Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 299(6): 104729, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37080391

RESUMO

The macrophage migration inhibitory factor (MIF) protein family consists of MIF and D-dopachrome tautomerase (also known as MIF-2). These homologs share 34% sequence identity while maintaining nearly indistinguishable tertiary and quaternary structure, which is likely a major contributor to their overlapping functions, including the binding and activation of the cluster of differentiation 74 (CD74) receptor to mediate inflammation. Previously, we investigated a novel allosteric site, Tyr99, that modulated N-terminal catalytic activity in MIF through a "pathway" of dynamically coupled residues. In a comparative study, we revealed an analogous allosteric pathway in MIF-2 despite its unique primary sequence. Disruptions of the MIF and MIF-2 N termini also diminished CD74 activation at the C terminus, though the receptor activation site is not fully defined in MIF-2. In this study, we use site-directed mutagenesis, NMR spectroscopy, molecular simulations, in vitro and in vivo biochemistry to explore the putative CD74 activation region of MIF-2 based on homology to MIF. We also confirm its reciprocal structural coupling to the MIF-2 allosteric site and N-terminal enzymatic site. Thus, we provide further insight into the CD74 activation site of MIF-2 and its allosteric coupling for immunoregulation.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Sítios de Ligação , Inflamação , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo
2.
Methods ; 209: 40-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535575

RESUMO

The exquisite sensitivity of the NMR chemical shift to local environment makes it an ideal probe to assess atomic level perturbations in proteins of all sizes and structural compositions. Recent advances in solution and solid-state NMR spectroscopy of biomolecules have leveraged the chemical shift to report on short- and long-range couplings between individual amino acids to establish "networks" of residues that form the basis of allosteric pathways that transmit chemical signals through the protein matrix to induce functional responses. The simple premise that thermodynamically and functionally coupled regions of a protein (i.e. active and allosteric sites) should be reciprocally sensitive to structural or dynamic perturbations has enabled NMR spectroscopy, the premier method for molecular resolution of protein structural fluctuations, to occupy a place at the forefront of investigations into protein allostery. Here, we detail several key methods of NMR chemical shift analysis to extract mechanistic information about long-range chemical signaling in a protein, focusing on practical methodological aspects and the circumstances under which a given approach would be relevant. We also detail some of the experimental considerations that should be made when applying these methods to specific protein systems.


Assuntos
Proteínas , Modelos Moleculares , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Regulação Alostérica , Sítio Alostérico
3.
Biophys J ; 122(7): 1268-1276, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804669

RESUMO

D-Dopachrome tautomerase (D-DT; or MIF-2) is a multifunctional protein with immunomodulatory properties and a documented pathogenic role in inflammation and cancer that is associated with activation of the cell surface receptor CD74. Alongside D-DT, macrophage migration inhibitory factor (MIF) is also known to activate CD74, promoting pathogenesis. While the role of the MIF/CD74 axis has been extensively studied in various disease models, the late discovery of the D-DT/CD74 axis has led to a poor investigation into the D-DT-induced activation mechanism of CD74. A previous study has identified 4-(3-carboxyphenyl)-2,5-pyridinedicarboxylic acid (4-CPPC) as the first selective and reversible inhibitor of D-DT and reported its potency to block the D-DT-induced activation of CD74 in a cell-based model. In this study, we employ molecular dynamics simulations and nuclear magnetic resonance experiments to study 4-CPPC-induced changes to the dynamic profile of D-DT. We found that binding of the inhibitor remarkably promotes the conformational flexibility of C-terminal without impacting the structural stability of the biological assembly. Consequently, long-range intrasubunit (>11 Å) and intersubunit (>30 Å) communications are enabled between distal regions. Communication across the three subunits is accomplished via 4-CPPC, which serves as a communication bridge after Val113 is displaced from its hydrophobic pocket. This previously unrecognized structural property of D-DT is not shared with its human homolog, MIF, which exhibits an impressive C-terminal rigidity even in the presence of an inhibitor. Considering the previously reported role of MIF's C-terminal in the activation of CD74, our results break new ground for understanding the functionality of D-DT in health and disease.


Assuntos
Neoplasias , Humanos , Ligantes , Inflamação/metabolismo , Receptores de Superfície Celular , Antígenos de Histocompatibilidade Classe II/metabolismo
4.
Biophys J ; 122(24): 4635-4644, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37936350

RESUMO

A hallmark of tightly regulated high-fidelity enzymes is that they become activated only after encountering cognate substrates, often by an induced-fit mechanism rather than conformational selection. Upon analysis of molecular dynamics trajectories, we recently discovered that the Cas9 HNH domain exists in three conformations: 1) Y836 (which is two residues away from the catalytic D839 and H840 residues) is hydrogen bonded to the D829 backbone amide, 2) Y836 is hydrogen bonded to the backbone amide of D861 (which is one residue away from the third catalytic residue N863), and 3) Y836 is not hydrogen bonded to either residue. Each of the three conformers differs from the active state of HNH. The conversion between the inactive and active states involves a local unfolding-refolding process that displaces the Cα and side chain of the catalytic N863 residue by ∼5 Å and ∼10 Å, respectively. In this study, we report the two largest principal components of coordinate variance of the HNH domain throughout molecular dynamics trajectories to establish the interconversion pathways of these conformations. We show that conformation 2 is an obligate step between conformations 1 and 3, which are not directly interconvertible without conformation 2. The loss of hydrogen bonding of the Y836 side chain in conformation 3 likely plays an essential role in activation during local unfolding-refolding of an α-helix containing the catalytic N863. Three single Lys-to-Ala mutants appear to eliminate this substrate-independent activation pathway of the wild-type HNH nuclease, thereby enhancing the fidelity of HNH cleavage.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Simulação de Dinâmica Molecular , Hidrogênio/metabolismo , Amidas
5.
Biochemistry ; 61(6): 424-432, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35199520

RESUMO

A minimal replication-transcription complex (RTC) of SARS-CoV-2 for synthesis of viral RNAs includes the nsp12 RNA-dependent RNA polymerase and two nsp8 RNA primase subunits for de novo primer synthesis, one nsp8 in complex with its accessory nsp7 subunit and the other without it. The RTC is responsible for faithfully copying the entire (+) sense viral genome from its first 5'-end to the last 3'-end nucleotides through a replication-intermediate (RI) template. The single-stranded (ss) RNA template for the RI is its 33-nucleotide 3'-poly(A) tail adjacent to a well-characterized secondary structure. The ssRNA template for viral transcription is a 5'-UUUAU-3' next to stem-loop (SL) 1'. We analyze the electrostatic potential distribution of the nsp8 subunit within the RTC around the template strand of the primer/template (P/T) RNA duplex in recently published cryo-EM structures to address the priming reaction using the viral poly(A) template. We carried out molecular dynamics (MD) simulations with a P/T RNA duplex, the viral poly(A) template, or a generic ssRNA template. We find evidence that the viral poly(A) template binds similarly to the template strand of the P/T RNA duplex within the RTC, mainly through electrostatic interactions, providing new insights into the priming reaction by the nsp8 subunit within the RTC, which differs significantly from the existing proposal of the nsp7/nsp8 oligomer formed outside the RTC. High-order oligomerization of nsp8 and nsp7 for SARS-CoV observed outside the RTC of SARS-CoV-2 is not found in the RTC and not likely to be relevant to the priming reaction.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
6.
Biochemistry ; 61(9): 785-794, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35420793

RESUMO

Many bacteria possess type-II immunity against invading phages or plasmids known as the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system to detect and degrade the foreign DNA sequences. The Cas9 protein has two endonucleases responsible for double-strand breaks (the HNH domain for cleaving the target strand of DNA duplexes and RuvC domain for the nontarget strand, respectively) and a single-guide RNA-binding domain where the RNA and target DNA strands are base-paired. Three engineered single Lys-to-Ala HNH mutants (K810A, K848A, and K855A) exhibit an enhanced substrate specificity for cleavage of the target DNA strand. We report in this study that in the wild-type (wt) enzyme, D835, Y836, and D837 within the Y836-containing loop (comprising E827-D837) adjacent to the catalytic site have uncharacterizable broadened 1H15N nuclear magnetic resonance (NMR) features, whereas remaining residues in the loop have different extents of broadened NMR spectra. We find that this loop in the wt enzyme exhibits three distinct conformations over the duration of the molecular dynamics simulations, whereas the three Lys-to-Ala mutants retain only one conformation. The versatility of multiple alternate conformations of this loop in the wt enzyme could help to recruit noncognate DNA substrates into the HNH active site for cleavage, thereby reducing its substrate specificity relative to the three mutants. Our study provides further experimental and computational evidence that Lys-to-Ala substitutions reduce dynamics of proteins and thus increase their stability.


Assuntos
Sistemas CRISPR-Cas , Endonucleases , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/química , DNA/genética , Endonucleases/química
7.
Biochemistry ; 61(18): 1966-1973, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044776

RESUMO

Remdesivir is an adenosine analogue that has a cyano substitution in the C1' position of the ribosyl moiety and a modified base structure to stabilize the linkage of the base to the C1' atom with its strong electron-withdrawing cyano group. Within the replication-transcription complex (RTC) of SARS-CoV-2, the RNA-dependent RNA polymerase nsp12 selects remdesivir monophosphate (RMP) over adenosine monophosphate (AMP) for nucleotide incorporation but noticeably slows primer extension after the added RMP of the RNA duplex product is translocated by three base pairs. Cryo-EM structures have been determined for the RTC with RMP at the nucleotide-insertion (i) site or at the i + 1, i + 2, or i + 3 sites after product translocation to provide a structural basis for a delayed-inhibition mechanism by remdesivir. In this study, we applied molecular dynamics (MD) simulations to extend the resolution of structures to the measurable maximum that is intrinsically limited by MD properties of these complexes. Our MD simulations provide (i) a structural basis for nucleotide selectivity of the incoming substrates of remdesivir triphosphate over adenosine triphosphate and of ribonucleotide over deoxyribonucleotide, (ii) new detailed information on hydrogen atoms involved in H-bonding interactions between the enzyme and remdesivir, and (iii) direct information on the catalytically active complex that is not easily captured by experimental methods. Our improved resolution of interatomic interactions at the nucleotide-binding pocket between remedesivir and the polymerase could help to design a new class of anti-SARS-CoV-2 inhibitors.


Assuntos
Trifosfato de Adenosina , Antivirais , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Alanina/química , Antivirais/química , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus , Desoxirribonucleotídeos , Hidrogênio , Nucleotídeos , RNA Viral/genética , Ribonucleotídeos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
8.
J Struct Biol ; 214(1): 107814, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34871741

RESUMO

CRISPR-Cas9 is a widely used biochemical tool with applications in molecular biology and precision medicine. The RNA-guided Cas9 protein uses its HNH endonuclease domain to cleave the DNA strand complementary to its endogenous guide RNA. In this study, novel constructs of HNH from two divergent organisms, G. stearothermophilus (GeoHNH) and S. pyogenes (SpHNH) were engineered from their respective full-length Cas9 proteins. Despite low sequence similarity, the X-ray crystal structures of these constructs reveal that the core of HNH surrounding the active site is conserved. Structure prediction of the full-length GeoCas9 protein using Phyre2 and AlphaFold2 also showed that the crystallographic construct of GeoHNH represents the structure of the domain within the full-length GeoCas9 protein. However, significant differences are observed in the solution dynamics of structurally conserved regions of GeoHNH and SpHNH, the latter of which was shown to use such molecular motions to propagate the DNA cleavage signal. Indeed, molecular simulations show that the intradomain signaling pathways, which drive SpHNH function, are non-specific and poorly formed in GeoHNH. Taken together, these outcomes suggest mechanistic differences between mesophilic and thermophilic Cas9 species.


Assuntos
Sistemas CRISPR-Cas , Simulação de Dinâmica Molecular , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/metabolismo
9.
J Struct Biol ; 214(4): 107902, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202310

RESUMO

The atomic coordinates derived from cryo-electron microscopy (cryo-EM) maps can be inaccurate when the voxel scaling factors are not properly calibrated. Here, we describe a method for correcting relative voxel scaling factors between pairs of cryo-EM maps for the same or similar structures that are expanded or contracted relative to each other. We find that the correction of scaling factors reduces the amplitude differences of Fourier-inverted structure factors from voxel-rescaled maps by up to 20-30%, as shown by two cryo-EM maps of the SARS-CoV-2 spike protein measured at pH 4.0 and pH 8.0. This allows for the calculation of the difference map after properly scaling, revealing differences between the two structures for individual amino acid residues. Unexpectedly, the analysis uncovers two previously overlooked differences of amino acid residues in structures and their local structural changes. Furthermore, we demonstrate the method as applied to two cryo-EM maps of monomeric apo-photosystem II from the cyanobacteria Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus. The resulting difference maps reveal many changes in the peripheral transmembrane PsbX subunit between the two species.


Assuntos
COVID-19 , Synechocystis , Humanos , Microscopia Crioeletrônica , SARS-CoV-2
10.
J Biol Chem ; 297(3): 101061, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34384784

RESUMO

The macrophage migration inhibitory factor (MIF) family of cytokines contains multiple ligand-binding sites and mediates immunomodulatory processes through an undefined mechanism(s). Previously, we reported a dynamic relay connecting the MIF catalytic site to an allosteric site at its solvent channel. Despite structural and functional similarity, the MIF homolog D-dopachrome tautomerase (also called MIF-2) has low sequence identity (35%), prompting the question of whether this dynamic regulatory network is conserved. Here, we establish the structural basis of an allosteric site in MIF-2, showing with solution NMR that dynamic communication is preserved in MIF-2 despite differences in the primary sequence. X-ray crystallography and NMR detail the structural consequences of perturbing residues in this pathway, which include conformational changes surrounding the allosteric site, despite global preservation of the MIF-2 fold. Molecular simulations reveal MIF-2 to contain a comparable hydrogen bond network to that of MIF, which was previously hypothesized to influence catalytic activity by modulating the strength of allosteric coupling. Disruption of the allosteric relay by mutagenesis also attenuates MIF-2 enzymatic activity in vitro and the activation of the cluster of differentiation 74 receptor in vivo, highlighting a conserved point of control for nonoverlapping functions in the MIF superfamily.


Assuntos
Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Sítio Alostérico/fisiologia , Sequência de Aminoácidos/genética , Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Citocinas/imunologia , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Ligação Proteica/genética , Relação Estrutura-Atividade
11.
J Chem Phys ; 157(22): 225103, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546784

RESUMO

Allosteric signaling within multidomain proteins is a driver of communication between spatially distant functional sites. Understanding the mechanism of allosteric coupling in large multidomain proteins is the most promising route to achieving spatial and temporal control of the system. The recent explosion of CRISPR-Cas9 applications in molecular biology and medicine has created a need to understand how the atomic level protein dynamics of Cas9, which are the driving force of its allosteric crosstalk, influence its biophysical characteristics. In this study, we used a synergistic approach of nuclear magnetic resonance (NMR) and computation to pinpoint an allosteric hotspot in the HNH domain of the thermostable GeoCas9. We show that mutation of K597 to alanine disrupts a salt-bridge network, which in turn alters the structure, the timescale of allosteric motions, and the thermostability of the GeoHNH domain. This homologous lysine-to-alanine mutation in the extensively studied mesophilic S. pyogenes Cas9 similarly alters the dynamics of the SpHNH domain. We have previously demonstrated that the alteration of allostery via mutations is a source for the specificity enhancement of SpCas9 (eSpCas9). Hence, this may also be true in GeoCas9.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Clivagem do DNA , Eletricidade Estática , Temperatura
12.
Biophys J ; 120(18): 3893-3900, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437846

RESUMO

Macrophage migration inhibitory factor (MIF) is an immunomodulatory protein with a pathogenic activity in various inflammatory disorders, autoimmune diseases, and cancer. The majority of MIF-triggered pathological conditions are associated with activation of the cell surface receptor CD74. In the absence of small molecule antagonists that directly target CD74, MIF variants and MIF-ligand complexes have served as modulators of CD74 activity. These molecules have been reported to have either antagonistic or agonistic effects against the receptor, although the mechanistic parameters that distinguish the two groups are largely unknown. Through molecular dynamics simulations and NMR experiments, we explored the relationship between MIF's catalytically active N-terminus and the surface residues important for the activation of CD74. We found that the two sites are connected via backbone dynamics that are propagated to the CD74 activation surface of MIF, from the ß2 and ß4 strands. Our results also provide mechanistic evidence that explain the functional characteristics of MIF variants, serving as CD74 agonists or antagonists. Such findings are of high importance for understanding the MIF-induced activation of CD74 as well as for the development of highly potent CD74 therapeutics.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Antígenos de Histocompatibilidade Classe II , Fatores Inibidores da Migração de Macrófagos , Simulação de Dinâmica Molecular
13.
Biochemistry ; 60(24): 1869-1875, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110129

RESUMO

Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Ebolavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Alanina/genética , Alanina/metabolismo , Antivirais/metabolismo , Pareamento de Bases , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Inibidores Enzimáticos/metabolismo , Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
14.
J Biomol NMR ; 75(6-7): 213-219, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33961178

RESUMO

We explain how to conduct a pseudo-3D relaxation series NUS measurement so that it can be reconstructed by existing 3D NUS reconstruction methods to give accurate relaxation values. We demonstrate using reconstruction algorithms IST and SMILE that this 3D approach allows lower sampling densities than for independent 2D reconstructions. This is in keeping with the common finding that higher dimensionality increases signal sparsity, enabling lower sampling density. The approach treats the relaxation series as ordinary 3D time-domain data whose imaginary part in the pseudo-dimension is zero, and applies any suitably linear 3D NUS reconstruction method accordingly. Best results on measured and simulated data were achieved using acquisitions with 9 to 12 planes and exponential spacing in the pseudo-dimension out to ~ 2 times the inverse decay time. Given these criteria, in typical cases where 2D reconstructions require 50% sampling, the new 3D approach generates spectra reliably at sampling densities of 25%.


Assuntos
Algoritmos , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular
15.
Proc Natl Acad Sci U S A ; 115(52): E12201-E12208, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530700

RESUMO

Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix h[Formula: see text], and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.


Assuntos
Regulação Alostérica , Aminoidrolases/química , Proteínas de Bactérias/química , Sítio Alostérico , Modelos Moleculares , Modelos Teóricos , Ligação Proteica , Conformação Proteica
16.
Biochemistry ; 59(38): 3541-3553, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32897051

RESUMO

Granulocyte macrophage colony stimulating factor (GMCSF) is an immunomodulatory cytokine that is harnessed as a therapeutic. GMCSF is known to interact with other clinically important molecules, such as heparin, suggesting that endogenous and administered GMCSF has the potential to modulate orthogonal treatment outcomes. Thus, molecular level characterization of GMCSF and its interactions with biologically active compounds is critical to understanding these mechanisms and predicting clinical consequences. Here, we dissect the biophysical factors that facilitate the GMCSF-heparin interaction, previously shown to be pH-dependent, using nuclear magnetic resonance spectroscopy, surface plasmon resonance, and molecular dynamics simulations. We find that the affinity of GMCSF for heparin increases not only with a transition to acidic pH but also with an increase in heparin chain length. Changes in local flexibility, including a disruption of the N-terminal helix at acidic pH, also accompany the binding of heparin to GMCSF. We use molecular dynamics simulations to propose a mechanism in which a positive binding pocket that is not fully solvent accessible at neutral pH becomes more accessible at acidic pH, facilitating the binding of heparin to the protein.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Heparina/metabolismo , Animais , Sítios de Ligação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Heparina/química , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Ressonância de Plasmônio de Superfície , Suínos
17.
J Am Chem Soc ; 142(3): 1348-1358, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31885264

RESUMO

CRISPR-Cas9 is a widely employed genome-editing tool with functionality reliant on the ability of the Cas9 endonuclease to introduce site-specific breaks in double-stranded DNA. In this system, an intriguing allosteric communication has been suggested to control its DNA cleavage activity through flexibility of the catalytic HNH domain. Here, solution NMR experiments and a novel Gaussian-accelerated molecular dynamics (GaMD) simulation method are used to capture the structural and dynamic determinants of allosteric signaling within the HNH domain. We reveal the existence of a millisecond time scale dynamic pathway that spans HNH from the region interfacing the adjacent RuvC nuclease and propagates up to the DNA recognition lobe in full-length CRISPR-Cas9. These findings reveal a potential route of signal transduction within the CRISPR-Cas9 HNH nuclease, advancing our understanding of the allosteric pathway of activation. Further, considering the role of allosteric signaling in the specificity of CRISPR-Cas9, this work poses the mechanistic basis for novel engineering efforts aimed at improving its genome-editing capability.


Assuntos
Sistemas CRISPR-Cas , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Regulação Alostérica , Desoxirribonucleases/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(17): E3414-E3423, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396388

RESUMO

Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, meaning that its catalytic rate is critically dependent on activation by its allosteric ligand, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR). The allosteric mechanism of IGPS is reliant on millisecond conformational motions for efficient catalysis. We engineered four mutants of IGPS designed to disrupt millisecond motions and allosteric coupling to identify regions that are critical to IGPS function. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments and NMR chemical shift titrations reveal diminished enzyme flexibility and a reshaping of the allosteric connectivity in each mutant construct, respectively. The functional relevance of the observed motional quenching is confirmed by significant reductions in glutaminase kinetic activity and allosteric ligand binding affinity. This work presents relevant conclusions toward the control of protein allostery and design of unique allosteric sites for potential enzyme inhibitors with regulatory or therapeutic benefit.


Assuntos
Aminoidrolases/química , Proteínas de Bactérias/química , Thermotoga maritima/enzimologia , Resistência beta-Lactâmica , Regulação Alostérica , Aminoidrolases/genética , Aminoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Técnicas de Silenciamento de Genes , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Homologia Estrutural de Proteína , Thermotoga maritima/genética
19.
Chem Rev ; 116(11): 6323-69, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-26734986

RESUMO

Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following Review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery.


Assuntos
Enzimas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Soluções/química , Regulação Alostérica , Sítios de Ligação , Enzimas/química , Hemoglobinas/química
20.
Proc Natl Acad Sci U S A ; 111(3): E306-15, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398520

RESUMO

Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys binding studies with the minimalist heme peptide microperoxidase-8, demonstrate that the protein scaffold and solvent interactions play important roles in stabilizing a particular Cys-heme coordination. The increased stability of ferric thiolate compared with ferrous thiol arises mainly from entropic factors. This robust cyt c model system provides access to all four forms of Cys-bound heme, including the ferric thiol. Protein motions control the rates of heme redox reactions, and these effects are amplified at low pH, where the proteins are less stable. Thermodynamic signatures and redox reactivity of the model Cys-bound hemes highlight the critical role of the protein scaffold and its dynamics in modulating redox-linked transitions between thiols and thiolates.


Assuntos
Cisteína/química , Heme/química , Hemeproteínas/química , Oxirredução , Animais , Citocromos c/química , Transporte de Elétrons , Proteínas Fúngicas/química , Cavalos , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Ligantes , Modelos Moleculares , Mutação , Miocárdio/metabolismo , Peroxidases/química , Espectrofotometria , Compostos de Sulfidrila/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa