RESUMO
There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.
Assuntos
Cafeína , Creatina , Humanos , Masculino , Anaerobiose , Cafeína/farmacologia , Estudos Cross-Over , Método Duplo-Cego , PoliésteresRESUMO
The aim of this study was to perform a systematic review on the effects of caffeine mouth rinsing on physical and cognitive performance. Following a search through 4 databases, 18 studies were found meeting the inclusion criteria (15 for physical performance and 3 for cognitive performance). All selected studies found an improvement in cognitive performance with caffeine mouth rinse. Four studies found positive effects of caffeine mouthwash on physical performance when repeated during exercise, while one study detected a positive effect with a single mouthwash before exercise, but only in a fasted state. Among these studies that showed positive effects, however, three (2 for physical performance and 1 for cognitive performance) presented fair methodological quality. There was also a variety of methodological approaches in the studies that showed no improvement in physical performance with caffeine mouth rinse, which may have influenced the potential to detect the ergogenic effect of caffeine mouth rinse. Thus, the effects of caffeine mouth rinse on physical performance are mixed, but a potential ergogenic effect might be present in a fasted state and when mouthwash is repeated during exercise. Concerning cognitive performance, caffeine mouth rinse seems to be a beneficial strategy.
Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Cafeína/farmacologia , Antissépticos Bucais/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , CogniçãoRESUMO
The present systematic review with meta-analysis summarized studies that investigated the effect of carbohydrate (CHO) mouth rinse on muscle strength and muscular endurance. The search was performed in six databases. Thirteen randomized clinical trials were selected and the standardized mean difference between CHO mouth rinse and placebo for maximal strength and muscular endurance was determined via a random-effects model using Review Manager 5.4 software. Meta-regression was also performed to explore the influence of load, number of sets, number of exercises, fasting time, CHO concentration, and number of mouth rinses on the main outcomes. There was no significant effect of CHO mouth rinse on maximal strength (mean difference= 0.25 kg, 95%CI - 1.81 to 2.32 kg, z = 0.24, p = 0.810). However, there was a significant positive effect of CHO mouth rinse on muscular endurance (mean difference = 1.24 repetitions, 95%CI 0.70 to 1.77 repetitions, z = 4.55, p < 0.001). Meta-regression identified that CHO mouth rinse has greater benefits on muscular endurance when using high workloads, multiple exercises, and a smaller number of mouth rinses (p = 0.001). In conclusion, CHO mouth rinse has no effect on maximal muscle strength but has a positive effect on muscular endurance and seems to optimize when fewer mouth rinses, high workloads and numbers of exercises are used.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2057417.
Assuntos
Antissépticos Bucais , Resistência Física , Antissépticos Bucais/farmacologia , Resistência Física/fisiologia , Carboidratos da Dieta , Exercício Físico/fisiologia , Força Muscular/fisiologiaRESUMO
PURPOSE: While exercise recovery may be beneficial from a physiological point of view, it may be detrimental to subsequent anaerobic performance. To investigate the energetic responses of water immersion at different temperatures during post-exercise recovery and its consequences on subsequent anaerobic performance, a randomized and controlled crossover experimental design was performed with 21 trained cyclists. METHOD: Participants were assigned to receive three passive recovery strategies during 10 min after a Wingate Anaerobic Test (WAnT): control (CON: non-immersed condition), cold water immersion (CWI: 20 â), and hot water immersion (HWI: 40 â). Blood lactate, cardiorespiratory, and mechanical outcomes were measured during the WAnT and its recovery. Time constant (τ), asymptotic value, and area under the curve (AUC) were quantified for each physiologic parameter during recovery. After that, a second WAnT test and 10-min recovery were realized in the same session. RESULTS: Regardless the water immersion temperature, water immersion increased [Formula: see text] (+ 18%), asymptote ([Formula: see text]+ 16%, [Formula: see text] + 13%, [Formula: see text] + 17%, HR + 16%) and AUC ([Formula: see text]+ 27%, [Formula: see text] + 18%, [Formula: see text] + 20%, HR + 25%), while decreased [Formula: see text] (- 33%). There was no influence of water immersion on blood lactate parameters. HWI improved the mean power output during the second WAnT (2.2%), while the CWI decreased 2.4% (P < 0.01). CONCLUSION: Independent of temperature, water immersion enhanced aerobic energy recovery without modifying blood lactate recovery. However, subsequent anaerobic performance was increased only during HWI and decreased during CWI. Despite higher than in other studies, 20 °C effectively triggered physiological and performance responses. Water immersion-induced physiological changes did not predict subsequent anaerobic performance.
Assuntos
Temperatura Baixa , Água , Humanos , Temperatura , Anaerobiose , Imersão , LactatosRESUMO
The aim of the present study was to analyze the effects of traffic-related air pollution (TRAP) on markers of inflammatory, neuroplasticity, and endurance performance-related parameters in recreationally trained cyclists who were adapted to TRAP during a 50-km cycling time trial (50-km cycling TT). Ten male cyclists performed a 50-km cycling TT inside an environmental chamber located in downtown Sao Paulo (Brazil), under TRAP or filtered air conditions. Blood samples were obtained before and after the 50-km cycling TT to measure markers of inflammatory [interleukin-6 (IL-6), C-reactive protein (CRP), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1)] and neuroplasticity [brain-derived neurotrophic factor (BDNF)]. Rating of perceived exertion (RPE), heart rate (HR), and power output (PO) were measured throughout the 50-km cycling TT. There were no significant differences between experimental conditions for responses of IL-6, CRP, and IL-10 (P > 0.05). When compared with exercise-induced changes in filtered air condition, TRAP provoked greater exercise-induced increase in BDNF levels (TRAP = 3.3 ± 2.4-fold change; Filtered = 1.3 ± 0.5-fold change; P = 0.04) and lower exercise-induced increase in ICAM-1 (Filtered = 1.1 ± 0.1-fold change; TRAP = 1.0 ± 0.1-fold change; P = 0.01). The endurance performance-related parameters (RPE, HR, PO, and time to complete the 50-km cycling TT) were not different between TRAP and filtered air conditions (P > 0.05). These findings suggest that the potential negative impacts of exposure to pollution on inflammatory, neuroplasticity, and performance-related parameters do not occur in recreationally trained cyclists who are adapted to TRAP.
Assuntos
Poluição do Ar , Desempenho Atlético , Ciclismo , Resistência Física , Poluição do Ar/efeitos adversos , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Fator Neurotrófico Derivado do Encéfalo , Brasil , Humanos , Inflamação , Molécula 1 de Adesão Intercelular , Interleucina-10 , Interleucina-6 , MasculinoRESUMO
While the effects of caffeine ingestion on endurance performance are well known, its effects on cardiopulmonary responses during a maximal graded exercise test have been less explored. This study systematically reviewed and meta-analyzed studies investigating the effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test. A search was performed in four databases, and study quality was assessed using the PEDro scale. Data reported by the selected studies were pooled using random-effects meta-analysis, with selected moderator effects assessed via meta-regression. Twenty-one studies with good and excellent methodological quality were included in this review. Compared to placebo, caffeine increased peak minute ventilation (SMD = 0.33; p = 0.01) and time to exhaustion (SMD = 0.41; p = 0.01). However, meta-regression showed no moderating effects of dosage and timing of caffeine ingestion, stage length, or total length of GXT (all p > 0.05). Caffeine ingestion did not affect peak oxygen uptake (SMD = 0.13; p = 0.42), peak heart rate (SMD = 0.27; p = 0.07), peak blood lactate concentration (SMD = 0.60; p = 0.09), peak tidal volume (SMD = 0.10; p = 0.69), peak breathing frequency (SMD =0.20; p = 0.23), or peak power output (SMD = 0.22; p = 0.28). The results of this systematic review with meta-analysis suggest that caffeine increases time to exhaustion and peak minute ventilation among the cardiopulmonary variables assessed during GXT.
RESUMO
PURPOSE: The current study investigated the effect of caffeine on the breathing pattern during a high-intensity whole-body exercise. METHODS: Using a randomized, crossover, counterbalanced, and double-blind design, twelve healthy men ingested either 5 mg.kg-1 of caffeine or cellulose (placebo) one hour before performing a high-intensity whole-body exercise (i.e., work rate corresponding to 80% of the difference between the gas exchange threshold and maximal oxygen uptake) until the limit of tolerance. Ventilatory and metabolic responses were recorded throughout the trial and at task failure. RESULTS: Caffeine ingestion increased time to task failure in relation to the placebo (368.1 ± 49.6 s vs. 328.5 ± 56.6 s, p = 0.005). Caffeine also increased tidal volume and inspiratory time throughout the exercise (p < 0.05). Compared to task failure with placebo, task failure with caffeine intake was marked by higher (p < 0.05) minute ventilation (134.8 ± 16.4 vs. 147.6 ± 18.2 L.min-1), the ventilatory equivalent of oxygen consumption (37.8 ± 4.2 vs. 41.7 ± 5.5 units), and respiratory exchange ratio (1.12 ± 0.10 vs. 1.19 ± 0.11 units). CONCLUSION: In conclusion, ingestion of caffeine alters the breathing pattern by increasing tidal volume and lengthening the inspiratory phase of the respiratory cycle. These findings suggest that caffeine affects the ventilatory system, which may account, in part, for its ergogenic effects during high-intensity whole-body exercises.
Assuntos
Cafeína , Substâncias para Melhoria do Desempenho , Cafeína/farmacologia , Método Duplo-Cego , Exercício Físico/fisiologia , Humanos , Masculino , Consumo de Oxigênio , Taxa RespiratóriaRESUMO
The aim of this study was to compare the effects of caffeine ingestion on muscular performance during the early-follicular and mid-luteal phases of the menstrual cycle. Fourteen resistance-trained naturally menstruating women performed countermovement jump (CMJ), maximal voluntary isometric contraction (MVIC), one-repetition maximum (1-RM), and repetitions-to-failure (RF) at 80% of 1-RM in the half-squat exercise, in early-follicular and mid-luteal phases, after placebo or caffeine ingestion. The early-follicular and mid-luteal phases were identified via calendar-based counting method. The MVIC was lower in the early-follicular than mid-luteal phase (-6.2 ± 15.2 N, p < 0.05) and higher with caffeine than placebo ingestion regardless of the menstrual cycle phase (+16.8 ± 26.7 N, p < 0.05). The magnitude of gains (supplement x phase interaction, p < 0.026) in 1-RM, CMJ, and RF with caffeine ingestion was higher in the early-follicular (+16.6 ± 7.1 kg, +2.5 ± 1.6 cm, and +4.5 ± 2.6 repetitions, respectively) than in the mid-luteal phase (+7.7 ± 4.8 kg, +1.5 ± 2.0 cm, and +2.4 ± 3.1 repetitions, respectively). In conclusion, the greater ergogenic effect of caffeine during the early-follicular phase supports its use to mitigate the decline in muscular performance in this phase of the menstrual cycle.
Assuntos
Cafeína , Fase Folicular , Cafeína/farmacologia , Feminino , Humanos , Fase Luteal , Ciclo Menstrual , MenstruaçãoRESUMO
Endurance exercise begun with reduced muscle glycogen stores seems to potentiate skeletal muscle protein abundance and gene expression. However, it is unknown whether this greater signaling responses is due to performing two exercise sessions in close proximity-as a first exercise session is necessary to reduce the muscle glycogen stores. In the present study, we manipulated the recovery duration between a first muscle glycogen-depleting exercise and a second exercise session, such that the second exercise session started with reduced muscle glycogen in both approaches but was performed either 2 or 15 hours after the first exercise session (so-called "twice-a-day" and "once-daily" approaches, respectively). We found that exercise twice-a-day increased the nuclear abundance of transcription factor EB (TFEB) and nuclear factor of activated T cells (NFAT) and potentiated the transcription of peroxisome proliferator-activated receptor-É£ coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor-alpha (PPARα), and peroxisome proliferator-activated receptor beta/delta (PPARß/δ) genes, in comparison with the once-daily exercise. These results suggest that part of the elevated molecular signaling reported with previous "train-low" approaches might be attributed to performing two exercise sessions in close proximity. The twice-a-day approach might be an effective strategy to induce adaptations related to mitochondrial biogenesis and fat oxidation.
Assuntos
Biomarcadores/metabolismo , Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adaptação Fisiológica/fisiologia , Adulto , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Estudos Cross-Over , Glicogênio/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fatores de Transcrição NFATC/metabolismo , Biogênese de Organelas , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismoRESUMO
OBJECTIVE: To investigate the effects of physical exercise on cortical activity measured via electroencephalogram (EEG) in individuals with mild cognitive impairment (MCI). DATA SOURCES: PubMed, Web of Science, PsycINFO, and SciELO databases were searched using: "physical exercise," "physical activity," "physical therapy," "exercise," "training," "electroencephalogram," "electroencephalography," "EEG," "mild cognitive impairment," "cognitive dysfunction," and "MCI." The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was followed and the Physiotherapy Evidence Database scale was used to assess the risk of bias of each study. STUDY SELECTION: Original articles, sample including individuals with MCI, physical exercise intervention, use of EEG to measure cortical activity. DATA EXTRACTION: Sample characteristics, physical exercise protocol characteristics, results related to effects of physical exercise on parameters derived from EEG signals, strengths, limitations, and conclusions of the studies were selected by 2 investigators. DATA SYNTHESIS: A total of 365 articles were identified in electronic databases. After the selection stage, 7 studies were included. Although there was a large spectrum of type of exercise (aerobic, resistance, multimodal, exergames, combined exercise with cognitive training), all exercise protocols altered cortical activity in patients with MCI. An exercise session (acute response) causes power reduction of delta band and increases complexity and P300 amplitude in resting-state EEG. After an intervention with an exercise program (chronic response), there was a reduction in the power of delta and theta bands and an increase in beta and alpha bands, as well an increase in complexity in resting-state EEG. CONCLUSIONS: Physical exercise seems to play a role in cortical activity in patients with MCI, suggesting neural plasticity in such individuals.
Assuntos
Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/terapia , Terapia por Exercício/métodos , Exercício Físico/fisiologia , Plasticidade Neuronal/fisiologia , Eletroencefalografia , HumanosRESUMO
Performance in self-paced endurance exercises results from continuous fatigue symptom management. While it is suggested that perceived responses and neuromuscular fatigue development may determine variations in exercise intensity, it is uncertain how these fatigue components interact throughout the task. To address the fatigue development in self-paced endurance exercises, the following topics were addressed in the present review: (1) fatigue development during constant-load vs. self-paced endurance exercises; (2) central and peripheral fatigue and perceived exertion interconnections throughout the self-paced endurance exercises; and (3) future directions and recommendations. Based on the available literature, it is suggested (1) the work rate variations during a self-paced endurance exercise result in transitions between exercise intensity domains, directly impacting the end-exercise central and peripheral fatigue level when compared to constant-load exercise mode; (2) central and peripheral fatigue, as well as perceived exertion response contribute to exercise intensity regulation at the different stages of the trial. It seems that while neuromuscular fatigue development might be relevant at beginning of the trial, the perceived exertion might interfere in the remaining parts to achieve maximal values only at the finish line; (3) future studies should focus on the mechanisms underpinning fatigue components interactions throughout the task and its influence on exercise intensity variations.
Assuntos
Exercício Físico , Fadiga Mental/fisiopatologia , Fadiga Muscular/fisiologia , Resistência Física , Esforço Físico , Corrida , HumanosRESUMO
BACKGROUND/OBJECTIVE: Evidence has suggested abnormal cardiac autonomic responses to exercise in patients with fibromyalgia (FM). However, it is not clear whether the dysautonomia represents a reduced physical fitness rather directly related to FM pathogenesis. Thus, we aimed to verify the cardiac autonomic responses before, during, and after a maximal incremental exercise in women with FM and whether these hypothesized alterations would be dependent with their physical fitness. METHODS: This is a cross-sectional study with 23 FM women and 17 healthy women. The participants performed a maximal incremental cycling test to determine their maximal workload (Wmax) and were further matched by their Wmax (14 FM patients, Wmax: 128.6 ± 16.2 W; and 14 healthy women, Wmax: 131.9 ± 15.9 W). Beat-to-beat heart rate (HR) was continuously monitored to calculate HR variability indexes at rest, chronotropic reserve during exercise, and HR recovery. RESULTS: Heart rate variability indexes related to vagal modulation were significantly lower in FM patients than in healthy women (p < 0.05). The chronotropic reserve and the HR recovery at 30, 120, 180, 300, and 600 seconds after exercise were all lower in FM patients compared with those of healthy women (p < 0.05). Similar findings were found when analysis was performed using the matched physical fitness subgroup. CONCLUSIONS: The documented cardiac autonomic abnormalities at rest, during, and after exercise in FM patients persist even when physical fitness status is taken in account. Thus, strategies to attenuate the dysautonomia in FM patients must be considered.
Assuntos
Fibromialgia , Sistema Nervoso Autônomo , Estudos Transversais , Teste de Esforço , Feminino , Fibromialgia/diagnóstico , Frequência Cardíaca , Humanos , Aptidão FísicaRESUMO
We investigated the effects of caffeine mouth rinse on endurance performance, muscle recruitment (i.e., electromyographic activity of the vastus lateralis and rectus femoris), rating of perceived effort and heart rate. Twelve physically-active healthy men cycled at 80% of their respiratory compensation point until task failure. The participants rinsed their mouths for 10 seconds with placebo (PLA, 25 mL of a solution composed of non-caloric mint essence) or caffeine (CAF, 25 mL of 1.2% of anhydrous caffeine concentration with non-caloric mint essence) every 15 minutes of exercise. Time until exhaustion increased 17% (effect size = 0.70) in CAF compared to PLA (p = 0.04). The wavebands of low-frequency electromyographic activity (EMG) of the vastus lateralis and rectus femoris was lower in CAF group than PLA at 50% of the time until exhaustion (p = 0.04). The global EMG signal was lower in CAF group than PLA at 100% of the time until exhaustion (p = 0.001). The rating of perceived effort pooled was higher in CAF mouth rinse (p = 0.001) than PLA group. No effect was found on the heart rate between the groups (p > 0.05). Caffeine mouth rinse increases endurance performance, rating of perceived effort and decreases muscle activity during a moderate-intensity exercise.
RESUMO
The effect of chronic metformin intake on aerobic and anaerobic capacity was examined in healthy rats. Twenty rats completed 10 days of metformin (MET) ingestion (250 mg). After this period, the animals performed four high-intensity bouts until exhaustion at 9%, 11%, 13%, and 15% of body mass (BM) in swimming, separated by 24 h, with prior metformin (250 mg) or placebo (PL). The critical load (CL) and anaerobic work capacity (AWC - W') were calculated and considered aerobic and anaerobic capacity, respectively. There was no difference in CL between the MET and PL groups (p > 0.05). The AWC - W' was higher in the MET group than in the PL group (p = 0.004). Time until exhaustion (seconds) at all bouts were higher (p < 0.004) in the MET group (9% of BM = 434.5 ± 267.3, 11% of BM = 269.6 ± 214.2, 13% of BM = 174.0 ± 40.9, 15% of BM = 146.6 ± 15.9) compared to the PL group (9% of BM = 96.4 ± 22.3, 11% of BM = 65.5 ± 13.4, 13% of BM = 51.1 ± 5.5, 15% of BM = 40.8 ± 7.5). Glucose concentration was higher at 90 and 120 min than at 0 and 30 min for the MET group (intragroup) during the oral glucose test tolerance; there was no difference between the MET and PL groups for area under curve. MET ingestion enhances AWC - W' and times to exhaustion but not aerobic capacity.
Assuntos
Anaerobiose/efeitos dos fármacos , Metformina/farmacologia , Condicionamento Físico Animal/fisiologia , Animais , Teste de Esforço/métodos , Glucose/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Ratos , Ratos Wistar , Natação/fisiologiaRESUMO
OBJECTIVE: This study aimed to verify the acute and prolonged effects of stretch-shortening cycle exercise (SSC) on performance and neuromuscular function following a 4-km cycling time trial (4-km TT). METHODS: On separate days, individuals performed a 4-km TT without any previous exercise (CON), immediately (ACUTE) and 48 h after (PROL) SSC protocol (i.e., 100-drop jumps). Neuromuscular function was measured at baseline SSC (baseline), before (pre-TT) and after (post-TT) 4-km TT. Muscle soreness and inflammatory responses also were assessed. RESULTS: The endurance performance was impaired in both ACUTE (- 2.3 ± 1.8%) and PROL (- 1.8 ± 2.4%) compared with CON. The SSC protocol caused also an acute reduction in neuromuscular function, with a greater decrease in potentiated quadriceps twitch-force (Qtw.pot - 49 ± 16%) and voluntary activation (VA - 6.5 ± 7%) compared for CON and PROL at pre-TT. The neuromuscular function was fully recovered 48 h after SSC protocol. Muscle soreness and IL-10 were elevated only 48 h after SSC protocol. At post-TT, Qtw.pot remained lower in ACUTE (- 52 ± 14%) compared to CON (- 29 ± 7%) and PROL (- 31 ± 16%). CONCLUSION: These findings demonstrate that impairment in endurance performance induced by prior SSC protocol was mediated by two distinct mechanisms, where the acute impairment was related to an exacerbated degree of peripheral and central fatigue, and the prolonged impairment was due to elevated perceived muscle soreness.
Assuntos
Fadiga/etiologia , Contração Isométrica , Fadiga Muscular , Resistência Física , Exercício Pliométrico/métodos , Adulto , Fadiga/fisiopatologia , Humanos , Interleucinas/sangue , Ácido Láctico/sangue , Masculino , Exercício Pliométrico/efeitos adversosRESUMO
We compared results of Special Judo Fitness Test (SJFT) performance of young athletes of two different age categories after correcting body mass (BM) variations by allometric scales. Thirty young judokas (14.2±3.6 years) belonging to two age categories underwent an SJFT: under 15 (U15) years old (12.1±2.4 years; 46.5±15.6 kg; 152.4±11.2 cm) and under 21 years old (U21) (18.2±0.8 years; 77.1±23.5 kg; 174.2±8.9 cm). Allometric exponents of -0.33 and 0.67 were used to correct the influence of BM variations on SJFT performance results. After correction using the -0.33 exponent, U21 showed a higher number of throws (TNT) than U15 (85.5±9.9 and 68.8±12.0, p<0.05, respectively), although the SJFT index had been similar between these groups (67.3±10.1 and 61.7±8.1, p>0.05, respectively). In contrast, TNT normalized by the 0.67 exponent was higher in U15 than U21 (1.55±0.29 and 1.17 ± 0.25, p<0.05, respectively). Likewise, the SJFT index was higher in U15 than in U21 when using the same exponent (1.55±0.29 and 1.17±0.25, p<0.05, respectively). In conclusion, the -0.33 exponent may be useful to remove the influence of BM variations, thus discriminating SJFT performance results in U15 and U21 judokas. Moreover, the 0.67 exponent may overestimate SJFT indices in low-age judokas.
Assuntos
Desempenho Atlético/fisiologia , Índice de Massa Corporal , Teste de Esforço/métodos , Artes Marciais/fisiologia , Aptidão Física/fisiologia , Adolescente , Criança , Feminino , Humanos , Masculino , Adulto JovemRESUMO
In recent years, there have been an increasing number of genetic variants associated with athletic phenotypes. Here, we selected a set of sports-relevant polymorphisms that have been previously suggested as genetic markers for human physical performance, and we examined their association with athletic status in a large cohort of Brazilians. We evaluated a sample of 1,622 individuals, in which 966 were nonathletes, and 656 were athletes: 328 endurance athletes and 328 power athletes. Only the AGT M268T minor allele was nominally associated with the endurance status. Conversely, we found that seven polymorphisms are more frequent in power athletes (MCT1 D490E, AGT M268T, PPARG P12A, PGC1A G482S, VEGFR2 Q472H, NOS3 C/T, and ACTN3 R577X). For all of these polymorphisms, power athletes were more likely than nonathletes or endurance athletes to carry the major allele or the homozygous genotype for the major allele. In particular, MCT1 D490E, AGT M268T, NOS3 C/T, and ACTN3 R577X showed stronger associations. Our findings support a role for these variants in the achievement of power athletic status in Brazilians: MCT1 D490E (T allele), AGT M268T (G allele), PPARG (C allele), PGC1A G482S (C allele), VEGFR2 Q472H (T allele), NOS3 C/T (T allele), and ACTN3 R577X (R allele).
Assuntos
Atletas , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Esportes , Adolescente , Adulto , Alelos , Brasil , Estudos de Coortes , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Resistência Física , Adulto JovemRESUMO
PURPOSE: The purpose of this study was to investigate the effects of mental fatigue, characterized by a subjective feeling of tiredness, on the development of neuromuscular fatigue during a 4-km cycling time trial (4-km TT). METHODS: Eight recreationally trained male cyclists performed a 4-km TT after either performing a prolonged cognitive task (mental fatigue) or after viewing emotionally neutral documentaries (control). The neuromuscular function of the knee extensors was assessed using electrical nerve stimulation at baseline, before (pre-TT), and after (post-TT) the 4-km TT. Rating of perceived exertion (RPE) and physiological variables were periodically measured during 4-km TT. RESULTS: Subjective ratings of fatigue increased significantly only after a prolonged cognitive task (P = 0.022). Neuromuscular function at baseline was similar between conditions and remained unchanged at pre-TT. Time to complete the 4-km TT was similar between control (376 ± 27 s) and mental fatigue (376 ± 26 s). There was no significant difference between conditions for RPE, [Formula: see text], [Formula: see text], and HR throughout the exercise. The 4-km TT-induced similar decrease (from baseline to post-TT) in maximal voluntary contraction (mental fatigue - 11 ± 10%, control - 16 ± 12%), twitch force (mental fatigue - 26 ± 16%, control - 24 ± 17%), and voluntary activation (mental fatigue - 5 ± 7%, control - 3 ± 2%) for both conditions. CONCLUSION: Mental fatigue induced by prolonged cognitive task does not impair performance nor alter the degree of central and peripheral fatigue development during self-paced exercise in recreationally trained cyclists.