Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Neurol Neurosurg Psychiatry ; 94(3): 193-200, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36379713

RESUMO

OBJECTIVE: To identify structural and neurochemical properties that underlie functional connectivity impairments of the primary motor cortex (PMC) and how these relate to clinical findings in amyotrophic lateral sclerosis (ALS). METHODS: 52 patients with ALS and 52 healthy controls, matched for age and sex, were enrolled from 5 centres across Canada for the Canadian ALS Neuroimaging Consortium study. Resting-state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy data were acquired. Functional connectivity maps, diffusion metrics and neurometabolite ratios were obtained from the analyses of the acquired multimodal data. A clinical assessment of foot tapping (frequency) was performed to examine upper motor neuron function in all participants. RESULTS: Compared with healthy controls, the primary motor cortex in ALS showed reduced functional connectivity with sensory (T=5.21), frontal (T=3.70), temporal (T=3.80), putaminal (T=4.03) and adjacent motor (T=4.60) regions. In the primary motor cortex, N-acetyl aspartate (NAA, a neuronal marker) ratios and diffusion metrics (mean, axial and radial diffusivity, fractional anisotropy (FA)) were altered. Within the ALS cohort, foot tapping frequency correlated with NAA (r=0.347) and white matter FA (r=0.537). NAA levels showed associations with disturbed functional connectivity of the motor cortex. CONCLUSION: In vivo neurochemistry may represent an effective imaging marker of impaired motor cortex functional connectivity in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Neuroquímica , Humanos , Imagem de Tensor de Difusão/métodos , Canadá , Imageamento por Ressonância Magnética/métodos
2.
Eur J Neurol ; 30(5): 1220-1231, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692202

RESUMO

BACKGROUND AND PURPOSE: This study sought to evaluate the relationship of progressive corticospinal tract (CST) degeneration with survival in patients with amyotrophic lateral sclerosis (ALS). METHODS: Forty-one ALS patients and 42 healthy controls were prospectively recruited from the Canadian ALS Neuroimaging Consortium. Magnetic resonance imaging scanning and clinical evaluations were performed on participants at three serial visits with 4-month intervals. Texture analysis was performed on T1-weighted magnetic resonance imaging scans and the texture feature 'autocorrelation' was quantified. Whole-brain group-level comparisons were performed between patient subgroups. Linear mixed models were used to evaluate longitudinal progression. Region-of-interest and 3D voxel-wise Cox proportional-hazards regression models were constructed for survival prediction. For all survival analyses, a second independent cohort was used for model validation. RESULTS: Autocorrelation of the bilateral CST was increased at baseline and progressively increased over time at a faster rate in ALS short survivors. Cox proportional-hazards regression analyses revealed autocorrelation of the CST as a significant predictor of survival at 5 years follow-up (hazard ratio 1.28, p = 0.005). Similarly, voxel-wise whole-brain survival analyses revealed that increased autocorrelation of the CST was associated with shorter survival. ALS patients stratified by median autocorrelation in the CST had significantly different survival times using the Kaplan-Meier curve and log-rank tests (χ2  = 7.402, p = 0.007). CONCLUSIONS: Severity of cerebral degeneration is associated with survival in ALS. CST degeneration progresses faster in subgroups of patients with shorter survival. Neuroimaging holds promise as a tool to improve patient management and facilitation of clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Canadá , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
3.
Hum Brain Mapp ; 43(5): 1519-1534, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34908212

RESUMO

Progressive cerebral degeneration in amyotrophic lateral sclerosis (ALS) remains poorly understood. Here, three-dimensional (3D) texture analysis was used to study longitudinal gray and white matter cerebral degeneration in ALS from routine T1-weighted magnetic resonance imaging (MRI). Participants were included from the Canadian ALS Neuroimaging Consortium (CALSNIC) who underwent up to three clinical assessments and MRI at four-month intervals, up to 8 months after baseline (T0 ). Three-dimensional maps of the texture feature autocorrelation were computed from T1-weighted images. One hundred and nineteen controls and 137 ALS patients were included, with 81 controls and 84 ALS patients returning for at least one follow-up. At baseline, texture changes in ALS patients were detected in the motor cortex, corticospinal tract, insular cortex, and bilateral frontal and temporal white matter compared to controls. Longitudinal comparison of texture maps between T0 and Tmax (last follow-up visit) within ALS patients showed progressive texture alterations in the temporal white matter, insula, and internal capsule. Additionally, when compared to controls, ALS patients had greater texture changes in the frontal and temporal structures at Tmax than at T0 . In subgroup analysis, slow progressing ALS patients had greater progressive texture change in the internal capsule than the fast progressing patients. Contrastingly, fast progressing patients had greater progressive texture changes in the precentral gyrus. These findings suggest that the characteristic longitudinal gray matter pathology in ALS is the progressive involvement of frontotemporal regions rather than a worsening pathology within the motor cortex, and that phenotypic variability is associated with distinct progressive spatial pathology.


Assuntos
Esclerose Lateral Amiotrófica , Substância Branca , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Canadá , Humanos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
4.
Hum Brain Mapp ; 40(4): 1174-1183, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30367724

RESUMO

The purpose of this study was to investigate whether textures computed from T1-weighted (T1W) images of the corticospinal tract (CST) in amyotrophic lateral sclerosis (ALS) are associated with degenerative changes evaluated by diffusion tensor imaging (DTI). Nineteen patients with ALS and 14 controls were prospectively recruited and underwent T1W and diffusion-weighted magnetic resonance imaging. Three-dimensional texture maps were computed from T1W images and correlated with the DTI metrics within the CST. Significantly correlated textures were selected and compared within the CST for group differences between patients and controls using voxel-wise analysis. Textures were correlated with the patients' clinical upper motor neuron (UMN) signs and their diagnostic accuracy was evaluated. Voxel-wise analysis of textures and their diagnostic performance were then assessed in an independent cohort with 26 patients and 13 controls. Results showed that textures autocorrelation, energy, and inverse difference normalized significantly correlated with DTI metrics (p < .05) and these textures were selected for further analyses. The textures demonstrated significant voxel-wise differences between patients and controls in the centrum semiovale and the posterior limb of the internal capsule bilaterally (p < .05). Autocorrelation and energy significantly correlated with UMN burden in patients (p < .05) and classified patients and controls with 97% accuracy (100% sensitivity, 92.9% specificity). In the independent cohort, the selected textures demonstrated similar regional differences between patients and controls and classified participants with 94.9% accuracy. These results provide evidence that T1-based textures are associated with degenerative changes in the CST.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Degeneração Neural/diagnóstico por imagem , Neuroimagem/métodos , Tratos Piramidais/diagnóstico por imagem , Adulto , Idoso , Esclerose Lateral Amiotrófica/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia , Tratos Piramidais/patologia
6.
J Neurosci ; 34(34): 11304-15, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143611

RESUMO

Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined. In this study, we identified different roles of neuronal compartments (somal vs extrasomal) in chemical and electrical synaptogenesis. Specifically, the electrically synapsed Lymnaea pedal dorsal A cluster neurons were used to study electrical synapses, whereas chemical synaptic partners, visceral dorsal 4 (presynaptic, cholinergic), and left pedal dorsal 1 (LPeD1; postsynaptic) were explored for chemical synapse formation. Neurons were cultured in a soma-soma or soma-axon configuration and synapses explored electrophysiologically. We provide the first direct evidence that electrical synapses develop in a soma-soma, but not soma-axon (removal of soma) configuration, indicating the requirement of gene transcription regulation in the somata of both synaptic partners. In addition, the soma-soma electrical coupling was contingent upon trophic factors present in Lymnaea brain-conditioned medium. Further, we demonstrate that chemical (cholinergic) synapses between soma-soma and soma-axon pairs were indistinguishable, with both exhibiting a high degree of contact site and target cell type specificity. We also provide direct evidence that presynaptic cell contact-mediated, clustering of postsynaptic cholinergic receptors at the synaptic site requires transmitter-receptor interaction, receptor internalization, and a protein kinase C-dependent lateral migration toward the contact site. This study provides novel insights into synaptogenesis between central neurons revealing both distinct and synergistic roles of cell-cell signaling and extrinsic trophic factors in executing the synaptogenic program.


Assuntos
Dendritos/fisiologia , Neurônios/citologia , Sinapses/classificação , Sinapses/fisiologia , Acetilcolina/farmacologia , Animais , Benzofenantridinas/farmacologia , Encéfalo/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Dendritos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Gânglios dos Invertebrados/citologia , Bloqueadores Ganglionares/farmacologia , Hexametônio/farmacologia , Hidrazonas/farmacologia , Lymnaea/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia
8.
Neuroimage Clin ; 43: 103633, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38889523

RESUMO

OBJECTIVE: The corticospinal tract (CST) reveals progressive microstructural alterations in ALS measurable by DTI. The aim of this study was to evaluate fractional anisotropy (FA) along the CST as a longitudinal marker of disease progression in ALS. METHODS: The study cohort consisted of 114 patients with ALS and 110 healthy controls from the second prospective, longitudinal, multicentre study of the Canadian ALS Neuroimaging Consortium (CALSNIC-2). DTI and clinical data from a harmonized protocol across 7 centres were collected. Thirty-nine ALS patients and 61 controls completed baseline and two follow-up visits and were included for longitudinal analyses. Whole brain-based spatial statistics and hypothesis-guided tract-of-interest analyses were performed for cross-sectional and longitudinal analyses. RESULTS: FA was reduced at baseline and longitudinally in the CST, mid-corpus callosum (CC), frontal lobe, and other ALS-related tracts, with alterations most evident in the CST and mid-CC. CST and pontine FA correlated with functional impairment (ALSFRS-R), upper motor neuron function, and clinical disease progression rate. Reduction in FA was largely located in the upper CST; however, the longitudinal decline was greatest in the lower CST. Effect sizes were dependent on region, resulting in study group sizes between 17 and 31 per group over a 9-month interval. Cross-sectional effect sizes were maximal in the upper CST; whereas, longitudinal effect sizes were maximal in mid-callosal tracts. CONCLUSIONS: Progressive microstructural alterations in ALS are most prominent in the CST and CC. DTI can provide a biomarker of cerebral degeneration in ALS, with longitudinal changes in white matter demonstrable over a reasonable observation period, with a feasible number of participants, and within a multicentre framework.

9.
Analyst ; 138(10): 2833-9, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23462822

RESUMO

Neurotransmission is a key process of communication between neurons. Although much is known about this process and the influence it has on the function of the body, little is understood about the dynamics of signalling from structural regions of a single neuron. In this study we have fabricated and characterised a microelectrode array (MEA) which was utilised for simultaneous multi-site recordings of dopamine release from an isolated single neuron. The MEA consisted of gold electrodes that were created in plane with the insulation layer using a chemical mechanical planarization process. The detection limit for dopamine measurements was 11 ± 3 nM and all the gold electrodes performed in a consistent fashion during amperometric recordings of 100 nM dopamine. Fouling of the gold electrode was investigated, where no significant change in the current was observed over 4 hours when monitoring 100 nM dopamine. The MEA was accessed using freshly isolated dopaminergic somas from the pond snail, Lymnaea stagnalis, where electrically evoked dopamine release was clearly observed. Measurements were conducted at four structural locations of a single isolated neuron, where electrically evoked dopamine release was observed from the cell body, axonal regions and the terminal. Over time, the release of dopamine varied over the structural regions of the neuron. Such information can provide an insight into the signalling mechanism of neurons and how they potentially form synaptic connections.


Assuntos
Dopamina/análise , Dopamina/metabolismo , Potenciais Evocados , Neurônios/metabolismo , Animais , Estimulação Elétrica , Eletrodos , Ouro/química , Lymnaea/citologia , Lymnaea/metabolismo , Microeletrodos , Neurônios/citologia , Transdução de Sinais
10.
Comput Med Imaging Graph ; 108: 102279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573646

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks. However, deep learning methods applied to neuroimaging have not achieved superior performance in classifying ALS patients from healthy controls due to insignificant structural changes correlated with pathological features. Thus, a critical challenge in deep models is to identify discriminative features from limited training data. To address this challenge, this study introduces a framework called SF2Former, which leverages the power of the vision transformer architecture to distinguish ALS subjects from the control group by exploiting the long-range relationships among image features. Additionally, spatial and frequency domain information is combined to enhance the network's performance, as MRI scans are initially captured in the frequency domain and then converted to the spatial domain. The proposed framework is trained using a series of consecutive coronal slices and utilizes pre-trained weights from ImageNet through transfer learning. Finally, a majority voting scheme is employed on the coronal slices of each subject to generate the final classification decision. The proposed architecture is extensively evaluated with multi-modal neuroimaging data (i.e., T1-weighted, R2*, FLAIR) using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of the proposed strategy in terms of classification accuracy compared to several popular deep learning-based techniques.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Canadá , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
11.
PLoS One ; 17(6): e0269154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709100

RESUMO

Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder characterized by progressive degeneration of upper motor neurons and lower motor neurons, and frontotemporal regions resulting in impaired bulbar, limb, and cognitive function. Magnetic resonance imaging studies have reported cortical and subcortical brain involvement in the pathophysiology of ALS. The present study investigates the functional integrity of resting-state networks (RSNs) and their importance in ALS. Intra- and inter-network resting-state functional connectivity (Rs-FC) was examined using an independent component analysis approach in a large multi-center cohort. A total of 235 subjects (120 ALS patients; 115 healthy controls (HC) were recruited across North America through the Canadian ALS Neuroimaging Consortium (CALSNIC). Intra-network and inter-network Rs-FC was evaluated by the FSL-MELODIC and FSLNets software packages. As compared to HC, ALS patients displayed higher intra-network Rs-FC in the sensorimotor, default mode, right and left fronto-parietal, and orbitofrontal RSNs, and in previously undescribed networks including auditory, dorsal attention, basal ganglia, medial temporal, ventral streams, and cerebellum which negatively correlated with disease severity. Furthermore, ALS patients displayed higher inter-network Rs-FC between the orbitofrontal and basal ganglia RSNs which negatively correlated with cognitive impairment. In summary, in ALS there is an increase in intra- and inter-network functional connectivity of RSNs underpinning both motor and cognitive impairment. Moreover, the large multi-center CALSNIC dataset permitted the exploration of RSNs in unprecedented detail, revealing previously undescribed network involvement in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Canadá , Humanos , Imageamento por Ressonância Magnética , Estados Unidos
12.
Eur J Neurosci ; 34(4): 569-77, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21749498

RESUMO

Short-term plasticity is thought to form the basis for working memory, the cellular mechanisms of which are the least understood in the nervous system. In this study, using in vitro reconstructed synapses between the identified Lymnaea neuron visceral dorsal 4 (VD4) and left pedal dorsal 1 (LPeD1), we demonstrate a novel form of short-term potentiation (STP) which is 'use'- but not time-dependent, unlike most previously defined forms of short-term synaptic plasticity. Using a triple-cell configuration we demonstrate for the first time that a single presynaptic neuron can reliably potentiate both inhibitory and excitatory synapses. We further demonstrate that, unlike previously described forms of STP, the synaptic potentiation between Lymnaea neurons does not involve postsynaptic receptor sensitization or presynaptic residual calcium. Finally, we provide evidence that STP at the VD4-LPeD1 synapse requires presynaptic calcium/calmodulin dependent kinase II (CaMKII). Taken together, our study identifies a novel form of STP which may provide the basis for both short- and long-term potentiation, in the absence of any protein synthesis-dependent steps, and involve CaMKII activity exclusively in the presynaptic cell.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Lymnaea
13.
Prion ; 15(1): 107-111, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34132175

RESUMO

Sporadic Creutzfeldt-Jakob Disease (sCJD) rarely affects women of childbearing age. There is currently no evidence of vertical transmission. Given the biosafety implications of performing Caesarean sections (C-section) in these patients, we used sensitive real-time quaking-induced conversion (RT-QuIC) assays to test for the infectious prion protein (PrPSc) in products of gestation. A 35-year-old woman with sCJD presented in her 10th gestational week with an eight month history of progressive cognitive impairment. During C-section, amniotic fluid, cord blood and placental tissue were collected and analysed using RT-QuIC protocols adapted for use with these tissues. The patient's diagnosis of sCJD, MM2 subtype, was confirmed at autopsy. There were borderline positive results in one sampled area of the placenta, but otherwise the cord blood and amniotic fluid were negative on our RT-QuIC assays. A healthy baby was delivered via C-section at 36 weeks and 3 days gestational age, with no evidence of neurological disease to date. We conclude that precautions should be taken with products of gestation, but the level of PrPSc is extremely low.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Adulto , Bioensaio , Feminino , Humanos , Placenta , Gravidez , Proteínas Priônicas
14.
Neurology ; 97(8): e803-e813, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34426551

RESUMO

OBJECTIVE: To evaluate progressive cerebral degeneration in amyotrophic lateral sclerosis (ALS) by assessing alterations in N-acetylaspartate (NAA) ratios in the motor and prefrontal cortex within clinical subgroups of ALS. METHODS: Seventy-six patients with ALS and 59 healthy controls were enrolled in a prospective, longitudinal, multicenter study in the Canadian ALS Neuroimaging Consortium. Participants underwent serial clinical evaluations and magnetic resonance spectroscopy at baseline and 4 and 8 months using a harmonized protocol across 5 centers. NAA ratios were quantified in the motor cortex and prefrontal cortex. Patients were stratified into subgroups based on disease progression rate, upper motor neuron (UMN) signs, and cognitive status. Linear mixed models were used for baseline and longitudinal comparisons of NAA metabolite ratios. RESULTS: Patients with ALS had reduced NAA ratios in the motor cortex at baseline (p < 0.001). Ratios were lower in those with more rapid disease progression and greater UMN signs (p < 0.05). A longitudinal decline in NAA ratios was observed in the motor cortex in the rapidly progressing (p < 0.01) and high UMN burden (p < 0.01) cohorts. The severity of UMN signs did not change significantly over time. NAA ratios were reduced in the prefrontal cortex only in cognitively impaired patients (p < 0.05); prefrontal cortex metabolites did not change over time. CONCLUSIONS: Progressive degeneration of the motor cortex in ALS is associated with more aggressive clinical presentations. These findings provide biological evidence of variable spatial and temporal cerebral degeneration linked to the disease heterogeneity of ALS. The use of standardized imaging protocols may have a role in clinical trials for patient selection or subgrouping. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that MRS NAA metabolite ratios of the motor cortex are associated with more rapid disease progression and greater UMN signs in patients with ALS. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02405182.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ácido Aspártico/análogos & derivados , Disfunção Cognitiva/metabolismo , Progressão da Doença , Espectroscopia de Ressonância Magnética , Córtex Motor/metabolismo , Córtex Pré-Frontal/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Ácido Aspártico/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Feminino , Humanos , Estudos Longitudinais , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/patologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Índice de Gravidade de Doença
15.
Eur J Neurosci ; 32(9): 1442-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21039963

RESUMO

All brain functions, ranging from motor behaviour to cognition, depend on precise developmental patterns of synapse formation between the growth cones of both pre- and postsynaptic neurons. While the molecular evidence for the presence of 'pre-assembled' elements of synaptic machinery prior to physical contact is beginning to emerge, the precise timing of functional synaptogenesis between the growth cones has not yet been defined. Moreover, it is unclear whether an initial assembly of various synaptic molecules located at the extrasomal regions (e.g. growth cones) can indeed result in fully mature and consolidated synapses in the absence of somata signalling. Such evidence is difficult to obtain both in vivo and in vitro because the extrasomal sites are often challenging, if not impossible, to access for electrophysiological analysis. Here we demonstrate a novel approach to precisely define various steps underlying synapse formation between the isolated growth cones of individually identifiable pre- and postsynaptic neurons from the mollusc Lymnaea stagnalis. We show for the first time that isolated growth cones transformed into 'growth balls' have an innate propensity to develop specific and multiple synapses within minutes of physical contact. We also demonstrate that a prior 'synaptic history' primes the presynaptic growth ball to form synapses quicker with subsequent partners. This is the first demonstration that isolated Lymnaea growth cones have the necessary machinery to form functional synapses.


Assuntos
Cones de Crescimento , Lymnaea , Neurônios , Sinapses/fisiologia , Animais , Células Cultivadas , Eletrofisiologia , Cones de Crescimento/fisiologia , Cones de Crescimento/ultraestrutura , Lymnaea/citologia , Lymnaea/fisiologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Transmissão Sináptica/fisiologia
16.
Eur J Neurosci ; 31(6): 994-1005, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20377614

RESUMO

Current treatment regimes for a variety of mental disorders involve various selective serotonin reuptake inhibitors such as Fluoxetine (Prozac). Although these drugs may 'manage' the patient better, there has not been a significant change in the treatment paradigm over the years and neither have the outcomes improved. There is also considerable debate as to the effectiveness of various selective serotonin reuptake inhibitors and their potential side-effects on neuronal architecture and function. In this study, using mammalian cortical neurons, a dorsal root ganglia cell line (F11 cells) and identified Lymnaea stagnalis neurons, we provide the first direct and unequivocal evidence that clinically relevant concentrations of Fluoxetine induce growth cone collapse and neurite retraction of both serotonergic and non-serotonergic neurons alike in a dose-dependent manner. Using intracellular recordings and calcium imaging techniques, we further demonstrate that the mechanism underlying Fluoxetine-induced effects on neurite retraction from Lymnaea neurons may involve lowering of intracellular calcium and a subsequent retardation of growth cone cytoskeleton. Using soma-soma synapses between identified presynaptic and postsynaptic Lymnaea neurons, we provide further direct evidence that clinically used concentrations of Fluoxetine also block synaptic transmission and synapse formation between cholinergic neurons. Our study raises alarms over potentially devastating side-effects of this antidepressant drug on neurite outgrowth and synapse formation in a developing/regenerating brain. Our data also demonstrate that drugs such as Fluoxetine may not just affect communication between serotonergic neurons but that the detrimental effects are widespread and involve neurons of various phenotypes from both vertebrate and invertebrate species.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Fluoxetina/farmacologia , Cones de Crescimento/efeitos dos fármacos , Lymnaea/citologia , Neuritos/efeitos dos fármacos , Neurônios/citologia , Actinas/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Microscopia Confocal , Inibição Neural/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Ratos , Transmissão Sináptica/efeitos dos fármacos
17.
Biomed Microdevices ; 12(6): 977-85, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20694518

RESUMO

We present a polymer microchip capable of monitoring neuronal activity with a fidelity never before obtained on a planar patch-clamp device. Cardio-respiratory neurons Left Pedal Dorsal 1 (LPeD1) from mollusc Lymnaea were cultured on the microchip's polyimide surface for 2 to 4 hours. Cultured neurons formed high resistance seals (gigaseals) between the cell membrane and the surface surrounding apertures etched in the polyimide. Gigaseal formation was observed without applying external force, such as suction, on neurons. The formation of gigaseals, as well as the low access resistance and shunt capacitance values of the polymer microchip resulted in high-fidelity recordings. On-chip culture of neurons permitted, for the first time on a polymeric patch-clamp device, the recording of high fidelity physiological action potentials. Microfabrication of the hybrid poly(dimethylsiloxane)-polyimide (PDMS-PI) microchip is discussed, including a two-layer PDMS processing technique resulting in minimized shrinking variations.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Neurônios/citologia , Técnicas de Patch-Clamp/instrumentação , Polímeros/química , Animais , Dimetilpolisiloxanos/química , Condutividade Elétrica , Fenômenos Eletrofisiológicos , Imidas/química , Lymnaea/citologia , Microtecnologia , Neurônios/metabolismo , Sinapses/metabolismo
18.
Biotechnol Bioeng ; 107(4): 593-600, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20648547

RESUMO

We report on a simple and high-yield manufacturing process for silicon planar patch-clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high-quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high-impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high-fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole-cell current recordings obtained from a voltage-clamp stimulation protocol, and in current-clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch-clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high-information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity.


Assuntos
Biotecnologia/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Canais Iônicos/efeitos dos fármacos , Lymnaea , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Animais , Células Cultivadas , Capacitância Elétrica , Potenciais da Membrana/efeitos dos fármacos , Silício
19.
Neurol Clin Pract ; 9(5): 400-407, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31750025

RESUMO

BACKGROUND: We investigated cerebral degeneration and neurochemistry in patients with amyotrophic lateral sclerosis (ALS) using magnetic resonance spectroscopy (MRS). METHODS: We prospectively studied 65 patients and 43 age-matched healthy controls. Participants were recruited from 4 centers as part of a study in the Canadian ALS Neuroimaging Consortium. All participants underwent single-voxel proton MRS using a protocol standardized across all sites. Metabolites reflecting neuronal integrity (total N-acetyl aspartyl moieties [tNAA]) and gliosis (myo-inositol [Ino]), as well as creatine (Cr) and choline (Cho), were quantified in the midline motor cortex and midline prefrontal cortex. Comparisons were made between patients with ALS and healthy controls. Metabolites were correlated with clinical measures of upper motor neuron dysfunction, disease progression rate, and cognitive performance. RESULTS: In the motor cortex, tNAA/Cr, tNAA/Cho, and tNAA/Ino ratios were reduced in the ALS group compared with controls. Group differences in tNAA/Cr and tNAA/Cho in the prefrontal cortex displayed reduced ratios in ALS patients; however, these were not statistically significant. Reduced motor cortex ratios were associated with slower foot tapping rate, whereas only motor tNAA/Ino was associated with finger tapping rate. Disease progression rate was associated with motor tNAA/Cho. Verbal fluency, semantic fluency, and digit span forwards and backwards were associated with prefrontal tNAA/Cr. CONCLUSIONS: This study demonstrates that cerebral degeneration in ALS is more pronounced in the motor than prefrontal cortex, that multicenter MRS studies are feasible, and that motor tNAA/Ino shows promise as a potential biomarker.

20.
Ann Clin Transl Neurol ; 5(11): 1350-1361, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30480029

RESUMO

OBJECTIVE: To evaluate cerebral degenerative changes in ALS and their correlates with survival using 3D texture analysis. METHODS: A total of 157 participants were included in this analysis from four neuroimaging studies. Voxel-wise texture analysis on T1-weighted brain magnetic resonance images (MRIs) was conducted between patients and controls. Patients were divided into long- and short-survivors using the median survival of the cohort. Neuroanatomical differences between the two survival groups were also investigated. RESULTS: Whole-brain analysis revealed significant changes in image texture (FDR P < 0.05) bilaterally in the motor cortex, corticospinal tract (CST), insula, basal ganglia, hippocampus, and frontal regions including subcortical white matter. The texture of the CST correlated (P < 0.05) with finger- and foot-tapping rate, measures of upper motor neuron function. Patients with a survival below the media of 19.5 months demonstrated texture change (FDR P < 0.05) in the motor cortex, CST, basal ganglia, and the hippocampus, a distribution which corresponds to stage 4 of the distribution TDP-43 pathology in ALS. Patients with longer survival exhibited texture changes restricted to motor regions, including the motor cortex and the CST. INTERPRETATION: Widespread gray and white matter pathology is evident in ALS, as revealed by texture analysis of conventional T1-weighted MRI. Length of survival in patients with ALS is associated with the spatial extent of cerebral degeneration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa