Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Psychophysiol Biofeedback ; 46(4): 359-366, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453652

RESUMO

To understand the variable response to pain, researchers have examined the change in cardiovascular measures to a uniform painful stimulation. Pain catastrophizing is the tendency to magnify or exaggerate pain sensations, and it affects the outcome of rehabilitation in a clinical setting. Its effect on cardiovascular changes during a painful stimulus is unclear. Twenty-four healthy human participants completed the study. All participants completed a cold pressor test while subjective pain intensity was measured with a numeric pain scale from 0-10. Continuous cardiac output measurements were obtained with finger-pulse plethysmograph waveform analysis. The measurements included systolic and diastolic blood pressure, heart rate averaged over 30 s intervals. Pain catastrophizing and anxiety were assessed using the pain catastrophizing scale (PCS), and Spielberger's State-Trait Anxiety Inventories, respectively. Peak pain was correlated to pain catastrophizing (r = 0.628, p < 0.01). There was a strong correlation between change in heart rate (HR) and subjective peak pain (r = 0.805, p < 0.01), total PCS (r = 0.474, p < 0.05), and the helplessness subscale of the PCS (r = 0.457, p < 0.05). Peak pain and catastrophizing explained a significant amount of the variance for the change in HR during the cold pressor test (R2 of 0.649 and 0.224 respectively, p = 0.019). These novel findings demonstrate a psycho-physiological relationship between cardiovascular changes and pain catastrophizing. Further research should include participants with subacute or persistent pain.


Assuntos
Catastrofização , Limiar da Dor , Temperatura Baixa , Frequência Cardíaca/fisiologia , Humanos , Dor , Medição da Dor , Limiar da Dor/fisiologia
2.
J Neuroimmunol ; 310: 143-149, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28606377

RESUMO

Microglia provide immune surveillance within the brain and spinal cord. Various microglial morphologies include ramified, amoeboid, and pseudopodic. The link between form and function is not clear, especially for human adult microglia which are limited in availability for study. Here, we examined primary human microglia isolated from normal-appearing white matter. Pseudopodic and amoeboid microglia were effective phagocytes, taking up E. coli bioparticles using ruffled cell membrane sheets and retrograde transport. Pseudopodic and amoeboid microglia were more effective phagocytes as compared to ramified microglia or monocyte-derived dendritic cells. Thus, amoeboid and pseudopodic microglia may both be effective as brain scavengers.


Assuntos
Amoeba/citologia , Microglia/fisiologia , Fagócitos/citologia , Fagócitos/fisiologia , Imagem com Lapso de Tempo , Actinas/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Infecções Bacterianas , Proteínas de Ligação ao Cálcio , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Epilepsia/patologia , Escherichia coli/patogenicidade , Humanos , Proteínas dos Microfilamentos , Microglia/microbiologia , Microglia/patologia , Lobo Temporal/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa