Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Chem Chem Phys ; 26(29): 19854-19862, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38989692

RESUMO

Developing more energy-efficient and cost-effective membrane processes for the separation of ethanol and water represents a strategically important direction to facilitate the production of renewable biofuels. In this study, by employing state-of-the-art molecular simulations, the potential of zeolite nanosheets as reverse osmosis (RO) membranes in ethanol/water separation is investigated. These materials are predicted to offer unprecedentedly high fluxes and more importantly, the ethanol-to-water separation factor can be as large as approximately 800 if the structure is meticulously selected. The separation achieved herein can in fact be considered counter-intuitive as the membrane allows the larger ethanol molecules to permeate through while blocking smaller water molecules. Further investigations reveal that the observed selectivity is strongly correlated with the adsorption selectivity of the bulk materials, suggesting an adsorption-driven mechanism. Promising candidates also appear to have the largest cavity diameter of approximately 6 Å, a size that can be commensurate with the dimensions of ethanol to facilitate its adsorption. The hydrophilicity on the membrane surfaces is as well found to play a non-negligible role. Overall, this study demonstrates the great promise of zeolite nanosheets as RO membranes for extracting anhydrous ethanol from its aqueous mixture and provides guidance toward the selection of promising membrane candidates.

2.
Phys Chem Chem Phys ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015995

RESUMO

Quantum mechanics/molecular mechanics (QM/MM) simulations offer an efficient way to model reactions occurring in complex environments. This study introduces a specialized set of charge and Lennard-Jones parameters tailored for electrostatically embedded QM/MM calculations, aiming to accurately model both adsorption processes and catalytic reactions in zirconium-based metal-organic frameworks (Zr-MOFs). To validate our approach, we compare adsorption energies derived from QM/MM simulations against experimental results and Monte Carlo simulation outcomes. The developed parameters showcase the ability of QM/MM simulations to represent long-range electrostatic and van der Waals interactions faithfully. This capability is evidenced by the prediction of adsorption energies with a low root mean square error of 1.1 kcal mol-1 across a wide range of adsorbates. The practical applicability of our QM/MM model is further illustrated through the study of glucose isomerization and epimerization reactions catalyzed by two structurally distinct Zr-MOF catalysts, UiO-66 and MOF-808. Our QM/MM calculations closely align with experimental activation energies. Importantly, the parameter set introduced here is compatible with the widely used universal force field (UFF). Moreover, we thoroughly explore how the size of the cluster model and the choice of density functional theory (DFT) methodologies influence the simulation outcomes. This work provides an accurate and computationally efficient framework for modeling complex catalytic reactions within Zr-MOFs, contributing valuable insights into their mechanistic behaviors and facilitating further advancements in this dynamic area of research.

3.
Langmuir ; 39(43): 15380-15390, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37861436

RESUMO

Mixture adsorption properties of porous materials are critical to determine their potential as adsorbents in separation applications. Toward the discovery of optimal adsorbents, in silico screening studies typically employ the grand canonical Monte Carlo (GCMC) technique to compute adsorption properties of gas mixtures in materials of interest at a given condition (i.e., composition, total pressure, and temperature) or to compute their adsorption properties for each component, followed by utilizing methods to predict mixture adsorption isotherms. However, the former approach results in the need for repeated calculations when different conditions such as compositions are considered. For the latter, the predictions may involve uncertainties, sometimes originating from the fitting quality to the pure component isotherms, and repeated simulations may also be needed for different temperatures. To this end, this study demonstrates the potential of flat histogram Monte Carlo methods in addressing the abovementioned shortfalls. Specifically, the so-called NVT + W method, first reported by Smit and co-workers, is extended herein to determine the macrostate probability distribution (MPD) of binary mixtures in porous materials. The obtained MPD can be reweighted to any conditions, yielding accurate adsorption isotherms of any desired compositions and temperatures. This approach, denoted as 2D NVT + W, is also compared with the widely adopted ideal adsorbed solution theory (IAST) method, and the former is found to offer more reliable predictions. Overall, the 2D NVT + W approach represents an efficient and effective alternative to compute mixture adsorption isotherms for porous materials, and the obtained MPD can be conveniently reused by peer researchers. A user-friendly Python code is also provided along with this article to employ this method.

4.
Langmuir ; 39(50): 18187-18197, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38059595

RESUMO

Small molecules may adsorb strongly in metal-organic frameworks (MOFs) through interactions with under-coordinated open metal sites (OMS) that often exist within these structures. Among adsorbates, CO is attractive to study both for its relevance in energy-related applications and for its ability to engage in both σ-donation and π-backbonding interactions with the OMS in MOFs. Concomitant with strong adsorption, structural changes arise due to modifications of the electronic structure of both the adsorbate and adsorbent. These structural changes affect the separation performance of materials, and accurately capturing these changes and the resulting energetics is critical for accurate predictive modeling of adsorption. Traditional approaches to modeling using classical force fields typically do not capture or account for changes at the electronic level. To characterize the structural and energetic effects of the local structural changes, we employed density functional theory (DFT) to study CO adsorption in M-MOF-74s. M-MOF-74s feature OMS at which CO is known to adsorb strongly and can be synthesized with a variety of divalent metal cations with distinct performance in adsorption. We considered M-MOF-74s with a range of metals of varied d-band occupations (Mg (3d0), Mn (3d5), Ni (3d8), and Zn (3d10)) with various structural constraints ranging from geometrically constrained adsorbent and adsorbate ions to fully optimized geometries to deconvolute the relative contributions of various structural effects to the adsorption energetics and binding distances observed. Our data indicate that the most significant structural changes during adsorption correlate with the greatest π-backbonding behaviors and commensurately result in a sizable binding energy change observed for CO adsorption. The insights built from this work are relevant to two longstanding research challenges within the MOF community: rational design of materials for separations and the design of force fields capable of accurately modeling adsorption.

5.
Phys Chem Chem Phys ; 25(40): 27244-27249, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791424

RESUMO

To explore the design of pervaporation membranes for ethanol recovery, zeolite nanosheets with different surface characteristics on the feed and permeate sides are investigated via molecular dynamics simulations. The results demonstrate the significant role of the permeate-side surface in the separation performance. By adopting an asymmetric membrane design with a hydrophobic feed-side surface and a hydrophilic one on the permeate side, the separation factor can be enhanced by nearly three-fold as compared to that of both hydrophobic surfaces, with an improved permeation flux.

6.
J Phys Chem A ; 127(35): 7323-7334, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37615503

RESUMO

As the demand for PET plastic products continues to grow, developing effective processes to reduce their pollution is of critical importance. Pyrolysis, a promising technology to produce lighter and recyclable components from wasted plastic products, has therefore received considerable attention. In this work, the rapid pyrolysis of PET was studied by using reactive molecular dynamics (MD) simulations. Mechanisms for yielding gas species were unraveled, which involve the generation of ethylene and TPA radicals from ester oxygen-alkyl carbon bond dissociation and condensation reactions to consume TPA radicals with the products of long chains containing a phenyl benzoate structure and CO2. As atomistic simulations are typically conducted at the time scale of a few nanoseconds, a high temperature (i.e., >1000 K) is adopted for accelerated reaction events. To apply the results from MD simulations to practical pyrolysis processes, a kinetic model based on a set of ordinary differential equations was established, which is capable of describing the key products of PET pyrolysis as a function of time and temperature. It was further exploited to determine the optimal reaction conditions for low environmental impact. Overall, this study conducted a detailed mechanism study of PET pyrolysis and established an effective kinetic model for the main species. The approach presented herein to extract kinetic information such as detailed kinetic constants and activation energies from atomistic MD simulations can also be applied to related systems such as the pyrolysis of other polymers.

7.
Angew Chem Int Ed Engl ; 62(18): e202218854, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36877590

RESUMO

Although many porous materials, including metal-organic frameworks (MOFs), have been reported to selectively adsorb C2 H2 in C2 H2 /CO2 separation processes, CO2 -selective sorbents are much less common. Here, we report the remarkable performance of MFU-4 (Zn5 Cl4 (bbta)3 , bbta=benzo-1,2,4,5-bistriazolate) toward inverse CO2 /C2 H2 separation. The MOF facilitates kinetic separation of CO2 from C2 H2 , enabling the generation of high purity C2 H2 (>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2 H2 is excluded from MFU-4 by narrow pore windows formed by Zn-Cl groups. Postsynthetic F- /Cl- ligand exchange was used to synthesize an analogue (MFU-4-F) with expanded pore apertures, resulting in equilibrium C2 H2 /CO2 separation with reversed selectivity compared to MFU-4. MFU-4-F also exhibits a remarkably high C2 H2 adsorption capacity (6.7 mmol g-1 ), allowing fuel grade C2 H2 (98 % purity) to be harvested from C2 H2 /CO2 mixtures by room temperature desorption.

8.
Langmuir ; 38(25): 7665-7677, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35708497

RESUMO

Alkane cracking using Brønsted acid zeolites, catalytically converting long-chain molecules into smaller ones, is critical to fuel and chemical production. To enable more energy-efficient cracking processes, developing zeolite catalysts with enhanced performance (i.e., a faster reaction rate with reduced methane formation) plays a substantial role. Given the adsorption thermodynamics of alkanes onto the protons of Brønsted acid zeolites is a key step in the overall cracking reactions; therefore, catalysts possessing a more negative Gibbs free energy of adsorption for alkanes with a larger central-to-terminal bond adsorption selectivity to promote central cracking are of particular interest. This Feature Article discusses recent computational developments and discoveries by Lin and co-workers in studying the adsorption of alkanes in Brønsted acid zeolites. Their developed approach, employing configurational bias Monte Carlo with domain decomposition, with a newly parametrized molecular potential to compute the adsorption properties is first introduced. With these developments, the roles of the Si/Al ratio and Al sitting are explored and discussed. Subsequently, the Feature Article discusses the key findings obtained from a large-scale computational screening of studying more than 100 000 possible zeolite structures. The performance of identified top candidates and associated key structural features leading to desirable adsorption properties are highlighted.

9.
Langmuir ; 38(31): 9441-9453, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881074

RESUMO

For more than a decade, researchers have been developing metal-organic frameworks (MOFs) in the form of pure MOF membranes as well as MOF-containing mixed-matrix membranes. MOF membranes have been used for H2/CO2 or C3H6/C3H8 separation, but relatively few MOF membranes enable the high-performance separation of CO2/N2, CO2/CH4, or N2/CH4. This article describes the use of in situ XRD analysis and molecular simulation to elucidate gas transport within MOFs and derivative membranes at the molecular level. In a review of recent studies by the authors and other research groups, this article examines the flexibility of MOFs initiated by activation, gas adsorption, and aging effects during gas permeation. This article also discusses the application of XRD analysis in conjunction with computational methods to investigate the CO2-MOF Coulombic interaction and its effects on CO2 separation. Note that this combined analysis approach is also useful in studying the effects of linker rotation on N2/CH4 separation. This article also examines the use of computational tools in identifying new MOFs for gas separation and, more importantly, in elaborating the relationship between the structure of MOFs and their corresponding gas transport properties.

10.
Langmuir ; 38(38): 11631-11640, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36095324

RESUMO

Despite recommendations from the 2015 International Union of Pure and Applied Chemistry (IUPAC) technical report, surface areas of porous materials continue to be characterized by an N2 adsorption isotherm using the Brunauer-Emmett-Teller (BET) method. In this study, we provide the basis for such a practice by carrying out systematic large-scale molecular simulations on homogeneous and heterogeneous model surfaces. Specifically, we investigated the purported "orientational effect" of the N2 molecule on these surfaces. Grand canonical Monte Carlo (GCMC) simulation results from 257 diverse metal-organic frameworks show that the BET areas from Ar and N2 are similar in the range of 250-7500 m2/g with a mean deviation of 4%. Detailed analyses based on the consistency criteria for BET equations reveal that the large deviation (>10%) between the BET areas from Ar and N2 are materials specific and more prone to materials that are not able to satisfy the 3 and 4 consistency criteria. For materials that satisfy all four consistency criteria, the BET areas predicted from Ar and N2 isotherms are comparable.

11.
Environ Sci Technol ; 56(9): 5775-5785, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35465657

RESUMO

Despite increasing sustainable water purification, current desalination membranes still suffer from insufficient permeability and treatment efficiency, greatly hindering extensive practical applications. In this work, we provide a new membrane design protocol and molecule-level mechanistic understanding of vapor transport for the treatment of hypersaline waters via a membrane distillation process by rationally fabricating more robust metal-based carbon nanotube (CNT) network membranes, featuring a superhydrophobic superporous surface (80.0 ± 2.3% surface porosity). With highly permeable ductile metal hollow fibers as substrates, the construction of a superhydrophobic (water contact angle ∼170°) CNT network layer endows the membranes with not only almost perfect salt rejection (over 99.9%) but a promising water flux (43.6 L·m-2·h-1), which outperforms most existing inorganic distillation membranes. Both experimental and molecular dynamics simulation results indicate that such an enhanced water flux can be ascribed to an ultra-low liquid-solid contact interface (∼3.23%), allowing water vapor to rapidly transport across the membrane structure via a combined mechanism of Knudsen diffusion (more dominant) and viscous flow while efficiently repelling high-salinity feed via forming a Cassie-Baxter state. A more hydrophobic surface is more in favor of not only water desorption from the CNT outer surface but superfast and frictionless water vapor transport. By constructing a new superhydrophobic triple-phase interface, the conceptional design strategy proposed in this work can be expected to be extended to other membrane material systems as well as more water treatment applications.


Assuntos
Nanotubos de Carbono , Purificação da Água , Destilação , Gases , Membranas , Vapor
12.
J Am Chem Soc ; 141(22): 8727-8731, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095391

RESUMO

When conjugate molecules are self-assembled on the surface of semiconductors, emergent properties resulting from the electronic coupling between the conjugate moieties are of importance in the interfacial electron-transfer dynamics for photoelectrochemical and optoelectronics devices. In this work, we investigate the self-assembly of triphenylamine-oligothiophene-perylenemonoimide (PMI) molecules, denoted as BH4, on metal oxide surfaces via UV-vis absorption, photoluminescence, and transient near-infrared absorption spectroscopies and molecular dynamics simulations, and we report the excimer formation due to the π-π interaction of the PMI units between the neighboring dye molecules. To our best knowledge, this is the first experimental observation of intermolecular excimer formation when conjugate donor-acceptor molecules form a self-assembled monolayer. In addition, a long-lived (4.3 µs) intermolecular charge separation is observed, and a new excimer-mediated intermolecular charger-transfer mechanism is proposed. This work demonstrates that, through the design of dye molecules, the excited complexes or aggregates can provide a pathway to slow down the recombination rate in photoelectrodes that utilize donor-acceptor dyad molecules.

13.
Phys Rev Lett ; 123(23): 238002, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868485

RESUMO

Manipulating building-block nanomaterials to form an ordered superstructure in a dilute and spacer-free solution phase challenges the existing 5-nm node lithography and nanorobotics. The cooperative nature of nanocrystals, polymers, and cells can lead to superarrays or colloidal crystals. For known highly ordered systems, the characteristic length of materials, defined as the shortest dimension of objects, is generally larger than their separations. A spacer (small-molecule surfactant or polymer) is typically required to diminish short range van der Waals attraction, which results in a glassy or liquid state. Herein we propose a new concept of achieving highly ordered nano-objects in a dilute and spacer-free system via the synergistic effects of excellent solvation and appropriate constraints on rotational motion. As a proof of concept, this study demonstrates that aluminosilicate nanotubes (AlSiNTs) suspended in water under dilute conditions (e.g., 1.0 wt%) can spontaneously form hexagonal arrays with an intertubular distance as large as tens of nanometers. The separation distance of the ordered superstructure is also tunable via controlling the concentration and length of nanotubes. These superaligned structures are probed using small-angle x-ray scattering and cryo-TEM characterizations, with underlying mechanisms investigated at an atomic level using molecular dynamics simulations. The concept and discovery of this work can open up opportunities to a variety of applications including visible-UV photonics and nanolithography, and may be generalizable to other nano-object systems that fulfill similar requirements.

14.
Chemistry ; 25(29): 7225-7226, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31050069

RESUMO

This is a response to the paper published by S. A. Kadam, H. Li, R. F. Wormsbacher, A. Travert, Chem. Eur. J. 2018, 24, 5489. Key consistencies between our reported results and those reported in this work are also highlighted.

15.
Environ Sci Technol ; 53(8): 4161-4172, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884220

RESUMO

We report the comparative aggregation behavior of three emerging inorganic 2D nanomaterials (NMs): MoS2, WS2, and h-BN in aquatic media. Their aqueous dispersions were subjected to aggregation under varying concentrations of monovalent (NaCl) and divalent (CaCl2) electrolytes. Moreover, Suwanee River Natural Organic Matter (SRNOM) has been used to analyze the effect of natural macromolecules on 2D NM aggregation. An increase in electrolyte concentration resulted in electrical double-layer compression of the negatively charged 2D NMs, thus displaying classical Derjaguin-Landau-Verwey-Overbeek (DLVO)-type interaction. The critical coagulation concentrations (CCC) have been estimated as 37, 60, and 19 mM NaCl and 3, 7.2, and 1.3 mM CaCl2 for MoS2, WS2, and h-BN, respectively. Theoretical predictions of CCC by modified DLVO theory have been found comparable to the experimental values when dimensionality of the materials is taken into account and a molecular modeling approach was used for calculating molecular level interaction energies between individual 2D NM nanosheets. Electrostatic repulsion has been found to govern colloidal stability of MoS2 and WS2 while the van der Waals attraction has been found to govern that of h-BN. SRNOM stabilizes the 2D NMs significantly possibly by electrosteric repulsion. The presence of SRNOM completely stabilized MoS2 and WS2 at both low and high ionic strengths. While h-BN still showed appreciable aggregation in the presence of SRNOM, the aggregation rates were decreased by 2.6- and 3.7-fold at low and high ionic strengths, respectively. Overall, h-BN nanosheets will have higher aggregation potential and thus limited mobility in the natural aquatic environment when compared to MoS2 and WS2. These results can also be used to mechanistically explain fate, transport, transformation, organismal uptake, and toxicity of inorganic 2D NMs in the natural ecosystems.


Assuntos
Grafite , Nanoestruturas , Ecossistema , Eletrólitos , Cinética
16.
J Am Chem Soc ; 140(40): 12662-12666, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30256632

RESUMO

A Zn benzotriazolate metal-organic framework (MOF), [Zn(ZnO2CCH3)4(bibta)3] (1, bibta2- = 5,5'-bibenzotriazolate), has been subjected to a mild CH3CO2-/HCO3- ligand exchange procedure followed by thermal activation to generate nucleophilic Zn-OH groups that resemble the active site of α-carbonic anhydrase. The postsynthetically modified MOF, [Zn(ZnOH)4(bibta)3] (2*), exhibits excellent performance for trace CO2 capture and can be regenerated at mild temperatures. IR spectroscopic data and density functional theory (DFT) calculations reveal that intercluster hydrogen bonding interactions augment a Zn-OH/Zn-O2COH fixation mechanism.


Assuntos
Materiais Biomiméticos/química , Dióxido de Carbono/isolamento & purificação , Estruturas Metalorgânicas/química , Triazóis/química , Zinco/química , Materiais Biomiméticos/síntese química , Anidrases Carbônicas/química , Domínio Catalítico , Ligação de Hidrogênio , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Triazóis/síntese química
17.
Chemistry ; 24(57): 15167-15172, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30110512

RESUMO

By combining first-principles calculations and classical molecular simulations, an atomistic-level of understanding was provided towards the notable change in CO2 adsorption upon light treatment in two recently reported photoactive metal-organic frameworks, PCN-123 and Cu2 (AzoBPDC)2 (AzoBiPyB). It was demonstrated that the reversible decrease in gas adsorption upon isomerization can be primarily attributed to the blocking of the strong adsorbing sites at the metal nodes by azobenzene molecules in a cis configuration. The same mechanism was found to apply also to other molecules, for example, alkanes and toxic gases. Such understandings are instrumental to the future design of photoresponsive metal-organic frameworks. For example, the metal node-blocking mechanism can be leveraged to achieve optimal adsorption properties as a function of metal substitution and/or ligand functionalization. As a proof of concept, it was shown that the working capacity could be increased by a factor of two in PCN-123 by replacing the Zn4 O node with the more strongly adsorbing Mg4 O.

18.
Chemphyschem ; 19(4): 341-358, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29239509

RESUMO

Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+ ) and the intrinsic rate coefficient of the reaction (kint ) at reaction temperatures, since kapp is proportional to the product of Kads-H+ and kint . We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3 -C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads-H+ and kint .

19.
Langmuir ; 34(14): 4180-4187, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29533666

RESUMO

Investigating metal-organic frameworks (MOFs) as water adsorbents has drawn increasing attention for their potential in energy-related applications such as water production and heat transformation. A specific MOF, MIL-100(Fe), is of particular interest for its large adsorption capacity with the occurrence of water condensation at a relatively low partial pressure. In the synthesis of MIL-100(Fe), depending on the reactants, structures with varying anion terminals (e.g., F-, Cl-, or OH-) on the metal trimer have been reported. In this study, we employed molecular simulations and density functional theory calculations for investigating the water adsorption behaviors and the relative structural stability of MIL-100(Fe) with different anions. We also proposed a possible defective structure and explored its water adsorption properties. The results of this study are in good agreement with the experimental measurements and are in support of the observations reported in the literature. Understanding the spatial configurations and energetics of water molecules in these materials has also shed light on their adsorption mechanism at the atomic level.

20.
Phys Chem Chem Phys ; 20(45): 28848-28859, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30420977

RESUMO

The separation of light olefins from paraffins via cryogenic distillation is a very energy intensive process. Solid adsorbents and especially metal-organic frameworks with open metal sites have the potential to significantly lower the required energy. Specifically, M-MOF-74 has drawn considerable attention for application in olefin/paraffin separation. To investigate how the separation proceeds on a molecular level and to design better materials, molecular simulation can be a useful tool. Unfortunately, it is still a challenge to model the adsorption behavior of many adsorbates in metal-organic frameworks with open metal sites. Previously, the inclusion of explicit polarization has been suggested to improve the quality of classical force fields for such systems. Here, the potential of polarizable force fields for the description of olefins and paraffins in metal-organic frameworks with open metal sites is investigated. In particular, heats of adsorption, binding geometries, and adsorption isotherms are calculated for C2H4, C2H6, C3H6, and C3H8 in M-MOF-74 (with M = Co, Mn, Fe, and Ni). In this study, no force field parameters are adjusted to improve the model. The results show that including explicit polarization significantly improves the description of the adsorption in comparison to non-polarizable generic force fields which do not consider explicit polarization. The study also reveals that simulation predictions are sensitive to the assigned repulsive potential and framework charges. A fully re-parametrized polarizable force field may have the capability to improve the predictions even further.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa