Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Phycol ; 60(2): 432-446, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38197868

RESUMO

To increase the understanding of simple thin filamentous cyanobacteria in harsh environmental areas, we previously isolated and identified four strains (XN101, XN102, GS121, NX122) from desert soils and hot spring in China. As a result, two new Oculatellacean genera of these four strains, Gansulinema gen. nov. and Komarkovaeasiopsis gen. nov., are described based on a polyphasic approach. The ultrastructure of these strains showed a similar arrangement of peripheral thylakoids with three to four parallel layers, indicating that they belonged to the orders Nodosilineales, Oculatellales, or Leptolyngbyales. In the 16S rRNA gene phylogeny, two sequences of the Gansulinema strains and the two sequences of the Komarkovaeasiopsis strains formed two independent and robust clusters, within the order Oculatellales. The 16S rRNA gene sequences of strains of Komarkovaeasiopsis and Gansulinema showed low identity to each other (≤93.2%) and to other sequences of the Oculatellacean genera (≤94.5% and ≤93.3%, respectively). Furthermore, the 16S-23S internal transcribed spacer rRNA region secondary structures of strains of Komarkovaeasiopsis and Gansulinema were not consistent with all existing descriptions of Oculatellacean taxa. These data suggest that cyanobacterial communities are rich sources of new taxa in under-exploited areas, such as desert soils and hot spring in China.


Assuntos
Cianobactérias , Fontes Termais , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Cianobactérias/genética , RNA Ribossômico 23S/genética , Filogenia , Ácidos Graxos
2.
J Phycol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943258

RESUMO

Cyanobacterial mats supplanting coral and spreading coral diseases in tropical reefs, intensified by environmental shifts caused by human-induced pressures, nutrient enrichment, and global climate change, pose grave risks to the survival of coral ecosystems. In this study, we characterized Okeanomitos corallinicola gen. and sp. nov., a newly discovered toxic marine heterocyte-forming cyanobacterium isolated from a coral reef ecosystem of the South China Sea. Phylogenetic analysis, based on the 16S rRNA gene and the secondary structure of the 16S-23S rRNA intergenic region, placed this species in a clade distinct from closely related genera, that is, Sphaerospermopsis stricto sensu, Raphidiopsis, and Amphiheterocytum. The O. corallinicola is a marine benthic species lacking gas vesicles, distinguishing it from other members of the Aphanizomenonaceae family. The genome of O. corallinicola is large and exhibits diverse functional capabilities, potentially contributing to the resilience and adaptability of coral reef ecosystems. In vitro assays revealed that O. corallinicola demonstrates notable cytotoxic activity against various cancer cell lines, suggesting its potential as a source of novel anticancer compounds. Furthermore, the identification of residual saxitoxin biosynthesis function in the genome of O. corallinicola, a marine cyanobacteria, supports the theory that saxitoxin genes in cyanobacteria and dinoflagellates may have been horizontally transferred between them or may have originated from a shared ancestor. Overall, the identification and characterization of O. corallinicola provides valuable contributions to cyanobacterial taxonomy, offering novel perspectives on complex interactions within coral reef ecosystems.

3.
J Phycol ; 59(2): 370-382, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680560

RESUMO

Chlorophyll (Chl) f was recently identified in a few cyanobacteria as the fifth chlorophyll of oxygenic organisms. In this study, two Leptolyngbya-like strains of CCNU0012 and CCNU0013 were isolated from a dry ditch in Chongqing city and a brick wall in Mount Emei Scenic Area in China, respectively. These two strains were described as new species: Elainella chongqingensis sp. nov. (Oculatellaceae, Synechococcales) and Pegethrix sichuanica sp. nov. (Oculatellaceae, Synechococcales) by the polyphasic approach based on morphological features, phylogenetic analysis of 16S rRNA gene and secondary structure comparison of 16S-23S internal transcribed spacer domains. Both strains produced Chl a under white light (WL) but additionally induced Chl f synthesis under far-red light (FRL). Unexpectedly, the content of Chl f in P. sichuanica was nearly half that in most Chl f-producing cyanobacteria. Red-shifted phycobiliproteins were also induced in both strains under FRL conditions. Subsequently, additional absorption peak beyond 700 nm in the FRL spectral region appeared in these two strains. This is the first report of Chl f production induced by FRL in the family Oculatellaceae. This study not only extended the diversity of Chl f-producing cyanobacteria but also provided precious samples to elucidate the essential binding sites of Chl f within cyanobacterial photosystems.


Assuntos
Clorofila , Cianobactérias , Filogenia , RNA Ribossômico 16S/genética , Clorofila/metabolismo , Cianobactérias/química , Luz
4.
Ecotoxicol Environ Saf ; 252: 114596, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738609

RESUMO

The benthic gastropods Bellamya aeruginosa (B. aeruginosa) is ubiquitous in freshwater in China and neighboring countries with great edible value. It has been recognized as a potential manipulator to control harmful algal blooms due to its filtration on algal cells. In this study, the control effect of B. aeruginosa on toxic and non-toxic Microcystis aeruginosa (M. aeruginosa), and the accumulation and depuration of microcystins (MCs) in the snail were systematically explored. Results indicated that although toxic M. aeruginosa could protect itself via producing MCs, the introduction of B. aeruginosa could still effectively inhibit the algae with cell density below 1 × 106 cells/mL. Hepatopancreas was the primary target of MCs in all tissues of B. aeruginosa, presenting a maximum of 3089.60 ng/g DW when exposed to toxic M. aeruginosa of 1.0 × 107 cells/mL. The enrichment of MCs in other tissues following the order of digestive tract > gonad > mantle > muscle. Interestingly, snail could again excrete previously enriched MCs when transferred to non-toxic M. aeruginosa, giving rise to over 80% reduction of MCs in the body. After depuration, the estimated daily intake (EDI) of free MCs in intact individuals and the edible parts of B. aeruginosa were both lower than the tolerable daily intake (TDI). These results implicated that B. aeruginosa could control low density of M. aeruginosa in spring. Particularly, the snail could be perfectly safe to consume by purifying for a while after using as manipulator.


Assuntos
Microcystis , Animais , Humanos , Pseudomonas aeruginosa , Microcistinas/toxicidade , Caramujos , Proliferação Nociva de Algas , China
5.
J Phycol ; 58(3): 424-435, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279831

RESUMO

A few groups of cyanobacteria have been characterized as having far-red light photoacclimation (FaRLiP) that results from chlorophyll f (Chl f) production. In this study, using a polyphasic approach, we taxonomically transferred the Cf. Leptolyngbya sp. CCNUW1 isolated from a shaded freshwater pond, which produces Chl f under far-red light, to the genus Kovacikia and named this taxon Kovacikia minuta sp. nov. This strain was morphologically similar to Leptolyngbya-like strains. The thin filaments were purplish-brown under white light but became grass green under far-red light. The 31-gene phylogeny grouped K. minuta CCNU0001 into order Synechococcales and family Leptolyngbyaceae. Phylogenetic analysis based on 16S rRNA gene sequences further showed that K. minuta CCNU0001 was clustered into Kovacikia with similarities of 97.2-97.4% to the recently reported type species of Kovacikia muscicola HA7619-LM3. Additionally, the internal transcribed spacer region between 16S-23S rRNA genes had a unique sequence and secondary structure compared with other Kovacikia strains and phylogenetically related taxa. Draft genome sequences of K. minuta CCNU0001 (8,564,336 bp) were assembled into one circular chromosome and two circular plasmids. A FaRLiP 20-gene cluster comprised two operons with the unique organization. In sum, K. minuta was established as a new species, and it is the first species reported to produce Chl f and for which a draft genome was produced in genus Kovacikia. This study expanded our knowledge regarding the diversity of Chl f-producing cyanobacteria in far-red light-enriched environments and provides important foundational information for future investigations of FaRLiP evolution in cyanobacteria.


Assuntos
Cianobactérias , Clorofila/análogos & derivados , Cianobactérias/genética , Água Doce , Filogenia , RNA Ribossômico 16S/genética
6.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268833

RESUMO

Mycosporine-like amino acids (MAAs) are widespread in various microbes and protect them against harsh environments. Here, four different Aphanizomenon species were isolated from severely eutrophic waterbodies, Lake Dianchi and the Guanqiao fishpond. Morphological characters and molecular phylogenetic analysis verified that the CHAB5919, 5921, and 5926 strains belonged to the Aphanizomenon flos-aquae clade while Guanqiao01 belonged to the Aphanizomenon gracile clade. Full wavelength scanning proved that there was obvious maximal absorption at 334 nm through purified methanol extraction, and these substances were further analyzed by HPLC and UPLC-MS-MS. The results showed that two kinds of MAAs were discovered in the cultured Aphanizomenon strains. One molecular weight was 333.28 and the other was 347.25, and the daughter fragment patterns were in accordance with the previously articles reported shinorine and porphyra-334 ion characters. The concentration of the MAAs was calibrated from semi-prepared MAAs standards from dry cells of Microcystis aeruginosa PCC7806 algal powder, and the purity of shinorine and porphyra-334 were 90.2% and 85.4%, respectively. The average concentrations of shinorine and porphyra-334 were 0.307−0.385 µg/mg and 0.111−0.136 µg/mg in Aphanizomenon flos-aquae species, respectively. And there was only one kind of MAAs (shinorine) in Aphanizomenon gracile species.,with a content of 0.003−0.049 µg/mg dry weight among all Aphanizomenon gracile strains. The shinorine concentration in Aphanizomenon flos-aquae was higher than that in Aphanizomenon gracile strains. The total MAAs production can be ranked as Aphanizomenon flos-aquae > Aphanizomenon gracile.


Assuntos
Aphanizomenon
7.
J Phycol ; 57(6): 1739-1748, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370871

RESUMO

Several coccoid cyanobacterial strains, morphologically similar to typical characteristics of Chroococcus, from the Qinghai-Tibet Plateau were isolated and characterized using a polyphasic approach including morphological and molecular information. Morphological characteristics, the phylogeny based on 16S rRNA gene, and 16S-23S internal transcribed spacer secondary structures support establishing a novel Chroococcus-like genus, Cryptochroococcus gen. nov., as well as Limnococcus fonticola sp. nov. Limnococcus is phylogenetically included in Chroococcaceae and has irregularly arranged thylakoids. Therefore, it should no longer be a member of Merismopediaceae (Synechococcales). The phylogeny based on the 16S rRNA gene revealed that Chroococcus-associated genera were monophyletic.


Assuntos
Cianobactérias , Técnicas de Tipagem Bacteriana , Cianobactérias/genética , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet
8.
Mol Ecol ; 29(8): 1560-1573, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243633

RESUMO

The potential of biodiversity loss to impair the delivery of ecosystem services has motived ecologists to better understand the relationship between biodiversity and ecosystem functioning. Although increasing evidence underlines the collective contribution of different biodiversity components on the simultaneous performance of multiple functions (multifunctionality), we know little about the trade-offs between individual diversity effects and the extent to which they determine multifunctionality differentially. Here, at a subcontinental scale of 62 dryland sites, we show in phototrophic microbiota of biological soil crusts (biocrusts) that, whereas richness alone is unable to guarantee the maxima of multifunctional performance, interspecies facilitation and compositional identity are particularly stronger but often neglected predictors. The inconsistent effects of different biodiversity components imply that soil multifunctionality can be lost despite certain species remaining present. Moreover, we reveal a significant empirical association between species functional importance and its topological feature in co-occurrence networks, indicating a functional signal of species interaction. Nevertheless, abundant species tend to isolate and merely interact within small topological structures, but rare species were tightly connected in complicated network modules. Our findings suggest that abundant and rare species of soil phototrophs exhibit distinct functional relevance. These results give a comprehensive view of how soil constructive species drive multifunctionality in biocrusts and ultimately promote a deeper understanding of the consequences of biodiversity loss in real-world ecosystems.


Assuntos
Biodiversidade , Ecossistema , Solo , Microbiologia do Solo
9.
J Environ Sci (China) ; 76: 359-367, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528027

RESUMO

Microcystis panniformis is a bloom forming species with flat panniform-like colonies. This species was recently found in Lake Taihu, China. To specifically characterize M. panniformis based on isolated strains, morphological examination on colonial transition and genetic examination are needed. Three M. panniformis strains isolated from a water bloom sample in Lake Taihu were characterized by molecular analysis and toxin quantification. Phylogenetic analysis based on both 16S rRNA gene and internal transcribed spacer (ITS) between 16S and 23S rRNA genes were performed and compared to facilitate easy identification of the species. Relatively high similarities (98%-99%) were shown in 16S rDNA sequences between the strains of M. panniformis and those of other Microcystis species, whereas the similarities for ITS sequences were 88%-95%. In the phylogenetic tree based on the 16S rDNA sequences, the M. panniformis and M. aeruginosa strains were intermixed together with no clear division, whereas all of the M. panniformis strains were clustered together in a single clade based on the ITS sequences based phylogenyetic tree. The mcyE gene was detected in all three strains, and microcystin was determined by high-performance liquid chromatography. The molecular detection and toxin production of M. panniformis strains are of great significance for the environmental risk assessment of Microcystis blooms.


Assuntos
Monitoramento Ambiental , Lagos/microbiologia , Microcistinas/análise , Microcistinas/biossíntese , Microcystis/metabolismo , Toxinas Biológicas/análise , Toxinas Biológicas/biossíntese , China , Microcystis/genética , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética
10.
J Basic Microbiol ; 56(3): 308-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26479723

RESUMO

Cyanobacteria are the primary colonizers and form a dominant component of soil photosynthetic communities in biological soil crusts. They are crucial in improving soil environments, namely accumulating soil carbon and nitrogen. Many classical studies have examined cyanobacterial diversity in desert crusts, but relatively few comprehensive molecular surveys have been conducted. We used 454 pyrosequencing of 16S rRNA to investigate cyanobacterial composition and distribution on regional scales in the Gurbantunggut Desert. The relationship between cyanobacterial distribution and environmental factors was also explored. A total of 24,973 cyanobacteria partial 16S rRNA gene sequences were obtained, and 507OTUs were selected, as most OTUs had very few reads. Among these, 347 OTU sequences were of cyanobacteria origin, belonging to Oscillatoriales, Nostocales, Chroococcales, and uncultured cyanobacterium clone, respectively. Microcoleus vaginatus, Chroococcidiopsis spp. and M. steenstrupii were the dominant species in most areas of the Gurbantunggut Desert. Compared with other desert, the Gurbantunggut Desert differed in the prominence of Chroococcidiopsis spp. and lack of Pseudanabaenales. Species composition and abundance of cyanobacteria also showed distinct variations. Soil texture, precipitation, and nutrients and salt levels affected cyanobacterial distribution. Increased precipitation was helpful in improving cyanobacterial diversity. A higher content of coarse sand promoted the colonization and growth of Oscillatoriales and some phylotypes of Chroococcales. The fine-textured soil with higher nutrients and salts supported more varied populations of cyanobacteria, namely some heterocystous cyanobacteria. The results suggested that the Gurbantunggut Desert was rich in cyanobacteria and that precipitation was a primary regulating factor for cyanobacterial composition on a regional scale.


Assuntos
Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Sequência de Bases , Biodiversidade , China , Análise por Conglomerados , Cianobactérias/genética , Cianobactérias/metabolismo , Clima Desértico , Ecossistema , Microbiologia Ambiental , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
11.
J Basic Microbiol ; 55(10): 1203-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26098704

RESUMO

Previous studies on spatiotemporal changes of Microcystis genotypes have shown that the existence and succession of dominant genotypes always occur in eutrophicated freshwater bodies. However, few studies have focused on the correlation between genotype composition and eutrophication level. In the present study, clone libraries of the internal transcribed spacer (ITS) of rrn operon were sequenced from Microcystis populations in Erhai Lake, a subtropical plateau lake in the preliminary eutrophication stage. The genotype composition of the Microcystis populations was highly variable at spatiotemporal scales, and 473 ITS genotypes were identified from the 800 ITS sequences obtained. However, no significantly dominant ITS genotypes existed in the lake. Comparison of Erhai Lake with four major lakes in China, namely, Taihu, Chaohu, Gucheng, and Shijiu Lakes, showed that the Microcystis ITS genotypes and genetic diversity were negatively correlated with eutrophication level. Extensive comparison of the Microcystis ITS genotypes from waters worldwide revealed that 440 ITS genotypes were unique to Erhai Lake, and no obvious phylogenetic correlations can be detected among the dominant genotypes from different water bodies. The high genetic diversity of the Microcystis populations in Erhai Lake may have resulted from the effect of the early stage of eutrophication.


Assuntos
DNA Bacteriano , Eutrofização , Microcystis/genética , RNA Ribossômico/genética , China , Lagos/microbiologia , Filogenia , Análise de Sequência de DNA
12.
Bull Environ Contam Toxicol ; 94(3): 376-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25694253

RESUMO

Quinazoline derivatives have wide biological activities and therapeutic properties, implying their potential for development and application on a large scale. In the present study, 2-(4-chlorophenyl)-4-(4-methoxyphenyl) quinazoline (CMQ), was selected to examine its effect on unicellular cyanobacteria, Microcystis aeruginosa by evaluating growth, physiological and molecular responses. Growth was inhibited by CMQ, with a 96 h EC50 of 1.93 ± 0.19 mg L(-1). The up-regulated expression of prx was shown, reflecting that oxidative stress might be a toxic factor of CMQ. At higher concentrations of CMQ, the quantum yields of Y(II) and Y(NPQ) in photosystem II decreased seriously and Y(NO) increased sharply, and psbA gene encoding for D1 protein was over-expressed. These results demonstrated that high concentrations of CMQ had different inhibitory targets associated with photosystem electron transport and with sites beyond the electron transport chain, leading to severe toxicity.


Assuntos
Bioensaio/métodos , Microcystis/efeitos dos fármacos , Quinazolinas/toxicidade , China , Cromatografia Líquida de Alta Pressão , Primers do DNA/genética , Transporte de Elétrons/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
13.
Appl Environ Microbiol ; 80(17): 5219-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928879

RESUMO

Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Água Doce/microbiologia , Redes e Vias Metabólicas/genética , Uracila/análogos & derivados , Alcaloides , Toxinas Bacterianas , China , Análise por Conglomerados , Cianobactérias/isolamento & purificação , Toxinas de Cianobactérias , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência , Uracila/metabolismo
14.
Harmful Algae ; 135: 102635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38830716

RESUMO

Ongoing research on cyanotoxins, driven by the socioeconomic impact of harmful algal blooms, emphasizes the critical necessity of elucidating the toxicological profiles of algal cell extracts and pure toxins. This study comprehensively compares Raphidiopsis raciborskii dissolved extract (RDE) and cylindrospermopsin (CYN) based on Daphnia magna assays. Both RDE and CYN target vital organs and disrupt reproduction, development, and digestion, thereby causing acute and chronic toxicity. Disturbances in locomotion, reduced behavioral activity, and weakened swimming capability in D. magna have also been reported for both RDE and CYN, indicating the insufficiency of conventional toxicity evaluation parameters for distinguishing between the toxic effects of algal extracts and pure cyanotoxins. Additionally, chemical profiling revealed the presence of highly active tryptophan-, humic acid-, and fulvic acid-like fluorescence compounds in the RDE, along with the active constituents of CYN, within a 15-day period, demonstrating the chemical complexity and dynamics of the RDE. Transcriptomics was used to further elucidate the distinct molecular mechanisms of RDE and CYN. They act diversely in terms of cytotoxicity, involving oxidative stress and response, protein content, and energy metabolism, and demonstrate distinct modes of action in neurofunctions. In essence, this study underscores the distinct toxicity mechanisms of RDE and CYN and emphasizes the necessity for context- and objective-specific toxicity assessments, advocating nuanced approaches to evaluate the ecological and health implications of cyanotoxins, thereby contributing to the precision of environmental risk assessments.


Assuntos
Alcaloides , Toxinas Bacterianas , Toxinas de Cianobactérias , Cianobactérias , Daphnia , Animais , Toxinas Bacterianas/toxicidade , Daphnia/efeitos dos fármacos , Alcaloides/toxicidade , Cianobactérias/química , Uracila/análogos & derivados , Uracila/toxicidade , Extratos Celulares/química , Extratos Celulares/farmacologia , Proliferação Nociva de Algas
15.
J Environ Manage ; 125: 149-55, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23660535

RESUMO

Water blooms of cyanobacteria have posed a worldwide environmental threat and a human health hazard in recent decades. Many biologically derived (but non-antibiotic) bioactive substances are known to inhibit the growth of aquatic bloom-forming cyanobacteria. Some of these biologically derived substances (BDSs) have no or low toxicity to aquatic animals and humans. Most BDSs are easily biodegradable in aquatic environments. These characteristics indicate that they may have potential for control and removal of harmful algae. However, BDSs also have the disadvantages of high cost of preparation, and possible damage to non-target aquatic organisms, and sometimes, low efficiency of algae removal. The ecological risks of most BDSs are still unknown. Here, we review recent research progress relative to the inhibitory effects of BDSs on cyanobacteria, and critically analyze the potential of BDSs as algicides with an emphasis on possible problems during the process of controlling harmful cyanobacteria. We suggest avenues of study to enhance effective use of BDSs in controlling of cyanobacterial blooms; these include guidelines for isolation and characterization of new effective BDSs, exploiting the synergistic effects of BDSs, the merits of controlling harmful cyanobacteria at the early stages of proliferation and evaluation of ecological risks of BDSs.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Animais , Eutrofização , Água Doce/microbiologia , Humanos
16.
Plant Commun ; 4(5): 100665, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37491818

RESUMO

Primary and secondary growth of the tree stem are responsible for corresponding increases in trunk height and diameter. However, our molecular understanding of the biological processes that underlie these two types of growth is incomplete. In this study, we used single-cell RNA sequencing and spatial transcriptome sequencing to reveal the transcriptional landscapes of primary and secondary growth tissues in the Populus stem. Comparison between the cell atlas and differentiation trajectory of primary and secondary growth revealed different regulatory networks involved in cell differentiation from cambium to xylem precursors and phloem precursors. These regulatory networks may be controlled by auxin accumulation and distribution. Analysis of cell differentiation trajectories suggested that vessel and fiber development followed a sequential pattern of progressive transcriptional regulation. This research provides new insights into the processes of cell identity and differentiation that occur throughout primary and secondary growth of tree stems, increasing our understanding of the cellular differentiation dynamics that occur during stem growth in trees.


Assuntos
Câmbio , Transcriptoma , Câmbio/genética , Árvores/genética , Perfilação da Expressão Gênica , Diferenciação Celular/genética , Análise de Sequência de RNA
17.
Artigo em Inglês | MEDLINE | ID: mdl-36767351

RESUMO

Water blooms caused by the invasive cyanobacterium Raphidiopsis raciborskii occur in many reservoirs in the tropical and subtropical regions of China. In recent decades, this species has spread rapidly to temperate regions. Phenotypic plasticity and climate warming are thought to promote the worldwide dispersion of R. raciborskii. However, investigations into the genetic and phenotypic diversities of this species have revealed significant intraspecific heterogeneity. In particular, competition between R. raciborskii and Microcystis aeruginosa was highly strain dependent. Although the concept of an ecotype was proposed to explain the heterogeneity of R. raciborskii strains with different geographic origins, microevolution is more reasonable for understanding the coexistence of different phenotypes and genotypes in the same environment. It has been suggested that intraspecific heterogeneity derived from microevolution is a strong driving force for the expansion of R. raciborskii. Additionally, temperature, nutrient fluctuations, and grazer disturbance are critical environmental factors that affect the population establishment of R. raciborskii in new environments. The present review provides new insights into the ecological mechanisms underlying the invasion of R. raciborskii in Chinese freshwater ecosystems.


Assuntos
Cianobactérias , Cylindrospermopsis , Cylindrospermopsis/genética , Ecossistema , China
18.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204040

RESUMO

The patterns of biogeographic distribution and assembly processes of microbiota are of vital importance for understanding ecological adaptation and functioning maintenance. However, the role of morphological characteristics in microbial assembly is still poorly ascertained. Here, by integrating high-throughput sequencing and robust extrapolation of traits, we investigated taxonomic and phylogenetic turnovers of various cyanobacterial morphotypes in biocrusts to evaluate the contributions of deterministic and stochastic processes across a large scale of drylands in northwestern China. The results showed that the non-heterocystous filamentous category dominated biocrusts in the arid ecosystem and exhibited strong tolerance against environmental fluctuations. Despite the significant distance-decay relationship of ß-diversity detected in all categories, both species composition and phylogenetic turnover rates of coccoid cyanobacteria were higher than non-heterocystous filamentous and heterocystous morphotypes. Moreover, the assembly of cyanobacteria was driven by different ecological processes that the entire community and non-heterocystous filamentous morphotype were governed by deterministic processes, while stochasticity prevailed in heterocystous and coccoid cyanobacteria. Nonetheless, aridity can modulate the balance between determinism and stochasticity and prompt a shifting threshold among morphotypes. Our findings provide a unique perspective to understanding the critical role of microbial morphology in community assembly and facilitate the prediction of biodiversity loss under climate change.


Assuntos
Cianobactérias , Microbiota , Ecossistema , Filogenia , Microbiologia do Solo , Cianobactérias/genética , Biodiversidade
19.
Chemosphere ; 335: 139142, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290510

RESUMO

Perfluorooctanoic acid (PFOA) as nonbiodegradable organic pollutant, its presence and risks in wastewater treatment system has aroused wide concern. This study investigated the effect and underlying mechanism of PFOA on anaerobic digestion sludge (ADS) dewaterability. Long-term exposure experiments were set up to investigate the effect with various concentration of PFOA dosed. Experimental results suggested that the existence of high concentration PFOA (over 1000 µg/L) could deteriorate ADS dewaterability. The long-term exposure to 100,000 µg/L PFOA of ADS increased specific resistance filtration (SRF) by 81.57%. It was found that PFOA promoted the release of extracellular polymeric substances (EPS), which was strongly associated with sludge dewaterability. The fluorescence analysis revealed that the high PFOA concentration could significantly improve the percentage of protein-like substances and soluble microbial by-product-like content, and then further deteriorated the dewaterability. The FTIR results showed that long-term exposure of PFOA caused loose protein structure in sludge EPS, which led to loose sludge floc structure. The loose sludge floc structure aggravated the deterioration of sludge dewaterability. The solids-water distribution coefficient (Kd) decreased with the increase of initial PFOA concentration. Moreover, PFOA significantly affected microbial community structure. Metabolic function prediction results showed significant decrease of fermentation function exposed to PFOA. This study revealed that the PFOA with high concentration could deteriorated sludge dewaterability, which should be highly concerned.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Caprilatos , Proteínas , Água/química
20.
Toxins (Basel) ; 15(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36977111

RESUMO

Harmful cyanobacterial blooms occur worldwide and pose a great threat to aquatic ecosystems and public health. The application of algicidal bacteria represents an eco-friendly strategy for controlling harmful cyanobacterial blooms; thus, searching for a high efficiency of algicidal bacteria has been becoming an important and continuous task in science. Herein, we identified a bacterial strain coded Streptomyces sp. HY with a highly algicidal activity, and investigated its algicidal efficiency and mechanism against Microcystis aeruginosa. The strain HY displayed high algicidal activity toward Microcystis aeruginosa cells, with a removal rate of 93.04% within 2 days via indirect attack. Streptomyces sp. HY also showed the ability to lyse several genera of cyanobacterial strains, including Dolichospermum, Pseudanabaena, Anabaena, and Synechocystis, whereas it showed a minor impact on the green alga Scenedesmus obliquus, demonstrating its selectivity specially for targeting cyanobacteria. Its algicidal mechanism involved damages to the photosynthesis system, morphological injury of algal cells, oxidative stress, and dysfunction of the DNA repair system. Furthermore, HY treatment reduced the expression levels of genes (mcyB and mcyD) related to microcystin biosynthesis and decreased the total content of microcystin-leucine-arginine by 79.18%. Collectively, these findings suggested that the algicidal bacteria HY is a promising candidate for harmful cyanobacterial bloom control.


Assuntos
Microcistinas , Microcystis , Microcistinas/metabolismo , Microcystis/metabolismo , Proliferação Nociva de Algas , Ecossistema , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa