (3) participants were healthy, (4) the article had a detailed description of training intensity, training volume, and training frequency during the training intervention, (5) the training intervention lasted for more than four weeks, (6) studies with objective autoregulation methods utilised a validated measuring tool to monitor velocity, (7) English-language studies. RESULTS: Fourteen studies met the inclusion criteria, comprising 30 training groups and 356 participants. Effect size and percentage differences were calculated for 13 out of 14 studies to compare the effects of different training interventions. All autoregulation training protocols resulted in an increase in 1-RM, from small ES to large ES. CONCLUSION: Overall, our findings suggest that using both subjective autoregulation methods for intensity, such as repetitions in reserve rating of perceived exertion and flexible daily undulation periodisation, together with objective autoregulation methods for autoregulation intensity and volume, such as velocity targets and velocity loss, could be effective methods for enhancing maximal strength. It is speculated that this is because the implementation of autoregulation into a periodised plan may take into account the athletes' daily fluctuations, such as fluctuations in fitness, fatigue, and readiness to train. When training with a validated measuring tool to monitor velocity, this may provide objective augmented intra- and interset feedback during the resistance exercise who could be beneficial for increasing maximal strength. Coaches, practitioners, and athletes are encouraged to implement such autoregulation methods into a periodised plan when the goal is to enhance maximal strength.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33540938

RESUMO

This study compared the kinetics, barbell, and joint kinematics and muscle activation patterns between a one-repetition maximum (1-RM) Smith machine squat and isometric squats performed at 10 different heights from the lowest barbell height. The aim was to investigate if force output is lowest in the sticking region, indicating that this is a poor biomechanical region. Twelve resistance trained males (age: 22 ± 5 years, mass: 83.5 ± 39 kg, height: 1.81 ± 0.20 m) were tested. A repeated two-way analysis of variance showed that Force output decreased in the sticking region for the 1-RM trial, while for the isometric trials, force output was lowest between 0-15 cm from the lowest barbell height, data that support the sticking region is a poor biomechanical region. Almost all muscles showed higher activity at 1-RM compared with isometric attempts (p < 0.05). The quadriceps activity decreased, and the gluteus maximus and shank muscle activity increased with increasing height (p ≤ 0.024). Moreover, the vastus muscles decreased only for the 1-RM trial while remaining stable at the same positions in the isometric trials (p = 0.04), indicating that potentiation occurs. Our findings suggest that a co-contraction between the hip and knee extensors, together with potentiation from the vastus muscles during ascent, creates a poor biomechanical region for force output, and thereby the sticking region among recreationally resistance trained males during 1-RM Smith machine squats.


Assuntos
Treinamento Resistido , Levantamento de Peso , Adolescente , Adulto , Eletromiografia , Humanos , Masculino , Músculo Esquelético , Postura , Adulto Jovem
15.
Front Sports Act Living ; 3: 719013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541522

RESUMO

Barbell placement and stance width both affect lifting performance in the back squat around the sticking region. However, little is known about how these squat conditions separately could affect the lifting performance. Therefore, this study investigated the effects of stance width and barbell placement upon kinematics, kinetics, and myoelectric activity around the sticking region during a three-repetition maximum back squat. Nine men and nine women (body mass: 76.2 ±11.1, age: 24.9 ± 2.6) performed back squats with four different techniques, such as: high-bar narrow stance (HBNS), high-bar wide stance, low-bar narrow stance, and low-bar wide stance where they lifted 99.2 ± 23.6, 92.9 ± 23.6, 102.5 ± 24.7, and 97.1 ± 25.6 kg, respectively. The main findings were that squatting with a low-bar wide stance condition resulted in larger hip contributions to the total moment than the other squat conditions, whereas squatting with an HBNS resulted in greater knee contributions to the total moment together with higher vastus lateralis and less gluteus maximus myoelectric activity. Our findings suggest that training with an HBNS could be beneficial when targeting the knee extensors and plantar flexors, whereas a low-bar wide stance could be beneficial when targeting the hip extensors.

16.
Sports (Basel) ; 10(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35050971

RESUMO

The target of this study was to investigate the acute effect of a supramaximal augmented eccentric load on the kinematics and myoelectric activity during the concentric phase of the lift in a traditional bench press. Ten resistance-trained males (age 24 ± 6.4 years, height 1.80 ± 0.07 m, body-mass 87.2 ± 16.9 kg) performed two repetitions at 110/85% of the 1-RM in the dynamic accentuated external resistance (DAER) group and two repetitions at 85/85% of the 1-RM for the control group in a traditional bench press. The barbell kinematics, joint kinematics and myoelectric activity of eight muscles were measured in the eccentric phase and the pre-sticking, sticking and post-sticking regions. The main findings were that the sticking region started at a lower barbell height and that a lower barbell velocity was observed in the sticking region during the second repetition in the DAER condition compared to the control condition. Additionally, the lateral deltoid muscle and clavicle part of the pectoralis were more active during the eccentric loading compared to the control condition for the second repetition. Furthermore, higher myoelectric activity was measured during the second repetition in the sticking region for the eccentric loading condition in both pectoralis muscles, while the sternal parts of the pectoralis and anterior deltoid were more active during the second repetition of the control condition in the post-sticking region. Based on our findings, it can be concluded that the supramaximal loading in the descending phase with 110% of the 1-RM in the bench press does not have an acute and positive effect of enhanced performance in the ascending phase of the lift at 85% of 1-RM. Instead, fatigue occurs when using this eccentric load during a bench press.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34444101

RESUMO

Barbell placement can affect squat performance around the sticking region. This study compared kinematics, kinetics, and myoelectric activity of the safety-bar squat with the high-bar, and low-bar squat around the sticking region. Six recreationally resistance-trained men (26.3 ± 3.1 years, body mass: 81 ± 7.7 kg) and eight women (22.1 ± 2.2 years, body mass: 65.7 ± 10.5 kg) performed three repetition maximums in all three squat conditions. The participants lifted the least load with the safety bar followed by the high-bar and then the low-bar squat. Greater myoelectric activity of the gluteus maximus was observed during safety-bar squats than high-bar squats. Also, larger knee extension moments were observed for the safety bar compared with low-bar squat. Men had higher myoelectric activity in the safety-bar condition for the gluteus maximus during all regions in comparison with women, and greater knee valgus at the second occurrence of peak barbell velocity. Our findings suggest that the more upright torso inclination during the safety-bar could allow greater gluteus maximus contribution to the hip extensor moment. Moreover, low-bar squats allowed the greatest loads to be lifted, followed by the high-bar and safety-bar squats, possibly due to the larger hip moments and similar knee moments compared to the other squat conditions. Therefore, when the goal is to lift the greatest load possible among recreationally trained men and women, they should first attempt squatting with a low-bar technique, and if the goal is to increase myoelectric activity in the gluteus maximus, a safety-bar squat may be the more effective than the high- bar squat.


Assuntos
Treinamento Resistido , Levantamento de Peso , Fenômenos Biomecânicos , Feminino , Humanos , Joelho , Masculino , Músculo Esquelético , Postura
18.
Sports (Basel) ; 9(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437374

RESUMO

Examining participatory motives clarifies what engages and keeps individuals participating in exercise. The popularity of training at fitness centres has greatly increased over the last two decades, but individual determinants for motivation remain uncertain. This study compared motives between gender and age categories in training and performing physical activity at Norwegian fitness centres. To compare motives, a survey utilising a standardised questionnaire (MPAM-R) was conducted at six different Norwegian fitness centres. It was hypothesised that the intrinsic motive socialisation and extrinsic motive fitness would be more important among the older age categories for both genders, while the extrinsic motive appearance and intrinsic motive enjoyment would be more important among younger age groups. A total response of 183 men and 150 women, aged 14-80 years, was divided into seven categories based on their age and included in the statistical analysis. The main findings after conducting a two-way analysis of variance (ANOVA) with repeated measures, were that the most important motive for training at fitness centres was increasing fitness, followed by enjoyment, competence, vitality and appearance. The social motive was rated the lowest. Women rated fitness and enjoyment higher compared to men, and men rated the motive for appearance higher than women, but this decreased with age in both genders. With increasing age, the importance of enjoyment and competence decreased in men, while women seemed to place increased importance on vitality with age. The importance of the social motive decreased first as age increased, but then increased again in the age group 41-50 years and older. It was concluded that the motives for participating in exercise at fitness centres was dependent on individual characteristics and that motives about training at fitness centres differed by gender and changed with age.

19.
Sports Med Int Open ; 4(2): E59-E66, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32685673

RESUMO

The purpose of the study was to compare kinematics and muscle activity between two variations of unilateral squats under different stability conditions. Twelve male volunteers (age: 23±5 years, mass: 80±17 kg, height: 1.81±0.11 m, strength-training experience: 4.3±1.9 years) performed four repetitions with the same external load (≈4RM). Two variations (with the non-stance leg forwards vs. backwards) were performed in a Smith-machine and free-weight condition. The variables were barbell velocity, lifting time and surface electromyography activity of the lower extremity and trunk muscles during the descending and ascending phase. The main findings were 1) peak force was higher when performing the unilateral squats in the Smith machine; 2) peak ascending barbell velocity increased from repetition 3-4 with free weight; and 3) muscle activity from the rectus femoris, vastus lateral, biceps femoris, gluteus medius, and erector spinae increased with repetitions, whereas gluteus, and medial vastus and shank muscles were affected by the conditions. It was concluded that more peak force could be produced because of increased stability. However, peak barbell velocity increased from repetition to repetition in free-weight unilateral squats, which was probably because the participants grew more comfortable. Furthermore, increased instability causes more gluteus and vastus medial activation and foot variations mainly affected the calf muscles.

20.
Front Sports Act Living ; 2: 637066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33554113

RESUMO

Grip width has been found to affect lifting performance, especially around the sticking region; however, little is known about the kinetics and muscle activities that could explain these differences in performance. This study aimed to investigate the effects of grip width on the joint, barbell kinematics, and horizontal kinetics, analyzed in tandem with the effects of muscle activation around the sticking region in the one repetition maximum (1-RM) barbell bench press. Fourteen healthy bench press-trained males (body mass: 87.8 ± 18.4, age: 25 ± 5.4) performed 1-RM with a small, medium, and wide grip width. The participants bench pressed 109.8 ± 24.5 kg, 108.9 ± 26.4 kg, and 103.7 ± 24 kg with the wide, medium, and narrow grip widths. Furthermore, the wide grip width produced 13.1-15.7% lateral forces, while the medium and narrow grip widths produced 0.4-1.8 and 8.5-10.1% medially directed forces of the vertical force produced during the sticking region, respectively. Horizontal forces did not increase during the sticking region, and the resultant forces decreased during the sticking region for all grip widths. The wide and medium grip widths produced greater horizontal shoulder moments than the narrow grip width during the sticking region. Hence, the wide and medium grip widths produced similar shoulder and elbow joint moments and moment arm at the first located lowest barbell velocity. Furthermore, triceps medialis muscle activity was greater for the medium and narrow grip widths than the wide grip width. This study suggests that the sticking region for the wide and medium grip widths may be specific to the horizontal elbow and shoulder joint moments created during this region. Therefore, when the goal is to lift as much as possible during 1-RM bench press attempts among recreationally trained males, our findings suggest that bench pressing with a wide or medium grip width may be beneficial.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa