Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
N Engl J Med ; 375(6): 545-55, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27509102

RESUMO

BACKGROUND: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes. METHODS: The initial assay of mutant α-galactosidase forms that we used to categorize 67 patients with Fabry's disease for randomization to 6 months of double-blind migalastat or placebo (stage 1), followed by open-label migalastat from 6 to 12 months (stage 2) plus an additional year, had certain limitations. Before unblinding, a new, validated assay showed that 50 of the 67 participants had mutant α-galactosidase forms suitable for targeting by migalastat. The primary end point was the percentage of patients who had a response (≥50% reduction in the number of globotriaosylceramide inclusions per kidney interstitial capillary) at 6 months. We assessed safety along with disease substrates and renal, cardiovascular, and patient-reported outcomes. RESULTS: The primary end-point analysis, involving patients with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy, did not show a significant treatment effect: 13 of 32 patients (41%) who received migalastat and 9 of 32 patients (28%) who received placebo had a response at 6 months (P=0.30). Among patients with suitable mutant α-galactosidase who received migalastat for up to 24 months, the annualized changes from baseline in the estimated glomerular filtration rate (GFR) and measured GFR were -0.30±0.66 and -1.51±1.33 ml per minute per 1.73 m(2) of body-surface area, respectively. The left-ventricular-mass index decreased significantly from baseline (-7.7 g per square meter; 95% confidence interval [CI], -15.4 to -0.01), particularly when left ventricular hypertrophy was present (-18.6 g per square meter; 95% CI, -38.2 to 1.0). The severity of diarrhea, reflux, and indigestion decreased. CONCLUSIONS: Among all randomly assigned patients (with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy), the percentage of patients who had a response at 6 months did not differ significantly between the migalastat group and the placebo group. (Funded by Amicus Therapeutics; ClinicalTrials.gov numbers, NCT00925301 [study AT1001-011] and NCT01458119 [study AT1001-041].).


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Rim/química , Triexosilceramidas/análise , alfa-Galactosidase/antagonistas & inibidores , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/uso terapêutico , Adolescente , Adulto , Idoso , Diarreia/tratamento farmacológico , Diarreia/etiologia , Método Duplo-Cego , Doença de Fabry/complicações , Feminino , Taxa de Filtração Glomerular , Ventrículos do Coração/diagnóstico por imagem , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , Triexosilceramidas/urina , Ultrassonografia , Adulto Jovem , alfa-Galactosidase/genética
2.
Mol Ther ; 25(5): 1199-1208, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28341561

RESUMO

Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle. This phase 2a study consisted of an open-label, fixed-treatment sequence that evaluated the effect of single oral doses of 50 mg, 100 mg, 250 mg, or 600 mg duvoglustat HCl on the pharmacokinetics and tissue levels of intravenously infused AA (20 mg/kg) in Pompe patients. AA alone resulted in increases in total GAA activity and protein in plasma compared to baseline. Following co-administration with duvoglustat HCl, total GAA activity and protein in plasma were further increased 1.2- to 2.8-fold compared to AA alone in all 25 Pompe patients; importantly, muscle GAA activity was increased for all co-administration treatments from day 3 biopsy specimens. No duvoglustat-related adverse events or drug-related tolerability issues were identified.


Assuntos
1-Desoxinojirimicina/uso terapêutico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Lisossomos/enzimologia , Músculo Esquelético/efeitos dos fármacos , alfa-Glucosidases/farmacocinética , Administração Oral , Adulto , Esquema de Medicação , Sinergismo Farmacológico , Quimioterapia Combinada , Terapia de Reposição de Enzimas/métodos , Feminino , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Infusões Intravenosas , Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Segurança do Paciente , Resultado do Tratamento , alfa-Glucosidases/sangue
3.
J Med Genet ; 54(4): 288-296, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27834756

RESUMO

BACKGROUND: Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking. METHODS: The main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed. RESULTS: Fifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (-6.6 g/m2 (-11.0 to -2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated. CONCLUSIONS: Migalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations. TRIAL REGISTRATION NUMBER: NCT00925301; Pre-results.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Chaperonas Moleculares/administração & dosagem , alfa-Galactosidase/genética , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/efeitos adversos , Administração Oral , Adolescente , Adulto , Idoso , Terapia de Reposição de Enzimas/efeitos adversos , Doença de Fabry/metabolismo , Doença de Fabry/fisiopatologia , Feminino , Humanos , Lisossomos/genética , Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/efeitos adversos , Resultado do Tratamento
4.
Genet Med ; 19(4): 430-438, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27657681

RESUMO

PURPOSE: Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene. Migalastat, a pharmacological chaperone, binds to specific mutant forms of α-galactosidase A to restore lysosomal activity. METHODS: A pharmacogenetic assay was used to identify the α-galactosidase A mutant forms amenable to migalastat. Six hundred Fabry disease-causing mutations were expressed in HEK-293 (HEK) cells; increases in α-galactosidase A activity were measured by a good laboratory practice (GLP)-validated assay (GLP HEK/Migalastat Amenability Assay). The predictive value of the assay was assessed based on pharmacodynamic responses to migalastat in phase II and III clinical studies. RESULTS: Comparison of the GLP HEK assay results in in vivo white blood cell α-galactosidase A responses to migalastat in male patients showed high sensitivity, specificity, and positive and negative predictive values (≥0.875). GLP HEK assay results were also predictive of decreases in kidney globotriaosylceramide in males and plasma globotriaosylsphingosine in males and females. The clinical study subset of amenable mutations (n = 51) was representative of all 268 amenable mutations identified by the GLP HEK assay. CONCLUSION: The GLP HEK assay is a clinically validated method of identifying male and female Fabry patients for treatment with migalastat.Genet Med 19 4, 430-438.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/genética , Mutação , alfa-Galactosidase/genética , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacologia , Bioensaio , Linhagem Celular , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Doença de Fabry/tratamento farmacológico , Feminino , Células HEK293 , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/enzimologia , Masculino , Valor Preditivo dos Testes , Estudos de Validação como Assunto
5.
Mol Ther ; 23(7): 1169-1181, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25915924

RESUMO

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene that encodes α-galactosidase A and is characterized by pathological accumulation of globotriaosylceramide and globotriaosylsphingosine. Earlier, the authors demonstrated that oral coadministration of the pharmacological chaperone AT1001 (migalastat HCl; 1-deoxygalactonojirimycin HCl) prior to intravenous administration of enzyme replacement therapy improved the pharmacological properties of the enzyme. In this study, the authors investigated the effects of coformulating AT1001 with a proprietary recombinant human α-galactosidase A (ATB100) into a single intravenous formulation. AT1001 increased the physical stability and reduced aggregation of ATB100 at neutral pH in vitro, and increased the potency for ATB100-mediated globotriaosylceramide reduction in cultured Fabry fibroblasts. In Fabry mice, AT1001 coformulation increased the total exposure of active enzyme, and increased ATB100 levels in cardiomyocytes, cardiac vascular endothelial cells, renal distal tubular epithelial cells, and glomerular cells, cell types that do not show substantial uptake with enzyme replacement therapy alone. Notably, AT1001 coformulation also leads to greater tissue globotriaosylceramide reduction when compared with ATB100 alone, which was positively correlated with reductions in plasma globotriaosylsphingosine. Collectively, these data indicate that intravenous administration of ATB100 coformulated with AT1001 may provide an improved therapy for Fabry disease and thus warrants further investigation.


Assuntos
Doença de Fabry/tratamento farmacológico , Chaperonas Moleculares/administração & dosagem , Oligopeptídeos/administração & dosagem , alfa-Galactosidase/administração & dosagem , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Terapia de Reposição de Enzimas , Doença de Fabry/patologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Mutação , Especificidade por Substrato
6.
Science ; 384(6701): 1196-1202, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870301

RESUMO

In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Edição de Genes , Lipossomos , Pulmão , Nanopartículas , Células-Tronco , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Fibrose Cística/terapia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Terapia Genética/métodos , Pulmão/metabolismo , Organoides , Células-Tronco/metabolismo
7.
J Neurosci ; 32(15): 5223-36, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496568

RESUMO

Alterations in the lipid composition of endosomal-lysosomal membranes may constitute an early event in Alzheimer's disease (AD) pathogenesis. In this study, we investigated the possibility that GM2 ganglioside accumulation in a mouse model of Sandhoff disease might be associated with the accumulation of intraneuronal and extracellular proteins commonly observed in AD. Our results show intraneuronal accumulation of amyloid-ß peptide (Aß)-like, α-synuclein-like, and phospho-tau-like immunoreactivity in the brains of ß-hexosaminidase knock-out (HEXB KO) mice. Biochemical and immunohistochemical analyses confirmed that at least some of the intraneuronal Aß-like immunoreactivity (iAß-LIR) represents amyloid precursor protein C-terminal fragments (APP-CTFs) and/or Aß. In addition, we observed increased levels of Aß40 and Aß42 peptides in the lipid-associated fraction of HEXB KO mouse brains, and intraneuronal accumulation of ganglioside-bound Aß (GAß) immunoreactivity in a brain region-specific manner. Furthermore, α-synuclein and APP-CTFs and/or Aß were found to accumulate in different regions of the substantia nigra, indicating different mechanisms of accumulation or turnover pathways. Based on the localization of the accumulated iAß-LIR to endosomes, lysosomes, and autophagosomes, we conclude that a significant accumulation of iAß-LIR may be associated with the lysosomal-autophagic turnover of Aß and fragments of APP-containing Aß epitopes. Importantly, intraneuronal GAß immunoreactivity, a proposed prefibrillar aggregate found in AD, was found to accumulate throughout the frontal cortices of postmortem human GM1 gangliosidosis, Sandhoff disease, and Tay-Sachs disease brains. Together, these results establish an association between the accumulation of gangliosides, autophagic vacuoles, and the intraneuronal accumulation of proteins associated with AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Gangliosídeos/metabolismo , Hexosaminidase B/genética , Lisossomos/fisiologia , Doença de Sandhoff/patologia , Adulto , Animais , Western Blotting , Química Encefálica/genética , Química Encefálica/fisiologia , Pré-Escolar , Gangliosídeo G(M2)/metabolismo , Humanos , Imuno-Histoquímica , Lactente , Metabolismo dos Lipídeos , Bulbo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medula Espinal/metabolismo , Substância Negra/metabolismo , Adulto Jovem , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
8.
Mol Ther ; 20(4): 717-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22215019

RESUMO

Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues. We hypothesized that coadministration of the orally available, small molecule pharmacological chaperone AT1001 (GR181413A, 1-deoxygalactonojirimycin, migalastat hydrochloride) may improve the pharmacological properties of rhα-Gal A via binding and stabilization. AT1001 prevented rhα-Gal A denaturation and activity loss in vitro at neutral pH and 37 °C. Coincubation of Fabry fibroblasts with rhα-Gal A and AT1001 resulted in up to fourfold higher cellular α-Gal A and ~30% greater GL-3 reduction compared to rhα-Gal A alone. Furthermore, coadministration of AT1001 to rats increased the circulating half-life of rhα-Gal A by >2.5-fold, and in GLA knockout mice resulted in up to fivefold higher α-Gal A levels and fourfold greater GL-3 reduction than rhα-Gal A alone. Collectively, these data highlight the potentially beneficial effects of AT1001 on rhα-Gal A, thus warranting clinical investigation.


Assuntos
Terapia de Reposição de Enzimas/métodos , Doença de Fabry/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Proteínas Recombinantes/uso terapêutico , alfa-Galactosidase/uso terapêutico , Animais , Western Blotting , Doença de Fabry/metabolismo , Imunofluorescência , Humanos , Camundongos , Ratos , Triexosilceramidas/metabolismo
9.
Hum Mutat ; 32(8): 965-77, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21598360

RESUMO

Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as "responsive"). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001. Concentration-dependent increases in α-Gal A activity in response to AT1001 were shown for 49 (60%) of 81 mutant forms. The responses of α-Gal A mutant forms were generally consistent with the responses observed in male Fabry patient-derived lymphoblasts. Importantly, the HEK-293 cell responses of 19 α-Gal A mutant forms to a clinically achievable concentration of AT1001 (10 µM) were generally consistent with observed increases in α-Gal A activity in peripheral blood mononuclear cells from male Fabry patients orally administered AT1001 during Phase 2 clinical studies. This indicates that the cell-based responses can identify mutant forms of α-Gal A that are likely to respond to AT1001 in vivo. Thus, the HEK-293 cell-based assay may be a useful aid in the identification of Fabry patients with AT1001-responsive mutant forms.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/genética , Proteínas Mutantes/análise , alfa-Galactosidase/genética , 1-Desoxinojirimicina/metabolismo , 1-Desoxinojirimicina/farmacologia , Bioensaio , Ativação Enzimática/efeitos dos fármacos , Doença de Fabry/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Proteínas Mutantes/metabolismo , Mutação Puntual/genética , Conformação Proteica , alfa-Galactosidase/química , alfa-Galactosidase/metabolismo
10.
Nature ; 438(7068): 662-6, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16244648

RESUMO

Anxiety and fear are normal emotional responses to threatening situations. In human anxiety disorders--such as panic disorder, obsessive-compulsive disorder, post-traumatic stress disorder, social phobia, specific phobias and generalized anxiety disorder--these responses are exaggerated. The molecular mechanisms involved in the regulation of normal and pathological anxiety are mostly unknown. However, the availability of different inbred strains of mice offers an excellent model system in which to study the genetics of certain behavioural phenotypes. Here we report, using a combination of behavioural analysis of six inbred mouse strains with quantitative gene expression profiling of several brain regions, the identification of 17 genes with expression patterns that correlate with anxiety-like behavioural phenotypes. To determine if two of the genes, glyoxalase 1 and glutathione reductase 1, have a causal role in the genesis of anxiety, we performed genetic manipulation using lentivirus-mediated gene transfer. Local overexpression of these genes in the mouse brain resulted in increased anxiety-like behaviour, while local inhibition of glyoxalase 1 expression by RNA interference decreased the anxiety-like behaviour. Both of these genes are involved in oxidative stress metabolism, linking this pathway with anxiety-related behaviour.


Assuntos
Ansiedade/enzimologia , Ansiedade/genética , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Glutationa Redutase/metabolismo , Lactoilglutationa Liase/metabolismo , Animais , Ansiedade/fisiopatologia , Feminino , Regulação da Expressão Gênica , Glutationa Redutase/genética , Lactoilglutationa Liase/genética , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos , Estresse Oxidativo/genética , Fenótipo , Transdução Genética
11.
Mol Ther ; 18(1): 23-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19773742

RESUMO

Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency in alpha-galactosidase A (alpha-Gal A) activity and subsequent accumulation of the substrate globotriaosylceramide (GL-3), which contributes to disease pathology. The pharmacological chaperone (PC) DGJ (1-deoxygalactonojirimycin) binds and stabilizes alpha-Gal A, increasing enzyme levels in cultured cells and in vivo. The ability of DGJ to reduce GL-3 in vivo was investigated using transgenic (Tg) mice that express a mutant form of human alpha-Gal A (R301Q) on a knockout background (Tg/KO), which leads to GL-3 accumulation in disease-relevant tissues. Four-week daily oral administration of DGJ to Tg/KO mice resulted in significant and dose-dependent increases in alpha-Gal A activity, with concomitant GL-3 reduction in skin, heart, kidney, brain, and plasma; 24-week administration resulted in even greater reductions. Compared to daily administration, less frequent DGJ administration, including repeated cycles of 4 days with DGJ followed by 3 days without or every other day with DGJ, resulted in even greater GL-3 reductions that were comparable to those obtained with Fabrazyme. Collectively, these data indicate that oral administration of DGJ increases mutant alpha-Gal A activity and reduces GL-3 in disease-relevant tissues in Tg/KO mice, and thus merits further evaluation as a treatment for Fabry disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Triexosilceramidas/metabolismo , 1-Desoxinojirimicina/uso terapêutico , Animais , Western Blotting , Modelos Animais de Doenças , Doença de Fabry/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , alfa-Galactosidase/antagonistas & inibidores , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
12.
Hum Mutat ; 30(12): 1683-92, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19862843

RESUMO

Pompe disease is a lysosomal storage disorder (LSD) caused by mutations in the gene that encodes acid alpha-glucosidase (GAA). Recently, small molecule pharmacological chaperones have been shown to increase protein stability and cellular levels for mutant lysosomal enzymes and have emerged as a new therapeutic strategy for the treatment of LSDs. In this study, we characterized the pharmacological chaperone 1-deoxynojirimycin (DNJ) on 76 different mutant forms of GAA identified in Pompe disease. DNJ significantly increased enzyme activity and protein levels for 16 different GAA mutants in patient-derived fibroblasts and in transiently transfected COS-7 cells. Additionally, DNJ increased the processing of these GAA mutants to their mature lysosomal forms, suggesting facilitated trafficking through the secretory pathway. Immunofluorescence microscopy studies showed increased colocalization of GAA with the lysosomal marker LAMP2 after incubation with DNJ, confirming increased lysosomal trafficking. Lastly, a GAA structural model was constructed based on the related eukaryotic glucosidase maltase-glucoamylase. The mutated residues identified in responsive forms of GAA are located throughout most of the structural domains, with half of these residues located in two short regions within the catalytic domain. Taken together, these data support further evaluation of DNJ as a potential treatment for Pompe disease in patients that express responsive forms of GAA.


Assuntos
1-Desoxinojirimicina/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Proteínas Mutantes/metabolismo , alfa-Glucosidases/metabolismo , Adolescente , Adulto , Animais , Células COS , Chlorocebus aethiops , Estabilidade Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Doença de Depósito de Glicogênio Tipo II/enzimologia , Humanos , Lactente , Modelos Moleculares , Estrutura Secundária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , alfa-Glucosidases/química
14.
J Am Chem Soc ; 130(51): 17568-74, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19053485

RESUMO

The upstream protein kinases responsible for thousands of phosphorylation events in the phosphoproteome remain to be discovered. We developed a three-component chemical reaction which converts the transient noncovalent substrate-kinase complex into a covalently cross-linked product by utilizing a dialdehyde-based cross-linker, 1. Unfortunately, the reaction of 1 with a lysine in the kinase active site and an engineered cysteine on the substrate to form an isoindole cross-linked product could not be performed in the presence of competing cellular proteins due to nonspecific side reactions. In order to more selectively target the cross-linker to protein kinases in cell lysates, we replaced the weak, kinase-binding adenosine moiety of 1 with a potent protein kinase inhibitor scaffold. In addition, we replaced the o-phthaldialdehyde moiety in 1 with a less-reactive thiophene-2,3-dicarboxaldehyde moiety. The combination of these two structural modifications provides for cross-linking of a cysteine-containing substrate to its corresponding kinase in the presence of competing cellular proteins.


Assuntos
Fosfotransferases/química , Adenosina/química , Reagentes de Ligações Cruzadas/química , Cisteína/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Lisina/química , Modelos Químicos , Conformação Molecular , Peptídeos/química , Fosforilação , Fosfotransferases/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Tiofenos/química
15.
Nat Biotechnol ; 23(3): 329-36, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15711537

RESUMO

Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.


Assuntos
Desenho de Fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Preparações Farmacêuticas/metabolismo , Piperazinas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Benzamidas , Mesilato de Imatinib , Microquímica/métodos , Ligação Proteica
16.
Cancer Res ; 66(2): 1007-14, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16424036

RESUMO

We present a high-resolution (2.0 A) crystal structure of the catalytic domain of a mutant form of the Abl tyrosine kinase (H396P; Abl-1a numbering) that is resistant to the Abl inhibitor imatinib. The structure is determined in complex with the small-molecule inhibitor VX-680 (Vertex Pharmaceuticals, Cambridge, MA), which blocks the activity of various imatinib-resistant mutant forms of Abl, including one (T315I) that is resistant to both imatinib and BMS-354825 (dasatinib), a dual Src/Abl inhibitor that seems to be clinically effective against all other imatinib-resistant forms of BCR-Abl. VX-680 is shown to have significant inhibitory activity against BCR-Abl bearing the T315I mutation in patient-derived samples. The Abl kinase domain bound to VX-680 is not phosphorylated on the activation loop in the crystal structure but is nevertheless in an active conformation, previously unobserved for Abl and inconsistent with the binding of imatinib. The adoption of an active conformation is most likely the result of synergy between the His(396)Pro mutation, which destabilizes the inactive conformation required for imatinib binding, and the binding of VX-680, which favors the active conformation through hydrogen bonding and steric effects. VX-680 is bound to Abl in a mode that accommodates the substitution of isoleucine for threonine at residue 315 (the "gatekeeper" position). The avoidance of the innermost cavity of the Abl kinase domain by VX-680 and the specific recognition of the active conformation explain the effectiveness of this compound against mutant forms of BCR-Abl, including those with mutations at the gatekeeper position.


Assuntos
Proteínas de Fusão bcr-abl/genética , Genes abl , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/química , Pirimidinas/farmacologia , Aurora Quinases , Benzamidas , Domínio Catalítico , Cristalografia , Dasatinibe , Resistencia a Medicamentos Antineoplásicos , Escherichia coli/genética , Humanos , Ligação de Hidrogênio , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Tiazóis/farmacologia
17.
Curr Opin Neurobiol ; 12(5): 554-61, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12367635

RESUMO

Genomic technologies such as DNA microarrays have been used to study biological processes involved in various normal and disease states; in addition, parallel transcriptional profiling methods hold a great deal of promise for the neurosciences. However, such experiments are technically more demanding and there are unique methodological difficulties for their use in the context of neurobiology and the study of central nervous system disorders.


Assuntos
Perfilação da Expressão Gênica , Neurobiologia/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo
18.
PLoS One ; 10(8): e0134341, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252393

RESUMO

UNLABELLED: Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. TRIAL REGISTRATION: ClinicalTrials.gov NCT01196871.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Isoenzimas/uso terapêutico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/sangue , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/uso terapêutico , Administração Oral , Adulto , Área Sob a Curva , Demografia , Doença de Fabry/sangue , Humanos , Bombas de Infusão , Isoenzimas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Pele/enzimologia , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/sangue , alfa-Galactosidase/uso terapêutico
19.
PLoS One ; 9(7): e102092, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036864

RESUMO

Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may warrant further evaluation as a treatment for Pompe disease.


Assuntos
1-Desoxinojirimicina/farmacologia , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Doença de Depósito de Glicogênio Tipo II/metabolismo , Glicogênio/metabolismo , Lisossomos/efeitos dos fármacos , Mutação , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacocinética , Administração Oral , Animais , Biocatálise/efeitos dos fármacos , Disponibilidade Biológica , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Glucana 1,4-alfa-Glucosidase/biossíntese , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos
20.
J Am Heart Assoc ; 3(1): e000394, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24496231

RESUMO

BACKGROUND: Elevated urinary globotriaosylceramide (Gb3) has been considered a hallmark of Fabry disease, an X-linked lysosomal disorder that is a risk factor for most types of heart disease. METHODS AND RESULTS: We screened 1421 consecutive patients with common forms of heart disease for Fabry disease by measuring urinary Gb3 in whole urine using tandem mass spectrometry, α-galactosidase A activity in dried blood spots, and we looked for GLA mutations by parallel sequencing of the whole gene (exons and introns) in pooled genomic DNA samples followed by Sanger sequencing verification. GLA variants were found in 13 patients. In the 1408 patients without GLA mutations, urinary Gb3 levels were significantly higher in heart disease patients compared to 116 apparently healthy controls (median difference=10.0 ng/mL and P<0.001). Urinary lipid profiling showed that levels of 5 other lipids significantly distinguished between urine of patients with Fabry disease (n=7) and heart disease patients with elevated urinary Gb3 (n=6). Sphingomyelin and Gb3 levels were abnormal in the left ventricular wall of patients with ischemic heart failure. Elevated levels of urinary Gb3 were independently associated with increased risk of death in the average follow-up of 17 months (hazard ratio=1.59 for increase in Gb3 of 200, 95% CI=1.36 and 1.87, and P<0.0001). CONCLUSIONS: In heart disease patients who do not have Fabry disease or GLA gene mutations, a higher level of urinary Gb3 is positively associated with near-term mortality. The elevation of urinary Gb3 and that of other lipids suggests that heart disease is associated with multiorgan lipid abnormalities. CLINICAL TRIAL REGISTRATION URL: clinicaltrials.gov. Unique Identifier: NCT01019629.


Assuntos
Doença de Fabry/mortalidade , Doença de Fabry/urina , Cardiopatias/mortalidade , Cardiopatias/urina , Triexosilceramidas/urina , Adulto , Idoso , Biomarcadores/urina , Estudos de Casos e Controles , Ensaios Enzimáticos Clínicos , Análise Mutacional de DNA , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Fabry/genética , Feminino , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Estudos Prospectivos , Fatores de Risco , Espectrometria de Massas em Tandem , Regulação para Cima , alfa-Galactosidase/sangue , alfa-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa