RESUMO
The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena) is maintained by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI). The ENA is one of the three members of the International Nucleotide Sequence Database Collaboration (INSDC). It serves the bioinformatics community worldwide via the submission, processing, archiving and dissemination of sequence data. The ENA supports data types ranging from raw reads, through alignments and assemblies to functional annotation. The data is enriched with contextual information relating to samples and experimental configurations. In this article, we describe recent progress and improvements to ENA services. In particular, we focus upon three areas of work in 2023: FAIRness of ENA data, pandemic preparedness and foundational technology. For FAIRness, we have introduced minimal requirements for spatiotemporal annotation, created a metadata-based classification system, incorporated third party metadata curations with archived records, and developed a new rapid visualisation platform, the ENA Notebooks. For foundational enhancements, we have improved the INSDC data exchange and synchronisation pipelines, and invested in site reliability engineering for ENA infrastructure. In order to support genomic surveillance efforts, we have continued to provide ENA services in support of SARS-CoV-2 data mobilisation and have adapted these for broader pathogen surveillance efforts.
Assuntos
Genômica , Nucleotídeos , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Internet , Reprodutibilidade dos Testes , Europa (Continente)RESUMO
The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena), maintained by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), offers those producing data an open and supported platform for the management, archiving, publication, and dissemination of data; and to the scientific community as a whole, it offers a globally comprehensive data set through a host of data discovery and retrieval tools. Here, we describe recent updates to the ENA's submission and retrieval services as well as focused efforts to improve connectivity, reusability, and interoperability of ENA data and metadata.
Assuntos
Bases de Dados de Ácidos Nucleicos , Academias e Institutos , Biologia Computacional , Internet , Software , Conjuntos de Dados como AssuntoRESUMO
The European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena), maintained at the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) provides freely accessible services, both for deposition of, and access to, open nucleotide sequencing data. Open scientific data are of paramount importance to the scientific community and contribute daily to the acceleration of scientific advance. Here, we outline the major updates to ENA's services and infrastructure that have been delivered over the past year.
Assuntos
Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Nucleotídeos/genética , Software , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Anotação de Sequência Molecular , Nucleotídeos/classificaçãoRESUMO
The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena), provided by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), has for almost forty years continued in its mission to freely archive and present the world's public sequencing data for the benefit of the entire scientific community and for the acceleration of the global research effort. Here we highlight the major developments to ENA services and content in 2020, focussing in particular on the recently released updated ENA browser, modernisation of our release process and our data coordination collaborations with specific research communities.
Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos/tendências , Ácidos Nucleicos/genética , Nucleotídeos/genética , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Europa (Continente) , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Anotação de Sequência Molecular , Ácidos Nucleicos/química , Nucleotídeos/química , Análise de Sequência de DNA , Análise de Sequência de RNARESUMO
MOTIVATION: Reference sequences are essential in creating a baseline of knowledge for many common bioinformatics methods, especially those using genomic sequencing. RESULTS: We have created refget, a Global Alliance for Genomics and Health API specification to access reference sequences and sub-sequences using an identifier derived from the sequence itself. We present four reference implementations across in-house and cloud infrastructure, a compliance suite and a web report used to ensure specification conformity across implementations. AVAILABILITY AND IMPLEMENTATION: The refget specification can be found at: https://w3id.org/ga4gh/refget. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Genômica , SoftwareRESUMO
The European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena) at the European Molecular Biology Laboratory's European Bioinformatics Institute provides open and freely available data deposition and access services across the spectrum of nucleotide sequence data types. Making the world's public sequencing datasets available to the scientific community, the ENA represents a globally comprehensive nucleotide sequence resource. Here, we outline ENA services and content in 2019 and provide an insight into selected key areas of development in this period.
Assuntos
Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Genômica , Biologia Computacional/métodos , Europa (Continente) , Genômica/métodos , Anotação de Sequência Molecular , Software , Interface Usuário-Computador , NavegadorRESUMO
The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena), provided from EMBL-EBI, has for more than three decades been responsible for archiving the world's public sequencing data and presenting this important resource to the scientific community to support and accelerate the global research effort. Here, we outline ENA services and content in 2018 and provide an overview of a selection of focus areas of development work: extending data coordination services around ENA, sequence submissions through template expansion, early pre-submission validation tools and our move towards a new browser and retrieval infrastructure.
Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Europa (Continente) , Genoma , Humanos , Anotação de Sequência Molecular , Ferramenta de Busca , Software , Transcriptoma , Interface Usuário-Computador , NavegadorRESUMO
For 35 years the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena) has been responsible for making the world's public sequencing data available to the scientific community. Advances in sequencing technology have driven exponential growth in the volume of data to be processed and stored and a substantial broadening of the user community. Here, we outline ENA services and content in 2017 and provide insight into a selection of current key areas of development in ENA driven by challenges arising from the above growth.
Assuntos
Bases de Dados de Ácidos Nucleicos , Biologia Computacional , Bases de Dados de Ácidos Nucleicos/tendências , Europa (Continente) , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Armazenamento e Recuperação da Informação , Internet , Anotação de Sequência MolecularRESUMO
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) offers a rich platform for data sharing, publishing and archiving and a globally comprehensive data set for onward use by the scientific community. With a broad scope spanning raw sequencing reads, genome assemblies and functional annotation, the resource provides extensive data submission, search and download facilities across web and programmatic interfaces. Here, we outline ENA content and major access modalities, highlight major developments in 2016 and outline a number of examples of data reuse from ENA.
Assuntos
Bases de Dados de Ácidos Nucleicos , Análise de Sequência de DNA , Análise de Sequência de RNA , Genômica , Internet , Anotação de Sequência MolecularRESUMO
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is a repository for the submission, maintenance and presentation of nucleotide sequence data and related sample and experimental information. In this article we report on ENA in 2015 regarding general activity, notable published data sets and major achievements. This is followed by a focus on sustainable biocuration of functional annotation, an area which has particularly felt the pressure of sequencing growth. The importance of functional annotation, how it can be submitted and the shifting role of the biocurator in the context of increasing volumes of data are all discussed.
Assuntos
Bases de Dados de Ácidos Nucleicos , Anotação de Sequência Molecular , Análise de Sequência de DNA , Análise de Sequência de RNA , Curadoria de DadosRESUMO
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europe's primary resource for nucleotide sequence information. With the growing volume and diversity of public sequencing data comes the need for increased sophistication in data organisation, presentation and search services so as to maximise its discoverability and usability. In response to this, ENA has been introducing and improving checklists for use during submission and expanding its search facilities to provide targeted search results. Here, we give a brief update on ENA content and some major developments undertaken in data submission services during 2014. We then describe in more detail the services we offer for data discovery and retrieval.
Assuntos
Bases de Dados de Ácidos Nucleicos , Sequência de Bases , Genômica , Anotação de Sequência Molecular , Análise de SequênciaRESUMO
Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.
Assuntos
Bases de Dados Genéticas , Metagenômica , Perfilação da Expressão Gênica , Internet , Metabolômica , Proteômica , SoftwareRESUMO
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is a repository for the world public domain nucleotide sequence data output. ENA content covers a spectrum of data types including raw reads, assembly data and functional annotation. ENA has faced a dramatic growth in genome assembly submission rates, data volumes and complexity of datasets. This has prompted a broad reworking of assembly submission services, for which we now reach the end of a major programme of work and many enhancements have already been made available over the year to components of the submission service. In this article, we briefly review ENA content and growth over 2013, describe our rapidly developing services for genome assembly information and outline further major developments over the last year.
Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Europa (Continente) , InternetRESUMO
The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalog of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available. Members of the project data coordination center have developed and deployed several tools to enable widespread data access.
Assuntos
Bases de Dados Genéticas , Genoma Humano , Genômica/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Variação Genética , HumanosRESUMO
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/) collects, maintains and presents comprehensive nucleic acid sequence and related information as part of the permanent public scientific record. Here, we provide brief updates on ENA content developments and major service enhancements in 2012 and describe in more detail two important areas of development and policy that are driven by ongoing growth in sequencing technologies. First, we describe the ENA data warehouse, a resource for which we provide a programmatic entry point to integrated content across the breadth of ENA. Second, we detail our plans for the deployment of CRAM data compression technology in ENA.
Assuntos
Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Compressão de Dados , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Interface Usuário-ComputadorRESUMO
Data storage costs have become an appreciable proportion of total cost in the creation and analysis of DNA sequence data. Of particular concern is that the rate of increase in DNA sequencing is significantly outstripping the rate of increase in disk storage capacity. In this paper we present a new reference-based compression method that efficiently compresses DNA sequences for storage. Our approach works for resequencing experiments that target well-studied genomes. We align new sequences to a reference genome and then encode the differences between the new sequence and the reference genome for storage. Our compression method is most efficient when we allow controlled loss of data in the saving of quality information and unaligned sequences. With this new compression method we observe exponential efficiency gains as read lengths increase, and the magnitude of this efficiency gain can be controlled by changing the amount of quality information stored. Our compression method is tunable: The storage of quality scores and unaligned sequences may be adjusted for different experiments to conserve information or to minimize storage costs, and provides one opportunity to address the threat that increasing DNA sequence volumes will overcome our ability to store the sequences.
Assuntos
Compressão de Dados/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos , Algoritmos , Padrões de Referência , SoftwareRESUMO
New generation sequencing platforms are producing data with significantly higher throughput and lower cost. A portion of this capacity is devoted to individual and community scientific projects. As these projects reach publication, raw sequencing datasets are submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). Archiving experimental data is the key to the progress of reproducible science. The SRA was established as a public repository for next-generation sequence data as a part of the International Nucleotide Sequence Database Collaboration (INSDC). INSDC is composed of the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at www.ncbi.nlm.nih.gov/sra from NCBI, at www.ebi.ac.uk/ena from EBI and at trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the content and structure of the SRA and report on updated metadata structures, submission file formats and supported sequencing platforms. We also briefly outline our various responses to the challenge of explosive data growth.
Assuntos
Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Genômica , InternetRESUMO
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena), Europe's primary nucleotide sequence resource, captures and presents globally comprehensive nucleic acid sequence and associated information. Covering the spectrum from raw data to assembled and functionally annotated genomes, the ENA has witnessed a dramatic growth resulting from advances in sequencing technology and ever broadening application of the methodology. During 2011, we have continued to operate and extend the broad range of ENA services. In particular, we have released major new functionality in our interactive web submission system, Webin, through developments in template-based submissions for annotated sequences and support for raw next-generation sequence read submissions.
Assuntos
Bases de Dados de Ácidos Nucleicos , Análise de Sequência de DNA , Análise de Sequência de RNA , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Anotação de Sequência Molecular , Software , Interface Usuário-ComputadorRESUMO
The COVID-19 pandemic has seen large-scale pathogen genomic sequencing efforts, becoming part of the toolbox for surveillance and epidemic research. This resulted in an unprecedented level of data sharing to open repositories, which has actively supported the identification of SARS-CoV-2 structure, molecular interactions, mutations and variants, and facilitated vaccine development and drug reuse studies and design. The European COVID-19 Data Platform was launched to support this data sharing, and has resulted in the deposition of several million SARS-CoV-2 raw reads. In this paper we describe (1) open data sharing, (2) tools for submission, analysis, visualisation and data claiming (e.g. ORCiD), (3) the systematic analysis of these datasets, at scale via the SARS-CoV-2 Data Hubs as well as (4) lessons learnt. This paper describes a component of the Platform, the SARS-CoV-2 Data Hubs, which enable the extension and set up of infrastructure that we intend to use more widely in the future for pathogen surveillance and pandemic preparedness.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiologia , Genômica , Disseminação de InformaçãoRESUMO
The combination of significantly lower cost and increased speed of sequencing has resulted in an explosive growth of data submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). The preservation of experimental data is an important part of the scientific record, and increasing numbers of journals and funding agencies require that next-generation sequence data are deposited into the SRA. The SRA was established as a public repository for the next-generation sequence data and is operated by the International Nucleotide Sequence Database Collaboration (INSDC). INSDC partners include the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at http://www.ncbi.nlm.nih.gov/Traces/sra from NCBI, at http://www.ebi.ac.uk/ena from EBI and at http://trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the content and structure of the SRA, detail our support for sequencing platforms and provide recommended data submission levels and formats. We also briefly outline our response to the challenge of data growth.