RESUMO
As a widespread environmental pollutant, microplastics pose a great threat to the tissues and organs of aquatic animals. The carp's muscles are necessary for movement and survival. However, the mechanism of injury of polyethylene microplastics (PE-MPs) to carp muscle remains unclear. Therefore, in this study, PE-MPs with the diameter of 8 µm and the concentration of 1000 ng/L were used to feed carp for 21 days, and polyethylene microplastic treatment groups was established. The results showed that PE-MPs could cause structural abnormalities and disarrangement of muscle fibers, and aggravate oxidative stress in muscles. Exposure to PE-MPs reduced microRNA (miR-21) in muscle tissue, negatively regulated Interleukin-1 Receptor Associated Kinase 4 (IRAK4), activated Nuclear Factor Kappa-B (NF-κB) pathway, induced inflammation, and led to endoplasmic reticulum stress and apoptosis. The present study provides different targets for the prevention of muscle injury induced by polyethylene microplastics.
Assuntos
Carpas , MicroRNAs , Poluentes Químicos da Água , Animais , Polietileno , Microplásticos , Plásticos , Quinases Associadas a Receptores de Interleucina-1 , NF-kappa B , Músculos , Apoptose , Estresse do Retículo Endoplasmático , Inflamação , Estresse OxidativoRESUMO
Selenium (Se), one of the essential trace elements of fish, regulates immune system function and maintains immune homeostasis. Muscle is the important tissue that generate movement and maintain posture. At present, there are few studies on the effects of Se deficiency on carp muscle. In this experiment, carps were fed with dietary with different Se content to successfully establish a Se deficiency model. Low-Se dietary led to the decrease of Se content in muscle. Histological analysis showed that Se deficiency resulted in muscle fiber fragmentation, dissolution, disarrangement and increased myocyte apoptosis. Transcriptome revealed a total of 367 differentially expressed genes (DEGs) were screened, including 213 up-regulated DEGs and 154 down-regulated DEGs. Bioinformatics analysis showed that DEGs were concentrated in oxidation-reduction process, inflammation and apoptosis, and were related to NF-κB and MAPKs pathways. Further exploration of the mechanism showed that Se deficiency led to excessive accumulation of ROS, decreased the activity of antioxidant enzymes, and also resulted in increased expression of the NF-κB and MAPKs pathways. In addition, Se deficiency significantly increased the expressions of TNF-α, IL-1ß and IL-6, and the pro-apoptotic factors BAX, p53, caspase-7 and caspase-3, while decreased the expressions of anti-apoptotic factors Bcl-2 and Bcl-xl. In conclusion, Se deficiency reduced the activities of antioxidant enzymes and led to excessive accumulation of ROS, which caused oxidative stress and affected the immune function of carp, leading to muscle inflammation and apoptosis.
Assuntos
Carpas , Desnutrição , Selênio , Animais , Antioxidantes/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Suplementos Nutricionais , Selênio/metabolismo , Carpas/genética , Carpas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Inata , Transdução de Sinais , Inflamação/veterinária , Apoptose , Músculos/metabolismoRESUMO
We performed a meta-analysis to evaluate the effect of powdered vancomycin on stopping surgical site wound infections in neurosurgery. A systematic literature search up to July 2022 was performed and 24 137 subjects with neurosurgery at the baseline of the studies; 10 496 of them were using the powdered vancomycin, and 13 641 were not using the powdered vancomycin as a control. Odds ratio (OR) with 95% confidence intervals (CIs) were calculated to assess the effect of powdered vancomycin on stopping surgical site wound infections in neurosurgery using dichotomous methods with a random or fixed-effect model. The powdered vancomycin had significantly lower surgical site wound infections after spinal surgery (OR, 0.53; 95% CI, 0.41-0.70, P < .001), deep surgical site wound infections after spinal surgery (OR, 0.45; 95% CI, 0.35-0.57, P < .001), superficial surgical site wound infections after spinal surgery (OR, 0.60; 95% CI, 0.43-0.83, P = .002), and surgical site wound infections after cranial surgery (OR, 0.37; 95% CI, 0.22-0.61, P < .001) compared to control in subjects with neurosurgery. The powdered vancomycin had significantly lower surgical site wound infections after spinal surgery, deep surgical site wound infections after spinal surgery, superficial surgical site wound infections after spinal surgery, and surgical site wound infections after cranial surgery compared to control in subjects with neurosurgery. The analysis of outcomes should be done with caution even though the low number of studies with low sample size, 3 out of the 42 studies, in the meta-analysis, and a low number of studies in certain comparisons.
Assuntos
Neurocirurgia , Vancomicina , Humanos , Vancomicina/uso terapêutico , Pós , Procedimentos Neurocirúrgicos/efeitos adversos , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção da Ferida Cirúrgica/prevenção & controle , Antibacterianos/uso terapêuticoRESUMO
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the incidence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, and the anti-inflammatory, anti-apoptotic, and intestinal barrier enhancing effects of stem cells may be protective against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function in the treatment of NEC.
Assuntos
Enterocolite Necrosante , Animais , Terapia Baseada em Transplante de Células e Tecidos , Enterocolite Necrosante/terapia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Intestinos , Células-TroncoRESUMO
BACKGROUND: Dramatic intestinal epithelial cell death leading to barrier dysfunction is one of the mechanism of neonatal necrotizing enterocolitis (NEC), in which Toll-like receptor 4 (TLR4) plays a pivotal role. This study explored the role of necroptosis, a drastic way of cell death in NEC. METHODS: The expression of necroptotic proteins was tested in NEC intestinal tissue and compared with controls. NEC was induced in neonatal wild-type mice and a necroptosis inhibitor was given to investigate whether NEC could be relieved. The general condition, macroscopic scoring, and histological evaluations were performed. The expression of tight junction proteins, inflammatory cytokines, and necroptosis-related proteins was measured, and barrier function was examined. Then, NEC was induced in TLR4-knockout pups to confirm the role of TLR4 in necroptosis. RESULTS: Necroptotic proteins were significantly upregulated in both NEC patient and animal models, together with the expression of TLR4. NEC could be relieved and inflammatory infiltration was decreased by necrostatin-1s. TLR4-knockout mice showed milder tissue degradation and less necroptosis after NEC induction. CONCLUSIONS: Necroptosis is an essential pathological process of NEC. TLR4 may be one stimulator of necroptosis in NEC. Inhibiting the intestinal cell necroptosis might be a useful strategy in the treatment of NEC. IMPACT: Necroptosis is a key pathological process in NEC, which appears to involve TLR4. Anti-necroptosis treatment is a promising strategy that could significantly relieve the symptoms of NEC.
Assuntos
Enterocolite Necrosante/patologia , Necroptose/fisiologia , Receptor 4 Toll-Like/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/genética , Regulação para CimaRESUMO
OBJECTIVE: The incidence of open reduction and internal fixation (ORIF) in flexion-type supracondylar humerus fractures (SCHF) in children is significantly higher than that of extension-type fractures. This study aimed to identify risk factors for ORIF in flexion-type SCHF. METHODS: One hundred seventy-one patients with Wilkins type III flexion-type SCHF from January 2012 to December 2021 were retrospectively enrolled in a tertiary paediatric hospital. Patients were divided into ORIF group versus closed reduction and internal fixation (CRIF) group. Then, patients data of age, sex, injury side, obesity, deviation of displacement, fracture level, rotation, nerve injury, and delay from injury to surgery were reviewed. Univariate analysis and multivariate logistic regression were used to identify independent risk factors and odds ratios (OR) of ORIF. RESULTS: Overall, 171 children with type III flexion-type SCHF were analyzed (average aged 7.9 ± 2.8 years). Displacement was lateral in 151 cases, medial in 20. 20 cases had combined ulnar nerve injury. The failed closed reduction rate was 20%. Univariate analysis indicated age, distal fracture fragment rotation, and ulnar nerve injury were significantly associated with ORIF. (P = 0.047, P = 0.009, and P = 0.001, respectively). Multivariate logistic regression analysis showed that distal fracture fragment rotation (OR, 3.3; 95%CI:1.1-9.5; P = 0.028) and ulnar nerve injury (OR, 6.4; 95%CI:2.3-18.3; P = 0.001) were independent risk factors; however, the age was not an independent one (OR, 1.5; 95%CI:0.6-3.5; P = 0.397) for ORIF in the Wilkins type III flexion-type SCHF. CONCLUSION: Distal fracture fragment malrotation on initial x-rays and ulnar nerve injury were significant risk factors for ORIF in Wilkins type III flexion-type SCHF. Surgeons should prepare tourniquets or other open reduction instruments when treating these types of fractures. LEVEL OF EVIDENCE: Level IV.
Assuntos
Fraturas do Úmero , Redução Aberta , Criança , Fixação Interna de Fraturas/efeitos adversos , Humanos , Fraturas do Úmero/epidemiologia , Fraturas do Úmero/cirurgia , Úmero , Redução Aberta/efeitos adversos , Estudos RetrospectivosRESUMO
BACKGROUND: Closed reduction and percutaneous pinning is still a preference for the treatment of supracondylar humerus fractures in children. However, no reports have shown the pin trajectory and the characteristics of the entry point so far. So we established a computational simulation model of the elbow to observe the trajectory of pinning for supracondylar humerus fractures. METHODS: We reconstructed an adult elbow computationally and simulated pin placement through lateral and medial pinning. Pin trajectories were traced after placement and after the addition of the skin profile; the relative entry points of the pins were determined. We used the center of the dorsal olecranon inflection as an anatomic reference for the entry points of lateral pinning. Four quadrants were established based on the center of the dorsal olecranon inflection: upper medial quadrant, upper lateral quadrant, lower medial quadrant, and lower lateral quadrant (LLQ). RESULTS: The maximum angle of pinning through the lateral column was 64° ± 3°. The minimum angles of pinning through the lateral column and middle column were 37° ± 3° and 20° ± 2°, respectively. The range of safe angle pinning through the medial column was between 18° ± 2° and 57° ± 3° to avoid penetration of the olecranon fossa and the cortex of the medial column. The entry points of lateral pinning were within the lateral half of the LLQ, and the lateral one-third of the LLQ contained all entry points of the pins through the lateral column and minor points of the pins through the middle column. The exit points of the medial pinning were within the lateral fringe of the metaphyseal-diaphyseal junction region; entering from the inferior two-thirds of the medial epicondyle could lead to the exit points in the proximal half of the metaphyseal-diaphyseal junction region laterally. DISCUSSION: For lateral pinning, the entry points would be within the lateral half of the LLQ. For the pins through the lateral column, the entry points should be within the lateral one-third of the LLQ. For medial pinning, entering from the inferior two-thirds of the medial epicondyle would lead to a more proximal exit.
Assuntos
Fios Ortopédicos , Fraturas do Úmero , Pinos Ortopédicos , Criança , Diáfises , Fixação de Fratura , Humanos , Fraturas do Úmero/diagnóstico por imagem , Fraturas do Úmero/cirurgia , Úmero/cirurgiaRESUMO
Vitamin D status is closely related to inflammatory bowel disease (IBD), but the mechanism has not been fully elucidated. This study explored the effect of intestinal vitamin D signaling on necroptosis and the underlying mechanism in colitis. Serum 25(OH)D levels and the expression of necroptotic proteins were examined in patients with IBD. Colitis was induced in an intestinal-specific hVDR transgenic model, and the gross manifestation, histological integrity, and intestinal barrier function were tested. The findings were further confirmed in vitro. Immunoprecipitation and colocalization were performed to investigate the association between the vitamin D receptor and necroptotic proteins. We found that serum 25(OH)D decreased in patients with IBD, while the expression of necroptotic proteins increased. The intestinal hVDR transgenic model could largely ameliorate the structural destruction, restore barrier dysfunction, and suppress necroptosis caused by DSS. This was probably achieved by binding to RIPK1/3 necrosomes, as we observed decreased RIPK1/3 necrosome formation and increased VDR expression in the cytosol. This study demonstrated an inhibitory effect of the intestinal vitamin D signaling pathway on necroptosis in DSS-induced colitis. The vitamin D receptor shifts from the nucleus to the cytosol to impede the formation of RIPK1/3. Our findings may offer some theoretical basis for a novel treatment of IBD in clinical practice.
Assuntos
Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Necroptose , Receptores de Calcitriol/metabolismo , Animais , Sulfato de Dextrana , Células Epiteliais/patologia , Feminino , Células HCT116 , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Vitamina D/fisiologiaRESUMO
Chondrocyte apoptosis plays an important role in the developmental dysplasia of the hip (DDH) development. It has been found that WNT1 inducible signaling pathway protein 2 (WISP-2) and peroxisome proliferator-activated receptor γ (PPARγ) are involved in cell apoptosis. In this study, we performed the straight-leg swaddling DDH rat model and we found that cartilage degradation and chondrocyte apoptosis were remarkably increased in DDH rats in vivo. Moreover, we found that WISP-2 was upregulated in hip acetabular cartilage of DDH rats compared to control rats. Next, the effects of WISP-2 on chondrocyte apoptosis and its possible underlying mechanism were examined in vitro. The lentivirus-mediated gain- and loss-of-function experiments of WISP-2 and peroxisome proliferator-activated receptor γ (PPARγ) for cell viability and apoptosis were performed in primary rat chondrocytes. The results showed that the overexpression of WISP-2 induced chondrocyte apoptosis, and knockdown of WISP-2 could suppress the chondrocyte apoptosis induced by advanced glycation end products (AGE). Additionally, WISP-2 could negatively regulate the expression of PPARγ in chondrocytes. Moreover, the knockdown of PPARγ promoted chondrocyte apoptosis and overexpression of PPARγ abated the increased apoptosis and decreased cell viability of chondrocytes induced by WISP-2. This study demonstrated that WISP-2 might contribute to chondrocyte apoptosis of hip acetabular cartilage through regulating PPARγ expression and activation, which may play an important role in the development of DDH.
Assuntos
Apoptose , Proteínas de Sinalização Intercelular CCN/metabolismo , Condrócitos/metabolismo , Luxação do Quadril/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Sinalização Intercelular CCN/genética , Cartilagem/citologia , Cartilagem/metabolismo , Células Cultivadas , Produtos Finais de Glicação Avançada/metabolismo , PPAR gama/metabolismo , Ratos , Ratos Wistar , Proteínas Repressoras/genética , Regulação para CimaRESUMO
BACKGROUND: Metaphyseal-diaphyseal junction (MDJ) fractures of the distal humerus are problematic to reduce and more susceptible to post-operative complications. This biomechanical study was designed to compare Kirschner wires (KW), lateral external fixation, and elastic stable intramedullary nails (ESIN) in simulated transverse MDJ fractures of various heights. METHOD: Sagittally oblique, transverse MDJ fractures were created in fourth-generation composite bone models at three levels: high, mid, and low fractures, respectively, and then fixed with either Kirschner wires, lateral external fixation (EF), or ESIN respectively and tested in extension, flexion, valgus, varus, internal, and external rotations. RESULTS: In the high fractures, ESIN had better overall stiffness than the other techniques. In the mid groups, three crossed pinning (1-medial and 2-lateral pins) had the best overall stiffness, followed by two crossed pinning (1-medial and 1-lateral pins). In the low fractures, three crossed pinning was superior to all other techniques. Two crossed pinning and three -lateral pinning techniques yielded comparable stiffness in the low fracture model. CONCLUSIONS: From a biomechanical perspective, ESIN provides the best overall stability for fractures located in the upper region of the MDJ, while percutaneous pinning is superior in stabilizing fractures of the lower region. Two lateral and one medial pins make the most stable crossed pinning construct for these fractures.
Assuntos
Fixação de Fratura/métodos , Fraturas do Úmero/cirurgia , Fenômenos Biomecânicos , Pinos Ortopédicos , Fios Ortopédicos , Criança , Diáfises/fisiopatologia , Diáfises/cirurgia , Fixação de Fratura/instrumentação , Humanos , Fraturas do Úmero/fisiopatologia , Úmero/cirurgiaRESUMO
BackgroundThe toll-like receptor 4 (TLR4) has been reported to play an important role in necrotizing enterocolitis (NEC). As an established regulator of TLR4, vitamin D has been demonstrated to be intestinal-protective. This study aims at finding out whether the vitamin D/vitamin D receptor (VDR) pathway ameliorates NEC by regulating TLR4.MethodsSerum 25-hydrovitamin D (25(OH)D) was tested and compared in 15 preterm infants with NEC, 12 preterm infants without known complications and 20 healthy term infants. Neonatal Wistar rats were grouped and NEC was induced through formula feeding and cold/asphyxia stress. Vitamin D and the vehicle were administered to compare the microscopic structure, apoptotic protein expression, intestinal barrier function, inflammatory response, and TLR4 expression.ResultsPreterm infants with NEC had significantly lower 25(OH)D levels than those without NEC and healthy subjects. VDR expression was suppressed, whereas TLR4 expression was elevated in the NEC intestine. Vitamin D may increase the survival rate, alleviate structure damage, and preserve intestinal barrier function. These were achieved partly through restoration of VDR and suppression of TLR4.ConclusionNEC infants have lower levels of vitamin D. The vitamin D/VDR pathway protects against intestinal injury of NEC partly through suppressing the expression of TLR4.
Assuntos
Enterocolite Necrosante/terapia , Receptores de Calcitriol/metabolismo , Receptor 4 Toll-Like/metabolismo , Vitamina D/uso terapêutico , Animais , Apoptose , Modelos Animais de Doenças , Enterocolite Necrosante/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Mucosa Intestinal/metabolismo , Intestinos/fisiopatologia , Masculino , Permeabilidade , Ratos , Ratos Wistar , Transdução de SinaisRESUMO
BACKGROUND: Vitamin D deficiency is common in patients with inflammatory bowel diseases. The vitamin D receptor (VDR) is a nuclear hormone receptor mediating the activity of vitamin D hormone. Our previous studies showed that intestinal epithelial VDR signaling inhibits colitis by protecting the mucosal epithelial barrier, and this activity is independent of non-epithelial immune VDR actions. Interleukin (IL)-10-deficient mouse is a chronic colitis model that develops colitis due to aberrant immune responses. Here we used IL-10 null (IL-10KO) model to assess the anti-colitic activity of epithelial VDR in the setting of an aberrant immune system. METHODS: We crossed IL-10KO mice with villin promoter-driven human (h) VDR transgenic (Tg) mice to generate IL-10KO mice that carry the hVDR transgene in intestinal epithelial cells (IL-10KO/Tg). IL-10KO and IL-10KO/Tg littermates were studied in parallel and followed for up to 25 weeks. RESULTS: By 25 weeks of age, accumulatively 79 % IL-10KO mice developed prolapse, whereas only 40 % IL-10KO/Tg mice did so (P < 0.001). Compared with IL-10KO mice, IL-10KO/Tg littermates showed markedly reduced mucosal inflammation in both small and large intestines, manifested by attenuation in immune cell infiltration and histological damage and a marked decrease in pro-inflammatory cytokine production. IL-10KO/Tg mice also showed reduced intestinal epithelial cell apoptosis as a result of diminished PUMA induction and caspase 3 activation. CONCLUSION: These observations demonstrate that targeting hVDR expression to intestinal epithelial cells is sufficient to attenuate spontaneous colitis caused by an ill-regulated immune system, confirming a critical role of the epithelial VDR signaling in blocking colitis development.
Assuntos
Células Epiteliais/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/citologia , Receptores de Calcitriol/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Inflamação/patologia , Interleucina-10/genética , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores de Calcitriol/genéticaRESUMO
BACKGROUND: Brain injury in preterm infants potentially disrupts critical structural and functional connective networks in the brain. It is a major cause of neurological sequelae and developmental deficits in preterm infants. Interesting findings suggest that the gut microbiota (GM) and their metabolites contribute to the programming of the central nervous system (CNS) during developmental stages and may exert structural and functional effects throughout the lifespan. AIM: To summarize the existing knowledge of the potential mechanisms related to immune, endocrine, neural, and blood-brain barrier (BBB) mediated by GM and its metabolites in neural development and function. METHODS: We review the recent literature and included 150 articles to summarize the mechanisms through which GM and their metabolites work on the nervous system. Potential health benefits and challenges of relevant treatments are also discussed. RESULTS: This review discusses the direct and indirect ways through which the GM may act on the nervous system. Treatment of preterm brain injury with GM or related derivatives, including probiotics, prebiotics, synbiotics, dietary interventions, and fecal transplants are also included. CONCLUSION: This review summarizes mechanisms underlying microbiota-gut-brain axis and novel therapeutic opportunities for neurological sequelae in preterm infants. Optimizing the initial colonization and microbiota development in preterm infants may represent a novel therapy to promote brain development and reduce long-term sequelae.
Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Lactente , Recém-Nascido , Humanos , Eixo Encéfalo-Intestino , Recém-Nascido Prematuro , Microbioma Gastrointestinal/fisiologia , Lesões Encefálicas/terapia , EncéfaloRESUMO
Necrotizing enterocolitis (NEC) is one of the most common acute gastrointestinal diseases in preterm infants. Recent studies have found that NEC is not only caused by changes in the intestinal environment but also by the failure of multiple systems and organs, including the liver. The accumulation of bile acids (BAs) in the ileum and the disorder of ileal BA transporters are related to the ileum injury of NEC. Inflammatory factors such as tumor necrosis factor (TNF)-α and interleukin (IL)-18 secreted by NEC also play an important role in regulating intrahepatic BA transporters. As an important link connecting the liver and intestinal circulation, the bile acid metabolic pathway plays an important role in the regulation of intestinal microbiota, cell proliferation, and barrier protection. In this review, we focus on how bile acids explore the dynamic changes of bile acid metabolism in necrotizing enterocolitis and the potential therapeutic value of targeting the bile acid signaling pathways.
Assuntos
Enterocolite Necrosante , Recém-Nascido Prematuro , Recém-Nascido , Humanos , Ácidos e Sais Biliares/metabolismo , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/patologia , Íleo/metabolismo , Intestinos/patologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Assuntos
Enterocolite Necrosante , Leite Humano , Lactente , Animais , Recém-Nascido , Humanos , Leite Humano/química , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/prevenção & controle , Intestinos , Proliferação de Células , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Oligossacarídeos/análiseRESUMO
Vascular diseases, a leading cause of death in human, are strongly associated with pathological damage to blood vessels. The selenoprotein (Sel) have been reported to play important roles in vascular disease. However, the role of SelO in vascular disease has not been conclusively investigated. The present experiment was to investigate the regulatory mechanism of the effect of SelO on the permeability of vascular endothelial. The H.E staining, FITC-Dextran staining, Dil-AC-LDL staining and FITC-WGA staining showed that vascular structure was damaged, and intercellular junctions were disrupted with selenium (Se)-deficient. Immunohistochemistry, qPCR and Western blot revealed decreased expression of the adhesion plaque proteins vinculin, talin and paxillin, decreased expression of the vascular connectivity effector molecules connexin, claudin-1 and E-cadherin and increased expression of JAM-A and N-cadherin, as well as decreased expression of the ZO-1 signaling pathways ZO-1, Rock, rhoGEF, cingulin and MLC-2. In a screening of 24 Sel present in mice, SelO showed the most pronounced changes in vascular tissues, and a possible association between SelO and vascular intercellular junction effectors was determined using IBM SPSS Statistics 25. Silencing of SelO, vascular endothelial intercellular junction adverse effects present. The regulatory relationship between SelO and vascular endothelial intercellular junctions was determined. The results showed that Se deficiency lead to increased vascular endothelial permeability and vascular tissue damage by decreasing SelO expression, suggesting a possible role for SelO in regulating vascular endothelial permeability.
Assuntos
Selênio , Doenças Vasculares , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Selênio/metabolismo , Doenças Vasculares/patologia , Permeabilidade , Selenoproteínas/genética , Selenoproteínas/metabolismoRESUMO
Zinc (Zn) is an important trace element; it is involved in the regulation and maintenance of many physiological functions in organisms and has anti-inflammatory and antioxidant properties. Chronic gastritis is closely associated with damage to the gastric mucosa, which is detrimental to the health of humans and animals. There are few studies on the effects of zinc on, for example, gastric mucosal damage, oxidative stress, inflammation and cell death in mice. Therefore, we established in vivo and in vitro models of inflammatory injury and investigated the effects of zinc supplementation in C57BL/6 mice and Ges-1 cells and examined the expression of factors associated with oxidative stress, inflammation and cell death. In this study, the results of in vivo and in vitro experiments showed that reactive oxygen species (ROS) levels increased after sodium salicylate exposure. Malondialdehyde levels increased, the activity of the antioxidant enzymes catalase and superoxide dismutase decreased, and the activity of glutathione decreased. The NF-κB signaling pathway was activated, the levels of proinflammatory factors (TNF-α, IL-1ß, and IL-6) increased, and the expression of cell death-related factors (Bax, Bcl-2, Caspase3, Caspase7, Caspase9, RIP1, RIP3, and MLKL) increased. Zinc supplementation attenuated the level of oxidative stress and reduced the level of inflammation and cell death. Our study indicated that sodium salicylate induced the production of large amounts of reactive oxygen species and activated the NF-κB pathway, leading to inflammatory damage and cell death in the mouse stomach. Zinc supplementation modulated the ROS/NF-κB pathway, reduced the level of oxidative stress, and attenuated inflammation and cell death in the mouse stomach and Ges-1 cells.
Assuntos
Suplementos Nutricionais , Gastrite , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Zinco , Animais , Humanos , Masculino , Camundongos , Antioxidantes/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Gastrite/metabolismo , Gastrite/tratamento farmacológico , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , NF-kappa B/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Zinco/farmacologiaRESUMO
Green tea polyphenols (GTP), an important phytochemical in the daily human diet, bind to various cellular receptors and exert anti-inflammatory and antioxidant benefits. The environmental contaminant tetrabromobisphenol A (TBBPA) enters the digestive system through multiple pathways, resulting in oxidative stress (OS), gastroenteritis, and mucosal injury. The aim of this study was to explore the molecular mechanisms of TBBPA-induced gastritis in mice treated with GTP in vivo and in an in vitro model. The results showed that exposure to TBBPA increased reactive oxygen species (ROS) levels, activated oxidative stress (OS) induced endoplasmic reticulum stress (ERS), and the expression of endoplasmic reticulum stress-related factors (e.g., GRP78, PERK, IRE-1, ATF-6, etc.) increased. The inflammatory pathway NF-κB was activated, and the pro-inflammatory factors TNF-α, IL-1ß, and IL-6 increased, while triggering a cascade reaction mediated by caspase-3. However, the addition of GTP could inhibit OS, restore the balance of endoplasmic reticulum homeostasis, and improve the inflammatory infiltration and apoptosis of gastric mucosal epithelial cells. Therefore, GTP alleviated ERS, reduced inflammation and apoptosis, and restored the gastric mucosal barrier by alleviating TBBPA-induced OS in mouse gastric tissues and GES-1 cells. This provides basic information for exploring the antioxidant mechanism of GTP and further investigating the toxic effects of TBBPA on mouse gastric mucosa.
Assuntos
Fator 6 Ativador da Transcrição , Apoptose , Chaperona BiP do Retículo Endoplasmático , Gastrite , Bifenil Polibromatos , Polifenóis , Espécies Reativas de Oxigênio , Chá , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Polifenóis/farmacologia , Apoptose/efeitos dos fármacos , Chá/química , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Gastrite/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Brain injury, a common complication in preterm infants, includes the destruction of the key structural and functional connections of the brain and causes neurodevelopmental disorders; it has high morbidity and mortality rates. The exact mechanism underlying brain injury in preterm infants is unclear. Intestinal flora plays a vital role in brain development and the maturation of the immune system in infants; however, detailed understanding of the gut microbiota-metabolite-brain axis in preterm infants is lacking. In this review, we summarise the key mechanisms by which the intestinal microbiota contribute to neurodevelopment and brain injury in preterm infants, with special emphasis on the influence of microorganisms and their metabolites on the regulation of neurocognitive development and neurodevelopmental risks related to preterm birth, infection and neonatal necrotising enterocolitis (NEC). This review provides support for the development and application of novel therapeutic strategies, including probiotics, prebiotics, synbiotics, and faecal bacteria transplantation targeting at brain injury in preterm infants.
Assuntos
Lesões Encefálicas , Microbiota , Nascimento Prematuro , Probióticos , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Probióticos/uso terapêutico , Lesões Encefálicas/etiologia , EncéfaloRESUMO
OBJECTIVE: The suitability of in situ cast fixation for treating Gartland IIA humeral supracondylar fractures has remained controversial due to concerns regarding loss of elbow flexion. This study aimed to assess the instant loss of elbow flexion after Gartland IIA humeral supracondylar fractures based on the relationship between the anterior marginal line of the humerus and capitellum in the lateral view. METHODS: This simulation study was conducted with normal radiographs using Adobe Photoshop 14.0, followed by verification using clinical cases. Standard lateral views of normal elbows of children were collected from January 2008 to February 2020. Adobe Photoshop was used to simulate Gartland IIA supracondylar fractures with different degrees of angulation in the sagittal plane. A formula was deduced to assess flexion loss, and this method was verified in three cases. The data were grouped by age, and the relationship between elbow flexion loss and age, as well as the angulation of the fracture, was analyzed using a one-way or multivariate ANOVA. RESULTS: There was a flexion loss of 19° (11-30°) when the anterior margin line of the humerus was tangential to the capitellum. This loss increased with age at injury (r = 0.731, P = 0.000). Moreover, the difference in angulation in the sagittal plane also influenced the extent of elbow flexion loss (r = -0.739, P = 0.000). The more horizontal the fracture line in the lateral view, the greater the loss of elbow flexion. CONCLUSION: Instant elbow flexion loss after Gartland IIA humeral supracondylar fractures increases with age at the time of injury and decreases with angulation in the sagittal plane. When the anterior margin of the humerus is tangential to the capitellum, there will be an average loss of 19° in elbow flexion. These findings provide a quantitative reference for clinical decision-making in the treatment of Gartland IIA supracondylar fractures.