Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell ; 184(9): 2487-2502.e13, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33857424

RESUMO

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Medicina de Precisão , Mutações Sintéticas Letais , Transcriptoma/efeitos dos fármacos , Idoso , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/imunologia , Ensaios Clínicos como Assunto , Feminino , Seguimentos , Humanos , Imunoterapia , Masculino , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida
2.
Cell ; 179(1): 219-235.e21, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522890

RESUMO

Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade.


Assuntos
Heterogeneidade Genética/efeitos da radiação , Melanoma/genética , Melanoma/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Raios Ultravioleta/efeitos adversos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos do Interstício Tumoral , Melanoma/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Mutação/efeitos da radiação , Filogenia , Neoplasias Cutâneas/mortalidade , Taxa de Sobrevida , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
3.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100185

RESUMO

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Assuntos
Genômica , Metabolômica , Neoplasias/patologia , Ureia/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas de Transporte da Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferase/antagonistas & inibidores , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/biossíntese , Pirimidinas/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
4.
FASEB J ; : fj201701568R, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856660

RESUMO

Glioblastoma is an aggressive and invasive brain malignancy with high mortality rates despite current treatment modalities. In this study, we show that a 7-gene signature, previously found to govern the switch of glioblastomas from dormancy to aggressive tumor growth, correlates with improved overall survival of patients with glioblastoma. Using glioblastoma dormancy models, we validated the role of 2 genes from the signature, thrombospondin-1 ( TSP-1) and epidermal growth factor receptor ( EGFR), as regulators of glioblastoma dormancy and explored their therapeutic potential. EGFR up-regulation was reversed using EGFR small interfering RNA polyplex, antibody, or small-molecule inhibitor. The diminished function of TSP-1 was augmented via a peptidomimetic. The combination of EGFR inhibition and TSP-1 restoration led to enhanced therapeutic efficacy in vitro, in 3-dimensional patient-derived spheroids, and in a subcutaneous human glioblastoma model in vivo. Systemic administration of the combination therapy to mice bearing intracranial murine glioblastoma resulted in marginal therapeutic outcomes, probably due to brain delivery challenges, p53 mutation status, and the aggressive nature of the selected cell line. Nevertheless, this study provides a proof of concept for exploiting regulators of tumor dormancy for glioblastoma therapy. This therapeutic strategy can be exploited for future investigations using a variety of therapeutic entities that manipulate the expression of dormancy-associated genes in glioblastoma as well as in other cancer types.-Tiram, G., Ferber, S., Ofek, P., Eldar-Boock, A., Ben-Shushan, D., Yeini, E., Krivitsky, A., Blatt, R., Almog, N., Henkin, J., Amsalem, O., Yavin, E., Cohen, G., Lazarovici, P., Lee, J. S., Ruppin, E., Milyavsky, M., Grossman, R., Ram, Z., Calderón, M., Haag, R., Satchi-Fainaro, R. Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma.

5.
Chem Pharm Bull (Tokyo) ; 64(5): 507-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27150484

RESUMO

Three new sesquiterpenoids, 13-hydroxyl-atractylenolide II (1), 4-ketone-atractylenolide III (2), and eudesm-4(15)-ene-7ß,11-diol (3), along with eleven known compounds (4-14), were isolated from the rhizomes of Atractylodes macrocephala. The structures and relative configurations of 1-3 were determined by analysis of the spectroscopic data, and the absolute configurations of 1 and 2 were assigned by circular dichroism technique. The anti-inflammatory activities of these isolates were evaluated against lipopolysaccharide-induced nitric oxide production in macrophage RAW264.7 cells; compounds 4, 7, and 8 exhibited moderate efficacy with IC50 values of 48.6±0.5, 46.4±3.2, and 32.3±2.9 µM, respectively.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/metabolismo , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Células Cultivadas , Relação Dose-Resposta a Droga , Inflamação/prevenção & controle , Concentração Inibidora 50 , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 25(5): 1129-34, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25637363

RESUMO

Six new phenolics, scutellariosides A-F (1-3, 5-6, and 8), together with six known compounds (4, 7, 9-12) were isolated from the whole plant of Scutellaria indica (Labiatae). The chemical structures of these compounds were determined by spectroscopic analyses including 2D NMR. Their anti-inflammatory activities were evaluated against LPS-induced NO production in macrophage RAW 264.7 cells. Among them, compounds 10-12 had inhibitory effects with IC50 values ranging from 7.2 to 27.8µM. Compound 12 reduced LPS-induced iNOS expression in a dose-dependent manner.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Fenóis/química , Fenóis/farmacologia , Scutellaria/química , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/imunologia , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
7.
Chem Pharm Bull (Tokyo) ; 63(6): 481-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26027474

RESUMO

A novel pyrrolizidine alkaloids, madhumidine A (1), and two known alkaloids, lindelofidine benzoic acid ester (2) and minalobine B (3) were isolated from the leaves of Madhuca pasquieri (Dubard) H. J. LAM. The chemical structures of these alkaloids were established mainly by NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against lipopolysaccharide-induced nitric oxide production in macrophage RAW264.7 cell. In addition, the cytotoxic activity of all isolated compounds was tested against a panel of cancer cell lines.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Madhuca/química , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/farmacologia , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Neoplasias/tratamento farmacológico , Óxido Nítrico/imunologia , Folhas de Planta/química , Alcaloides de Pirrolizidina/isolamento & purificação
8.
Proc Natl Acad Sci U S A ; 108(8): 3124-9, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300895

RESUMO

Gene-knockout experiments on single-cell organisms have established that expression of a substantial fraction of genes is not needed for optimal growth. This problem acquired a new dimension with the recent discovery that environmental and genetic perturbations of the bacterium Escherichia coli are followed by the temporary activation of a large number of latent metabolic pathways, which suggests the hypothesis that temporarily activated reactions impact growth and hence facilitate adaptation in the presence of perturbations. Here, we test this hypothesis computationally and find, surprisingly, that the availability of latent pathways consistently offers no growth advantage and tends, in fact, to inhibit growth after genetic perturbations. This is shown to be true even for latent pathways with a known function in alternate conditions, thus extending the significance of this adverse effect beyond apparently nonessential genes. These findings raise the possibility that latent pathway activation is in fact derivative of another, potentially suboptimal, adaptive response.


Assuntos
Escherichia coli/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Simulação por Computador , Biologia de Sistemas
9.
Med ; 5(1): 73-89.e9, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38218178

RESUMO

BACKGROUND: Synthetic lethality (SL) denotes a genetic interaction between two genes whose co-inactivation is detrimental to cells. Because more than 25 years have passed since SL was proposed as a promising way to selectively target cancer vulnerabilities, it is timely to comprehensively assess its impact so far and discuss its future. METHODS: We systematically analyzed the literature and clinical trial data from the PubMed and Trialtrove databases to portray the preclinical and clinical landscape of SL oncology. FINDINGS: We identified 235 preclinically validated SL pairs and found 1,207 pertinent clinical trials, and the number keeps increasing over time. About one-third of these SL clinical trials go beyond the typically studied DNA damage response (DDR) pathway, testifying to the recently broadening scope of SL applications in clinical oncology. We find that SL oncology trials have a greater success rate than non-SL-based trials. However, about 75% of the preclinically validated SL interactions have not yet been tested in clinical trials. CONCLUSIONS: Dissecting the recent efforts harnessing SL to identify predictive biomarkers, novel therapeutic targets, and effective combination therapy, our systematic analysis reinforces the hope that SL may serve as a key driver of precision oncology going forward. FUNDING: Funded by the Samsung Research Funding & Incubation Center of Samsung Electronics, the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Republic of Korea government (MSIT), the Kwanjeong Educational Foundation, the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), and Center for Cancer Research (CCR).


Assuntos
Neoplasias , Humanos , Oncologia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , República da Coreia , Mutações Sintéticas Letais/genética , Estados Unidos , Ensaios Clínicos como Assunto
10.
Sci Adv ; 10(27): eadj7402, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959321

RESUMO

The study of the tumor microbiome has been garnering increased attention. We developed a computational pipeline (CSI-Microbes) for identifying microbial reads from single-cell RNA sequencing (scRNA-seq) data and for analyzing differential abundance of taxa. Using a series of controlled experiments and analyses, we performed the first systematic evaluation of the efficacy of recovering microbial unique molecular identifiers by multiple scRNA-seq technologies, which identified the newer 10x chemistries (3' v3 and 5') as the best suited approach. We analyzed patient esophageal and colorectal carcinomas and found that reads from distinct genera tend to co-occur in the same host cells, testifying to possible intracellular polymicrobial interactions. Microbial reads are disproportionately abundant within myeloid cells that up-regulate proinflammatory cytokines like IL1Β and CXCL8, while infected tumor cells up-regulate antigen processing and presentation pathways. These results show that myeloid cells with bacteria engulfed are a major source of bacterial RNA within the tumor microenvironment (TME) and may inflame the TME and influence immunotherapy response.


Assuntos
Bactérias , RNA-Seq , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , RNA-Seq/métodos , Bactérias/genética , Microambiente Tumoral , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Análise de Sequência de RNA/métodos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Biologia Computacional/métodos , RNA Bacteriano/genética , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/genética , Microbiota , Análise da Expressão Gênica de Célula Única
11.
J Intensive Care ; 11(1): 35, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537685

RESUMO

BACKGROUND: Despite the understanding of sepsis-induced extracellular vesicles (EVs), such as exosomes, and their role in intercellular communication during sepsis, little is known about EV contents such as microRNA (miRNA), which modulate important cellular processes contributing to sepsis in body fluids. This study aimed to analyze the differential expression of exosomal miRNAs in plasma samples collected from sepsis patients and healthy controls, and to identify potential miRNA regulatory pathways contributing to sepsis pathogenesis. METHODS: Quantitative real-time PCR-based microarrays were used to profile plasma exosomal miRNA expression levels in 135 patients with sepsis and 11 healthy controls from an ongoing prospective registry of critically ill adult patients admitted to the intensive care unit. The identified exosomal miRNAs were tested in an external validation cohort (35 sepsis patients and 10 healthy controls). And then, functional enrichment analyses of gene ontology, KEGG pathway analysis, and protein-protein interaction network and cluster analyses were performed based on the potential target genes of the grouped miRNAs. Finally, to evaluate the performance of the identified exosomal miRNAs in predicting in-hospital and 90-day mortalities of sepsis patients, receiver operating characteristic curve (ROC) and Kaplan-Meier analyses were performed. RESULTS: Compared with healthy controls, plasma exosomes from sepsis patients showed significant changes in 25 miRNAs; eight miRNAs were upregulated and 17 downregulated. Additionally, the levels of hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p were significantly lower in sepsis patients than in healthy controls (p < 0.0001). These four miRNAs were confirmed in an external validation cohort. In addition, the most common pathway for these four miRNAs were PI3K-Akt and mitogen-activated protein kinase (MAPK) signaling pathways based on the KEGG analysis. The area under the ROC of hsa-let-7f-5p, miR-331-3p, miR-301a-3p, and miR-335-5p level for in-hospital mortality was 0.913, 0.931, 0.929, and 0.957, respectively (p < 0.001), as confirmed in an external validation cohort. Also, the Kaplan-Meier analysis showed a significant difference in 90-day mortality between sepsis patients with high and low miR-335-5p, miR-301a-3p, hsa-let-7f-5p, and miR-331-3p levels (p < 0.001, log-rank test). CONCLUSION: Among the differentially-expressed miRNAs detected in microarrays, the top four downregulated exosomal miRNAs (hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p) were identified as independent prognostic factors for in-hospital and 90-day mortalities among sepsis patients. Bioinformatics analysis demonstrated that these four microRNAs might provide a significant contribution to sepsis pathogenesis through PI3K-Akt and MAPK signaling pathway.

12.
Cell Rep Med ; 4(2): 100938, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36773602

RESUMO

Malignant mesothelioma is an aggressive cancer with limited treatment options and poor prognosis. A better understanding of mesothelioma genomics and transcriptomics could advance therapies. Here, we present a mesothelioma cohort of 122 patients along with their germline and tumor whole-exome and tumor RNA sequencing data as well as phenotypic and drug response information. We identify a 48-gene prognostic signature that is highly predictive of mesothelioma patient survival, including CCNB1, the expression of which is highly predictive of patient survival on its own. In addition, we analyze the transcriptomics data to study the tumor immune microenvironment and identify synthetic-lethality-based signatures predictive of response to therapy. This germline and somatic whole-exome sequencing as well as transcriptomics data from the same patient are a valuable resource to address important biological questions, including prognostic biomarkers and determinants of treatment response in mesothelioma.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Prognóstico , Transcriptoma , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Mesotelioma/patologia , Genômica , Microambiente Tumoral
13.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37852738

RESUMO

BACKGROUND: Systemic immune activation, hallmarked by C-reactive protein (CRP) and interleukin-6 (IL-6), can modulate antitumor immune responses. In this study, we evaluated the role of IL-6 and CRP in the stratification of patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We also interrogated the underlying immunosuppressive mechanisms driven by the IL-6/CRP axis. METHODS: In cohort A (n=308), we estimated the association of baseline CRP with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) in patients with NSCLC treated with ICIs alone or with chemo-immunotherapy (Chemo-ICI). Baseline tumor bulk RNA sequencing (RNA-seq) of lung adenocarcinomas (LUADs) treated with pembrolizumab (cohort B, n=59) was used to evaluate differential expression of purine metabolism, as well as correlate IL-6 expression with PFS. CODEFACS approach was applied to deconvolve cohort B to characterize the tumor microenvironment by reconstructing the cell-type-specific transcriptome from bulk expression. Using the LUAD cohort from The Cancer Genome Atlas (TCGA) we explored the correlation between IL-6 expression and adenosine gene signatures. In a third cohort (cohort C, n=18), plasma concentrations of CRP, adenosine 2a receptor (A2aR), and IL-6 were measured using ELISA. RESULTS: In cohort A, 67.2% of patients had a baseline CRP≥10 mg/L (CRP-H). Patients with CRP-H achieved shorter OS (8.6 vs 14.8 months; p=0.006), shorter PFS (3.3 vs 6.6 months; p=0.013), and lower ORR (24.7% vs 46.3%; p=0.015). After adjusting for relevant clinical variables, CRP-H was confirmed as an independent predictor of increased risk of death (HR 1.51, 95% CI: 1.09 to 2.11) and lower probability of achieving disease response (OR 0.34, 95% CI: 0.13 to 0.89). In cohort B, RNA-seq analysis demonstrated higher IL-6 expression on tumor cells of non-responders, along with a shorter PFS (p<0.05) and enrichment of the purinergic pathway. Within the TCGA LUAD cohort, tumor IL-6 expression strongly correlated with the adenosine signature (R=0.65; p<2.2e-16). Plasma analysis in cohort C demonstrated that CRP-H patients had a greater median baseline level of A2aR (6.0 ng/mL vs 1.3 ng/mL; p=0.01). CONCLUSIONS: This study demonstrates CRP as a readily available blood-based prognostic biomarker in ICI-treated NSCLC. Additionally, we elucidate a potential link of the CRP/IL-6 axis with the immunosuppressive adenosine signature pathway that could drive inferior outcomes to ICIs in NSCLC and also offer novel therapeutic avenues.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenosina , Proteína C-Reativa , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-6 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Microambiente Tumoral , Regulação para Cima
14.
Nat Commun ; 14(1): 3830, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380628

RESUMO

Combination of anti-cancer drugs is broadly seen as way to overcome the often-limited efficacy of single agents. The design and testing of combinations are however very challenging. Here we present a uniquely large dataset screening over 5000 targeted agent combinations across 81 non-small cell lung cancer cell lines. Our analysis reveals a profound heterogeneity of response across the tumor models. Notably, combinations very rarely result in a strong gain in efficacy over the range of response observable with single agents. Importantly, gain of activity over single agents is more often seen when co-targeting functionally proximal genes, offering a strategy for designing more efficient combinations. Because combinatorial effect is strongly context specific, tumor specificity should be achievable. The resource provided, together with an additional validation screen sheds light on major challenges and opportunities in building efficacious combinations against cancer and provides an opportunity for training computational models for synergy prediction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Combinação de Medicamentos
15.
Med ; 4(1): 15-30.e8, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513065

RESUMO

BACKGROUND: Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers. METHODS: We present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genetic interactions and uses them to predict a patient's response to a variety of therapies in multiple cancer types without training on previous treatment response data. We study ENLIGHT in two translationally oriented scenarios: personalized oncology (PO), aimed at prioritizing treatments for a single patient, and clinical trial design (CTD), selecting the most likely responders in a patient cohort. FINDINGS: Evaluating ENLIGHT's performance on 21 blinded clinical trial datasets in the PO setting, we show that it can effectively predict a patient's treatment response across multiple therapies and cancer types. Its prediction accuracy is better than previously published transcriptomics-based signatures and is comparable with that of supervised predictors developed for specific indications and drugs. In combination with the interferon-γ signature, ENLIGHT achieves an odds ratio larger than 4 in predicting response to immune checkpoint therapy. In the CTD scenario, ENLIGHT can potentially enhance clinical trial success for immunotherapies and other monoclonal antibodies by excluding non-responders while overall achieving more than 90% of the response rate attainable under an optimal exclusion strategy. CONCLUSIONS: ENLIGHT demonstrably enhances the ability to predict therapeutic response across multiple cancer types from the bulk tumor transcriptome. FUNDING: This research was supported in part by the Intramural Research Program, NIH and by the Israeli Innovation Authority.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Transcriptoma/genética , Medicina de Precisão , Interferon gama/uso terapêutico , Imunoterapia
16.
Cancer Discov ; 12(4): 1088-1105, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34983745

RESUMO

The tumor microenvironment (TME) is a complex mixture of cell types whose interactions affect tumor growth and clinical outcome. To discover such interactions, we developed CODEFACS (COnfident DEconvolution For All Cell Subsets), a tool deconvolving cell type-specific gene expression in each sample from bulk expression, and LIRICS (Ligand-Receptor Interactions between Cell Subsets), a statistical framework prioritizing clinically relevant ligand-receptor interactions between cell types from the deconvolved data. We first demonstrate the superiority of CODEFACS versus the state-of-the-art deconvolution method CIBERSORTx. Second, analyzing The Cancer Genome Atlas, we uncover cell type-specific ligand-receptor interactions uniquely associated with mismatch-repair deficiency across different cancer types, providing additional insights into their enhanced sensitivity to anti-programmed cell death protein 1 (PD-1) therapy compared with other tumors with high neoantigen burden. Finally, we identify a subset of cell type-specific ligand-receptor interactions in the melanoma TME that stratify survival of patients receiving anti-PD-1 therapy better than some recently published bulk transcriptomics-based methods. SIGNIFICANCE: This work presents two new computational methods that can deconvolve a large collection of bulk tumor gene expression profiles into their respective cell type-specific gene expression profiles and identify cell type-specific ligand-receptor interactions predictive of response to immune-checkpoint blockade therapy. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Neoplasias Encefálicas , Melanoma , Síndromes Neoplásicas Hereditárias , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Transcriptoma , Microambiente Tumoral/genética
17.
Mitochondrial DNA B Resour ; 7(4): 580-582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386626

RESUMO

Citrus erythrosa (Dongjeongkyool in Korean) is a medicinal citrus landrace that grows in Korea. In this study, we characterized the complete chloroplast (Cp) genome (160,120 bp) of C. erythrosa. The Cp genome was consisted of 4 distinct regions: a large single copy (87,731 bp), a small single copy (18,393 bp), and a pair of inverted repeat regions (26,998 bp). The Cp genome encodes a total of 133 genes including 88 protein-coding genes, 37 tRNA genes and 8 rRNA genes. The phylogenetic analysis reveals that C. erythrosa is a sister group to the clade of species including C. reticulata within the genus Citrus.

18.
iScience ; 25(5): 104311, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35502318

RESUMO

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal and synthetic dosage lethal (SL/SDL) partners of such altered host genes. Pursuing this disparate antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL/SDL with altered host genes. The predicted SL/SDL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. We further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming noninfected healthy cells.

19.
Cell Death Dis ; 13(4): 348, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422093

RESUMO

TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n = 41) revealed that the expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15 interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction. Notably, in primary NSCLC patients (n = 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated, providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Membrana , Proteínas de Neoplasias/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteases Específicas de Ubiquitina , Ubiquitinação
20.
Transl Oncol ; 15(1): 101250, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34688043

RESUMO

Herein, we aimed to elucidate the molecular and cellular mechanism in which ubiquitin-specific protease 8 (USP8) is implicated in liver cancer progression via TRAF6-mediated signal. USP8 induces the deubiquitination of TRAF6, TAB2, TAK1, p62, and BECN1, which are pivotal roles for NF-κB activation and autophagy induction. Notably, the LIHC patient with low USP8 mRNA expression showed markedly shorter survival time, whereas there was no significant difference in the other 18-human cancers. Importantly, the TCGA data analysis on LIHC and transcriptome analysis on the USP8 knockout (USP8KO) SK-HEP-1 cells revealed a significant correlation between USP8 and TRAF6, TAB2, TAK1, p62, and BECN1, and enhanced NF-κB-dependent and autophagy-related cancer progression/metastasis-related genes in response to LPS stimulation. Furthermore, USP8KO SK-HEP-1 cells showed an increase in cancer migration and invasion by TLR4 stimulation, and a marked increase of tumorigenicity and metastasis in xenografted NSG mice. The results demonstrate that USP8 is negatively implicated in the LIHC progression through the regulation of TRAF6-mediated signal for the activation of NF-κB activation and autophagy induction. Our findings provide useful insight into the LIHC pathogenesis of cancer progression.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa