Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Microencapsul ; 38(7-8): 559-571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34637365

RESUMO

AIM: The present study aimed to develop liposomal Rhein by employing a hydrophobic ion-pairing technique (HIP) for improved pancreatitis therapy. METHODS: F127 modified liposomal Rhein (F127-RPC-Lip) was prepared using a two-step process consisting of complexation first, followed by a film-ultrasonic dispersion step. The drug-phospholipid interaction was characterised by FT-IR and P-XRD. Particle size and morphology were investigated using DLS and TEM, respectively. Biodistribution and therapeutic efficacy of F127-RPC-Lip were evaluated in a rat model of acute pancreatitis. RESULTS: F127-RPC-Lip achieved efficient drug encapsulation after complexation with lipids through non-covalent interactions and had an average hydrodynamic diameter of about 141 nm. F127-RPC-Lip demonstrated slower drug release (55.90 ± 3.60%, w/w) than Rhein solution (90.27 ± 5.11%) within 24 h. Compared with Rhein, F127-RPC-Lip exhibited prolonged systemic circulation time, superior drug distribution, and attenuated injury in the pancreas of rats post-injection. CONCLUSIONS: HIP-assembled liposomes are a promising strategy for Rhein in treating pancreatitis.


Assuntos
Lipossomos , Pancreatite , Doença Aguda , Animais , Antraquinonas , Pancreatite/tratamento farmacológico , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual
2.
Pharmazie ; 76(5): 180-188, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964990

RESUMO

Nanoparticles (NPs) promise to address current limitations for treating acute pancreatitis (AP) via inflammatory cell-mediated sequestration. However, very few studies have explored the influence of NP size on their behavior in different stages of AP. The present work investigated the biodistribution of IR780 loaded mesoporous silica nanoparticles (MSNs) with sizes of 60, 150 or 300 nm after intravenous administration to rats of mild AP (MAP) or severe AP (SAP). Four hours after administration, MSN150 was present to a much greater extent in the pancreas than MSN60 or MSN300, irrespective of disease severity. MSN150 was present to a lower extent in pancreas, intestine and ascites in SAP than MAP rats, indicating weaker passive targeting in SAP rats. This may reflect greater blood loss and slower blood flow in SAP. These findings may guide the rational engineering of NPs with respect to particle size and disease severity for AP therapy.


Assuntos
Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Pancreatite/tratamento farmacológico , Tamanho da Partícula , Dióxido de Silício/administração & dosagem , Doença Aguda , Administração Intravenosa , Animais , Masculino , Pâncreas/patologia , Pancreatite/patologia , Ratos , Ratos Wistar
3.
J Proteome Res ; 15(5): 1506-14, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26983019

RESUMO

PRDX3 is a mitochondrial peroxide reductase that regulates cellular redox state. It has been reported that PRDX3 is overexpressed in liver cancer, but how PRDX3 is involved in hepatocellular carcinoma (HCC) tumorigenesis and progression has not been well-characterized. In the present study, we established two stable cell lines by overexpressing or knocking down PRDX3 in HepG2 cells. We found that PRDX3 silencing decreased the growth rate of HepG2 cells and increased mtDNA oxidation. Quantitative proteomics identified 475 differentially expressed proteins between the PRDX3 knockdown and the control cells. These proteins were involved in antioxidant activity, angiogenesis, cell adhesion, cell growth, ATP synthesis, nucleic acid binding, redox, and chaperones. PRDX3 knockdown led to the down-regulation of ATP synthases and the decreased cellular ATP level, contributing to the slow-down of cell growth. Furthermore, silencing PRDX3 enhanced invasive properties of HepG2 cells via TIMP-1 down-regulation and the increased ECM degradation. Taken together, our results indicate that PRDX3 promotes HCC growth and mediates cell migration and invasiveness and is a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Peroxirredoxina III/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Inativação Gênica , Células Hep G2 , Humanos , Invasividade Neoplásica , Peroxirredoxina III/genética
5.
Mol Plant Microbe Interact ; 28(4): 408-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25390189

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play important roles in the stress response in both plants and microorganisms. The mycorrhizal symbiosis established between arbuscular mycorrhizal fungi (AMF) and plants can enhance plant drought tolerance, which might be closely related to the fungal MAPK response and the molecular dialogue between fungal and soybean MAPK cascades. To verify the above hypothesis, germinal Glomus intraradices (syn. Rhizophagus irregularis) spores and potted experiments were conducted. The results showed that AMF GiMAPKs with high homology with MAPKs from Saccharomyces cerevisiae had different gene expression patterns under different conditions (nitrogen starvation, abscisic acid treatment, and drought). Drought stress upregulated the levels of fungi and soybean MAPK transcripts in mycorrhizal soybean roots, indicating the possibility of a molecular dialogue between the two symbiotic sides of symbiosis and suggesting that they might cooperate to regulate the mycorrhizal soybean drought-stress response. Meanwhile, the changes in hydrogen peroxide, soluble sugar, and proline levels in mycorrhizal soybean as well as in the accelerated exchange of carbon and nitrogen in the symbionts were contributable to drought adaptation of the host plants. Thus, it can be preliminarily inferred that the interactions of MAPK signals on both sides, symbiotic fungus and plant, might regulate the response of symbiosis and, thus, improve the resistance of mycorrhizal soybean to drought stress.


Assuntos
Adaptação Fisiológica/genética , Glycine max/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Micorrizas/genética , Proteínas de Soja/genética , Simbiose/genética , Adaptação Fisiológica/fisiologia , Sequência de Aminoácidos , Secas , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Micorrizas/metabolismo , Alinhamento de Sequência , Transdução de Sinais/genética , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia
6.
Sci Rep ; 14(1): 8627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622182

RESUMO

A bridge disease identification approach based on an enhanced YOLO v3 algorithm is suggested to increase the accuracy of apparent disease detection of concrete bridges under complex backgrounds. First, the YOLO v3 network structure is enhanced to better accommodate the dense distribution and large variation of disease scale characteristics, and the detection layer incorporates the squeeze and excitation (SE) networks attention mechanism module and spatial pyramid pooling module to strengthen the semantic feature extraction ability. Secondly, CIoU with better localization ability is selected as the loss function for training. Finally, the K-means algorithm is used for anchor frame clustering on the bridge surface disease defects dataset. 1363 datasets containing exposed reinforcement, spalling, and water erosion damage of bridges are produced, and network training is done after manual labelling and data improvement in order to test the efficacy of the algorithm described in this paper. According to the trial results, the YOLO v3 model has enhanced more than the original model in terms of precision rate, recall rate, Average Precision (AP), and other indicators. Its overall mean Average Precision (mAP) value has also grown by 5.5%. With the RTX2080Ti graphics card, the detection frame rate increases to 84 Frames Per Second, enabling more precise and real-time bridge illness detection.

7.
J Hazard Mater ; 465: 133372, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159519

RESUMO

Microplastic (MP) pollution of agricultural soils has caused global alarm over its widespread distribution and potential risks to terrestrial ecosystems and human health. This study assessed human health based on exposure to soil MPs through a comprehensive investigation of the factors influencing their occurrence and spatial distribution on Hainan Island, South China. The results showed that the abundance of soil MPs was 1128.6 ± 391.5 items·kg-1, whereas the normalized abundance of MPs based on using a power-law function was 19,261.4 items·kg-1. Regarding the extent of population exposure to agricultural soil MPs, the average daily exposure dose (pADD) model revealed that using mass as an indicator to assess the health risks associated with MP intake is more reliable than using abundance. However, abundance-based exposure assessments are also relevant because MPs with smaller particle sizes are more harmful to human health. Moreover, for adults, the normalized pADD values based on abundance and mass were 1.68E-02 item MPs·kg BW-1·d-1 and 7.23E-02 mg MPs·kg BW-1·d-1, respectively. Although the multidimensionality of MPs should be further aligned and quantified, the preliminary findings of this study contribute to the development of human health risk assessment frameworks for soil MPs.


Assuntos
Plásticos , Solo , Adulto , Humanos , Microplásticos , Ecossistema , Agricultura
8.
Chemosphere ; 356: 141962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614399

RESUMO

The impact of shale gas extraction on surrounding environmental media remains unclear. In this study, the current state of contamination by polycyclic aromatic hydrocarbons (PAHs), which are high-frequency contaminants of shale gas, was investigated in the soil surrounding emerging shale gas development sites. The source analysis of PAHs was conducted in the soils of shale gas extraction sites using positive matrix factorization (PMF). The health risk assessment (HRA) was calculated for ingestion, dermal contact, and inhalation exposures, and the priority sources of PAHs in the soil were jointly identified by PMF and HRA to refine the contribution level of different individual PAHs to the carcinogenic risk. The results showed that both Sichuan and Chongqing mining site soils were contaminated to different degrees. Shale gas extraction has an impact on the surrounding soil, and the highest contributing source of PAHs in the mining site soil of Sichuan was anthropogenic activity, accounting for 31.6%, whereas that in the mining site soil of Chongqing was biomass combustion and mixed automobile combustion, accounting for 35.9%. At the two mining sites in Sichuan and Chongqing, none of the three exposure pathways (ingestion, dermal contact, and inhalation) posed a carcinogenic risk to children, whereas the dermal exposure pathway posed a carcinogenic risk to adults. Health risk assessments based on specific source assignments indicate that when managing soil pollution, the control of fossil fuel combustion and vehicular emissions should be prioritized.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Medição de Risco , Humanos , Monitoramento Ambiental/métodos , Solo/química , China , Mineração , Gás Natural/análise
9.
Carbohydr Polym ; 315: 120941, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230642

RESUMO

During curdlan production by Agrobacterium sp., the secreted exopolysaccharide (EPS) gradually encapsulated Agrobacterium sp., accompanied by cell aggregation, resulted in inhibited substrate uptake and curdlan synthesis. To relieve the EPS encapsulation effect, the shake-flask culture medium was quantitatively supplemented with 2 % to 10 % endo-ß-1,3-glucanase (BGN), while obtaining curdlan with a decreased weight-average molecular weight ranging from 18.99 × 104 Da to 3.20 × 104 Da. In a 7-L bioreactor, the 4 % BGN supplement substantially attenuated the EPS encapsulation, resulting in increased glucose consumption and curdlan yield to 66.41 g/L and 34.53 g/L after fermentation of 108 h, which improved 43 % and 67 %, respectively compared with the control. The disruption of EPS encapsulation with BGN treatment accelerated the regeneration of ATP and UTP, resulting in sufficient uridine diphosphate glucose for curdlan synthesis. The upregulation of related genes at the transcription level reveals that the respiratory metabolic intensity, the energy regeneration efficiency, and the curdlan synthetase activity were enhanced. This study presents a simple and novel strategy of relieving the effects of EPS encapsulation on the metabolism of Agrobacterium sp. for the high-yield and value-added production of curdlan, which could be potentially applied in producing other EPSs.


Assuntos
Agrobacterium , beta-Glucanas , Agrobacterium/genética , Agrobacterium/metabolismo , beta-Glucanas/química , Transporte Biológico , Fermentação
10.
Front Plant Sci ; 14: 1101074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814755

RESUMO

Background: The nitrate regulates soybean nodulation and nitrogen fixation systemically, mainly in inhibiting nodule growth and reducing nodule nitrogenase activity, but the reason for its inhibition is still inconclusive. Methods: The systemic effect of nitrate on nodule structure, function, and carbon distribution in soybean (Glycine max (L.) Merr.) was studied in a dual-root growth system, with both sides inoculated with rhizobia and only one side subjected to nitrate treatment for four days. The non-nodulating side was genetically devoid of the ability to form nodules. Nutrient solutions with nitrogen concentrations of 0, 100, and 200 mg L-1 were applied as KNO3 to the non-nodulating side, while the nodulating side received a nitrogen-free nutrient solution. Carbon partitioning in roots and nodules was monitored using 13C-labelled CO2. Other nodule responses were measured via the estimation of the nitrogenase activity and the microscopic observation of nodule ultrastructure. Results: Elevated concentrations of nitrate applied on the non-nodulating side caused a decrease in the number of bacteroids, fusion of symbiosomes, enlargement of the peribacteroid spaces, and onset of degradation of poly-ß-hydroxybutyrate granules, which is a form of carbon storage in bacteroids. These microscopic observations were associated with a strong decrease in the nitrogenase activity of nodules. Furthermore, our data demonstrate that the assimilated carbon is more likely to be allocated to the non-nodulating roots, as follows from the competition for carbon between the symbiotic and non-symbiotic sides of the dual-root system. Conclusion: We propose that there is no carbon competition between roots and nodules when they are indirectly supplied with nitrate, and that the reduction of carbon fluxes to nodules and roots on the nodulating side is the mechanism by which the plant systemically suppresses nodulation under nitrogen-replete conditions.

11.
Front Plant Sci ; 13: 962460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247649

RESUMO

Arbuscular mycorrhizal fungi (AMF) are known to improve plant stress tolerance by regulating proline accumulation, and nitric oxide (NO) plays an important signaling role in proline metabolism. Environmental nitrogen (N) affects AMF colonization and its contribution to host plants resistance to stress conditions. However, the relationship between proline metabolism and NO in mycorrhizal rice and the effect of N application on symbiont proline metabolism under low temperature have not been established. Pot culture experiments with different temperature, N and exogenous NO donor treatments were conducted with non-mycorrhizal and mycorrhizal rice. The results showed that AMF enhanced rice proline accumulation under low-temperature stress and decreased glutamate (Glu) and ornithine (Orn) concentrations significantly. In comparison with non-mycorrhizal rice, AMF colonization significantly decreased the Glu concentration, but had little effect on the Orn concentration under low-temperature stress, accompanied by increasing expression of OsP5CS2, OsOAT and OsProDH1. Exogenous application of NO increased proline concentration both under normal and low temperature, which exhibited a higher increase in mycorrhizal rice. NO also triggered the expression of key genes in the Glu and Orn pathways of proline synthesis as well as proline degradation. Higher N application decreased the AMF colonization, and AMF showed greater promotion of proline metabolism at low N levels under low temperature stress by regulating the Glu synthetic pathway. Meanwhile, AMF increased rice nitrate reductase (NR) and nitric oxide synthase (NOS) activities and then enhanced NO accumulation under low N levels. Consequently, it could be hypothesized that one of the mechanisms by which AMF improves plant resistance to low-temperature stress is the accumulation of proline via enhancement of the Glu and Orn synthetic pathways, with the involvement of the signaling molecule NO. However, the contribution of AMF to rice proline accumulation under low-temperature stress was attenuated by high N application.

12.
Plant Sci ; 314: 111104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895541

RESUMO

Low temperature during the vegetative stage depresses rice tillering. Zinc (Zn) can promote rice tiller growth and improve plant resistance to abiotic stress. Consequently, Zn application after low temperature might be an effective approach to promote rice tiller recovery. A water culture experiment with treatments of two temperatures (12 °C and 20 °C) and three Zn concentrations (0.08 µM, 0.15 µM and 0.31 µM ZnSO4·7H2O) was conducted to determine by analyzing rice tiller growth, nutrient absorption and hormones metabolism. The results showed that low temperature reduced rice tiller numbers and leaf age, decreased as well. Increasing Zn application after low temperature could enhance not only rice tiller growth rate but also N metabolism and tillering recovery, and correlation analysis showed a significantly positive correlation between tiller increment and Zn and N accumulation after low temperature. In addition, higher cytokinin (CTK)/auxin (IAA) ratio was maintained by promoted synthesis of CTK and IAA as well as enhanced IAA transportation from tiller buds to other parts with increased Zn application after cold stress, which resulted in accelerated germination and growth of tiller buds. These results highlighted that Zn application after low temperature promoted rice tiller recovery by increasing N and Zn accumulation and maintaining hormones balance.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Temperatura Baixa/efeitos adversos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Zinco/metabolismo
13.
J Control Release ; 341: 31-43, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793919

RESUMO

Oral protein drug delivery using nano-based systems remains challenging, as contradictory surface properties are required for efficient navigation through the intestinal mucus and epithelium barriers. Therefore, new nanoplatforms with tunable surface properties in vivo are urgently needed. Inspired by the slightly acidic microclimate of the jejunal epithelial surface, we report a novel epithelium microenvironment-adaptive nanoplatform that undergoes a hydrophilicity-hydrophobicity transition at the epithelial surface. First, we synthesized and characterized a biodegradable copolymer consisting of PEG and PLGA building blocks linked by a hydrazone bond (PLGA-Hyd-PEG) to fabricate the pH-sensitive core-shell architecture of an oral insulin system. Then we loaded the system as a freeze-dried powder into enteric-coated capsules. PLGA-Hyd-PEG nanoparticles showed excellent drug protection and rapid mucus penetration owing to the high stability of the PEG coating in jejunal fluid. In the acidic microenvironment of the jejunal epithelial surface (pH ~5.5), PEG was rapidly cleaved and the hydrazone bond was hydrolyzed, converting the nanoparticle surface from hydrophilic to hydrophobic, thereby facilitating internalization into cells. Pharmacodynamic studies showed that PLGA-Hyd-PEG nanoparticles resulted in significant decrease in blood glucose level after intrajejunal administration in both normal and diabetic rats relative to control nanoparticles. In addition, enteric-coated capsules containing PLGA-Hyd-PEG nanoparticles reduced blood glucose by 35% for up to 10 h after oral administration to diabetic rats. Our findings provide a new strategy for regulating the surface properties of nanoparticles for efficient oral drug delivery.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Epitélio , Insulina , Nanopartículas/química , Polímeros/química , Ratos
14.
Int J Biol Macromol ; 205: 193-202, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35181324

RESUMO

Curdlan is a neutral, water-insoluble, unbranched, linear ß-(1,3)-glucan. This study explored the roles of exoR and exoX in curdlan biosynthesis in Agrobacterium sp. ATCC 31749. The microcapsule biosynthesis of ΔexoR strain was reduced, and the motility of this strain increased remarkably compared with the wild-type (WT) strain during the cell growth phase. The curdlan yields of ΔexoR and ΔexoX strains enhanced by 19% and 17%, and the glucose utilization increased by 12% and 11%, respectively, compared with the WT strain during batch fermentation. By contrast, the curdlan yields of exoR and exoX overexpression strains decreased by 28% and 33%, respectively. The gel strength produced by ΔexoR and exoX overexpression strains decreased compared with the WT strain. RT-qPCR analysis at the transcriptional level revealed that key genes in exopolysaccharide synthesis and central metabolic pathways were up-regulated in ΔexoX and ΔexoR strains during gel production. Metabolomics analysis of ΔexoR and ΔexoX mutants proved the rates of central metabolic and electron transport chain were accelerated.


Assuntos
Agrobacterium , beta-Glucanas , Agrobacterium/genética , Agrobacterium/metabolismo , Fermentação , beta-Glucanas/metabolismo
15.
Drug Deliv ; 28(1): 1890-1902, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34519225

RESUMO

Although Fraxinellone (Frax) isolated from Dictamnus albus L. possessed excellent anti-hepatic fibrosis activity, oral administration of Frax suffered from the inefficient therapeutic outcome in vivo due to negligible oral absorption. At present, the oral formulation of Frax is rarely exploited. For rational formulation design, we evaluated preabsorption risks of Frax and found that Frax was rather stable while poorly dissolved in the gastrointestinal tract (78.88 µg/mL), which predominantly limited its oral absorption. Further solubility test revealed the outstanding capacity of cyclodextrin derivatives (CDs) to solubilize Frax (6.8-12.8 mg/mL). This led us to study the inclusion complexes of Frax with a series of CDs and holistically explore their drug delivery performance. Characterization techniques involving 1H-NMR, FT-IR, DSC, PXRD, and molecular docking confirmed the most stable binding interactions when Frax complexed with 6-O-α-D-maltosyl-ß-cyclodextrin (G2-ß-CD-Frax). Notably, G2-ß-CD-Frax exhibited the highest solubilizing capacity, fast dissolution rate, and superior Caco-2 cell internalization with no obvious toxicity. Pharmacokinetic studies demonstrated markedly higher oral bioavailability of G2-ß-CD-Frax (5.8-fold that of free drug) than other Frax-CDs. Further, long-term administration of G2-ß-CD-Frax (5 mg/kg) efficiently inhibited CCl4-induced hepatic fibrosis in the mouse without inducing any toxicity. Our results will inspire the continued advancement of optimal oral Frax formulations for anti-fibrotic therapy.


Assuntos
Benzofuranos/farmacologia , Ciclodextrinas/química , Composição de Medicamentos/métodos , Cirrose Hepática/tratamento farmacológico , Maltose/análogos & derivados , Animais , Animais não Endogâmicos , Benzofuranos/administração & dosagem , Benzofuranos/farmacocinética , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Masculino , Maltose/química , Camundongos , Ratos , Ratos Wistar , Solubilidade
16.
Front Plant Sci ; 12: 645806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046048

RESUMO

Magnesium (Mg) plays a crucial role in rice yield. Heilongjiang Province is the main rice-producing region of China, playing an important role in guaranteeing China's and the world's grain security. However, rarely Mg fertilization is applied in this province. Soil Mg status of main rice-producing areas in Heilongjiang Province was investigated and Mg fertilizer experiments were conducted aiming to provide fertilizer recommendation in this region. A total of 358 soil samples from the 0-20 cm and 20-40 cm soil layer from the main rice-producing areas of Heilongjiang Province were collected to analyze soil exchangeable Mg (ex-Mg) and relative chemical properties. Meanwhile, field experiments of soil and foliar Mg application were performed in 2017-2019 to identify the effect of this nutrient on rice yield. The results showed that the ex-Mg concentration in the 0-20 cm and 20-40 cm soil layer was 282 mg kg-1 and 243 mg kg-1, respectively. Moreover, ex-Mg ranged on the abundant and exceptionally abundant level accounted for 75% in 0-20 cm and 55.3% in 20-40 cm. The ex-Mg concentration in the upper soil layer was higher than in the lower soil layer and varied depending on regions, which the west part of Heilongjiang Province showed the highest concentration in both soil layers. Correlation analysis showed that there had a significant (P < 0.05) linear relationship between ex-Mg and pH, CEC, ex-K, Ca, K/Mg, and Ca/Mg. Meanwhile, the results of path coefficients demonstrated that pH, CEC, and Ca/Mg had the most direct effect on ex-Mg concentration among these above factors. Soil Mg application had little effect on rice yield, which might be related to the soil Mg concentration and availability, and root uptake activity. Foliar Mg application increased rice yield by 8.45% (P < 0.05) compared to without Mg treatment, increased 1,000-grain weight by 2.62% (P < 0.05), and spikelet number per panicle by 4.19% (P < 0.05). In general, the paddy soil ex-Mg concentration in Heilongjiang Province was abundant. Soil-applied Mg played little role in rice yield in ex-Mg abundant regions, while foliar application increased rice yields significantly via increasing 1,000-grain weight and spikelet number per panicle.

17.
Free Radic Biol Med ; 99: 54-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480846

RESUMO

Isoform 1 of uracil-DNA glycosylase (UNG1) is the major protein for initiating base-excision repair in mitochondria and is in close proximity to the respiratory chain that generates reactive oxygen species (ROS). Effects of ROS on the stability of UNG1 have not been well characterized. In the present study, we found that overexpression of UNG1 enhanced cells' resistance to oxidative stress and protected mitochondrial DNA (mtDNA) from oxidation. Proteomics analysis showed that UNG1 bound to eight proteins in the mitochondria, including PAPSS2, CD70 antigen, and AGR2 under normal growth conditions, whereas UNG1 mainly bound to Peroxiredoxin 3 (PRDX3) via a disulfide linkage under oxidative stress. We further demonstrated that the UNG1-PRDX3 interaction protected UNG1 from ROS-mediated degradation and prevented mtDNA oxidation. Moreover, our results show that ROS-mediated UNG1 degradation was Lon protease 1 (LonP1)-dependent and mitochondrial UNG1 degradation was aggravated by knockdown of PRDX3 expression. Taken together, these results reveal a novel function of UNG1 in the recruitment of PRDX3 to mtDNA under oxidative stress, enabling protection of UNG1 and UNG1-bound DNA from ROS damage and enhancing cell resistance to oxidative stress.


Assuntos
Reparo do DNA , DNA Mitocondrial/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Peroxirredoxina III/genética , Uracila-DNA Glicosidase/genética , Células A549 , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismo , Dano ao DNA , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mucoproteínas , Proteínas Oncogênicas , Oxirredução , Estresse Oxidativo , Peroxirredoxina III/antagonistas & inibidores , Peroxirredoxina III/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Uracila-DNA Glicosidase/metabolismo
18.
Sci Rep ; 6: 26499, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216119

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common malignant cancer in the world. The sensitivity of alpha-fetoprotein (AFP) is still inadequate for HCC diagnosis. Tissue interstitial fluid (TIF), as the liquid microenvironment of cancer cells, was used for biomarker discovery in this study. Paired tumor and nontumor TIF samples from 6 HBV-HCC patients were analyzed by a proteomic technique named iTRAQ (isobaric tag for relative and absolute quantitation). Totally, 241 up-regulated proteins (ratio ≥ 1.3, p < 0.05) and 288 down-regulated proteins (ratio ≤ -1.3, p < 0.05) in tumor TIF were identified. Interestingly, proteins in S100 family were found remarkably up-regulated in tumor TIF. One dramatically up-regulated protein S100A9 (ratio = 19) was further validated by ELISA in sera from liver cirrhosis (LC, HCC high risk population) and HCC patients (n = 47 for each group). The level of this protein was significantly elevated in HCC sera compared with LC (p < 0.0001). The area under the curve of this protein to distinguish HCC from LC was 0.83, with sensitivity of 91% (higher than AFP) and specificity of 66%. This result demonstrated the potential of S100A9 as a candidate HCC diagnostic biomarker. And TIF was a kind of promising material to identify candidate tumor biomarkers that could be detected in serum.


Assuntos
Calgranulina B/sangue , Carcinoma Hepatocelular/diagnóstico , Líquido Extracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteômica/métodos , Regulação para Cima , Adulto , Idoso , Área Sob a Curva , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/sangue , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
19.
Ying Yong Sheng Tai Xue Bao ; 25(3): 903-10, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24984513

RESUMO

The arbuscular mycorrhiza (AM) is the symbiont formed by the host plant and the arbuscular mycorrhizal fungi (AMF). The transfer and metabolism of C and N in the symbiosis plays an important role in keeping nutrient balance and resource reallocation between the host plant and the fungi. The carbohydrates produced by plant photosynthesis are transferred to the fungi, where they are metabolized as materials and energy used for fungal spore germination, mycelium growth and uptake of nitrogen and other nutrients. At the same time, N is transferred and reallocated from the fungi to the host plant, where the final released ammonium is used for plant growth. Accordingly, we reviewed the current progress in C and N transfer and metabolism in the AM symbiosis, and the crosstalk between them as well as some key issues to elucidate the mechanism of the interaction between C and N transport in the symbiosis, so as to provide the theory foundation for the application of AM in sustainable agriculture and ecosystem.


Assuntos
Carbono/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Plantas/microbiologia , Simbiose , Transporte Biológico , Fotossíntese , Desenvolvimento Vegetal , Esporos Fúngicos
20.
Ying Yong Sheng Tai Xue Bao ; 24(3): 861-8, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23755506

RESUMO

Arbuscular mycorrhizal fungi (AMF) can form mutually beneficial relations with more than 80% of vascular plants, and the existence of the symbiote is of significance in promoting the growth and stress tolerance of host plants. AMF can obtain the photosynthate carbohydrates from host plants, and in the meantime, effectively promote the nitrogen (N) uptake by host plants via the absorption of various N sources by mycorrhiza mycelia, resulting in the N exchange at population or community level, the improvement of host plants nutrition and metabolism, and the strengthening of the stress tolerance of host plants. However, there are still in debates in which ways the symbiote absorbs and transfers N and what the mechanisms the N metabolism and translocation from AMF to host plants. This paper reviewed the mechanisms of N metabolism and translocation in the symbiote and the effects of carbon and phosphorous on the N metabolism and translocation. The roles of AMF in the N allocation in host plants and the related ecological significance at community and ecosystem levels were briefly elucidated, and some issues to be further studied on the N metabolism in the symbiote were addressed.


Assuntos
Ecossistema , Micorrizas/metabolismo , Nitrogênio/metabolismo , Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Simbiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa