Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 76(1): 163-176.e8, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31492633

RESUMO

Sensing nutrient availability is essential for appropriate cellular growth, and mTORC1 is a major regulator of this process. Mechanisms causing mTORC1 activation are, however, complex and diverse. We report here an additional important step in the activation of mTORC1, which regulates the efflux of amino acids from lysosomes into the cytoplasm. This process requires DRAM-1, which binds the membrane carrier protein SCAMP3 and the amino acid transporters SLC1A5 and LAT1, directing them to lysosomes and permitting efficient mTORC1 activation. Consequently, we show that loss of DRAM-1 also impacts pathways regulated by mTORC1, including insulin signaling, glycemic balance, and adipocyte differentiation. Interestingly, although DRAM-1 can promote autophagy, this effect on mTORC1 is autophagy independent, and autophagy only becomes important for mTORC1 activation when DRAM-1 is deleted. These findings provide important insights into mTORC1 activation and highlight the importance of DRAM-1 in growth control, metabolic homeostasis, and differentiation.


Assuntos
Aminoácidos/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Metabolismo Energético , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Adipogenia , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Glicemia/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Insulina/sangue , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Transporte Proteico
2.
Semin Cancer Biol ; 23(5): 344-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23774296

RESUMO

In every moment of a cell's existence one key question is always asked, "To be or not to be"? Cells constantly weigh up signals from their environment against their own integrity and metabolic status and decide whether to live or die. Such cell death decisions are central to the progression and treatment of cancer. The term autophagy describes three processes that deliver cytoplasmic macromolecules and organelles to lysosomes for degradation, the difference between each form being the method of delivery. The most extensively studied form is macroautophagy (hereafter referred to as autophagy) where cytosolic components are engulfed by double membraned autophagosomes. Autophagosomes fuse with lysosomes to form structures called autolysosomes, within which organelles, proteins and other macromolecules are degraded by catabolic enzymes in the acidic lysosome environment. Autophagy, which normally occurs at low levels in unstressed cells, is widely regarded as having a positive effect on cell health as potentially harmful protein aggregates and damaged organelles can be recycled. During periods of nutrient shortage autophagy is enhanced to provide, albeit temporarily, an internal energy source. Autophagy is also enhanced by other stresses encountered by tumour cells and this may protect the cell or aid its demise. In this review we examine the effect of autophagy on cell death decisions in tumour cells.


Assuntos
Autofagia/fisiologia , Neoplasias/patologia , Animais , Humanos , Lisossomos/fisiologia
3.
J Bacteriol ; 191(22): 7007-16, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749046

RESUMO

The opportunistic pathogen Staphylococcus epidermidis colonizes indwelling medical devices by biofilm formation but is primarily a skin resident. In many S. epidermidis strains biofilm formation is mediated by a cell wall-anchored protein, the accumulation-associated protein (Aap). Here, we investigate the role of Aap in skin adhesion. Aap is an LPXTG protein with a domain architecture including a terminal A domain and a B-repeat region. S. epidermidis NCTC 11047 expresses Aap as localized, lateral tufts of fibrils on one subpopulation of cells (Fib(+)), whereas a second subpopulation does not express these fibrils of Aap (Fib(-)). Flow cytometry showed that 72% of NCTC 11047 cells expressed Aap and that 28% of cells did not. Aap is involved in the adhesion of Fib(+) cells to squamous epithelial cells from the hand (corneocytes), as the recombinant A-domain protein partially blocked binding to corneocytes. To confirm the role of the Aap A domain in corneocyte attachment, Aap was expressed on the surface of Lactococcus lactis MG1363 as sparsely distributed, peritrichous fibrils. The expression of Aap increased corneocyte adhesion 20-fold compared to L. lactis carrying Aap without an A domain. S. epidermidis isolates from catheters, artificial joints, skin, and the nose also used the A domain of Aap to adhere to corneocytes, emphasizing the role of Aap in skin adhesion. In addition, L. lactis expressing Aap with different numbers of B repeats revealed a positive correlation between the number of B repeats and adhesion to corneocytes, suggesting an additional function for the B region in enhancing A-domain-dependent attachment to skin. Therefore, in addition to its established role in biofilm formation, Aap can also promote adhesion to corneocytes and is likely to be an important adhesin in S. epidermidis skin colonization.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Epiderme/microbiologia , Lactococcus lactis/fisiologia , Staphylococcus epidermidis/metabolismo , Staphylococcus epidermidis/fisiologia , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Células Cultivadas , Células Epidérmicas , Epiderme/ultraestrutura , Citometria de Fluxo , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/ultraestrutura , Microscopia Eletrônica de Transmissão , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/ultraestrutura
4.
Cell Cycle ; 11(10): 2022-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22580450

RESUMO

Autophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. It contributes to energy and organelle homeostasis and the preservation of proteome and genome integrity. Although a role in cancer is unquestionable, there are conflicting reports that autophagy can be both oncogenic and tumor suppressive, perhaps indicating that autophagy has different roles at different stages of tumor development. In this report, we address the role of autophagy in a critical stage of cancer progression-tumor cell invasion. Using a glioma cell line containing an inducible shRNA that targets the essential autophagy gene Atg12, we show that autophagy inhibition does not affect cell viability, proliferation or migration but significantly reduces cellular invasion in a 3D organotypic model. These data indicate that autophagy may play a critical role in the benign to malignant transition that is also central to the initiation of metastasis.


Assuntos
Autofagia , Proteínas/metabolismo , Animais , Proteína 12 Relacionada à Autofagia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células HEK293 , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
Neurochem Res ; 33(2): 292-300, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18041582

RESUMO

The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles in preparation for neurotransmission. Samples of cerebellum, cortex, hippocampus, substantia nigra and striatum from VMAT2-deficient mice were compared to age-matched control mice. Multivariate statistical analyses of (1)H NMR spectral profiles separated VMAT2-deficient mice from controls for all five brain regions. Although the data show that metabolic alterations are region- and age-specific, in general, analyses indicated decreases in the concentrations of taurine and creatine/phosphocreatine and increases in glutamate and N-acetyl aspartate in VMAT2-deficient mouse brain tissues. This study demonstrates the efficacy of metabolomics as a functional genomics phenotyping tool for mouse models of neurological disorders, and indicates that mild reductions in the expression of VMAT2 affect normal brain metabolism.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Animais , Feminino , Masculino , Camundongos , Ressonância Magnética Nuclear Biomolecular
6.
J Bacteriol ; 189(7): 2793-804, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17277069

RESUMO

Staphylococcus epidermidis is both a human skin commensal and an opportunistic pathogen, causing infections linked to implanted medical devices. This paper describes localized tufts of fibrillar appendages on a subpopulation (25%) of wild-type (WT) S. epidermidis NCTC 11047 cells. The fibrils (122.2 +/- 10.8 nm long) are usually in a lateral position on the cells. Fibrillar (Fib(+)) and nonfibrillar (Fib(-)) subpopulations were separated (enriched) by 34 sequential partitions of WT cells between a buffer phase and a hexadecane phase. Following enrichment, hydrophobic cells from the hexadecane phase comprised 70% Fib(+) cells and the less hydrophobic cells from the buffer phase entirely comprised Fib(-) cells. The Fib(+) and Fib(-) subpopulations did not revert on subculture (34 times) on solid medium. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell surface proteins from WT, Fib(+), and Fib(-) cells revealed two high-molecular-mass proteins (280 kDa and 230 kDa) on the WT and Fib(+) cells that were absent from the Fib(-) cells. Amino acid sequencing revealed that fragments of both the 280- and 230-kDa proteins had 100% identity to the accumulation-associated protein (Aap). Aap is known to cause biofilm formation if it is truncated by loss of the terminal A domain. Immunogold staining with anti-Aap antibodies labeled tuft fibrils of the WT and Fib(+) cells but not the cell surface of Fib(-) cells. The tufts were labeled with N-terminally directed antibodies (anti-A domain), showing that the fibrillar Aap was not truncated on the cell surface. Thus, the presence of full-length Aap correlated with the low biofilm-forming abilities of both WT and Fib(+) S. epidermidis NCTC 11047 populations. Reverse transcription-PCR showed that aap was transcribed in both Fib(+) and Fib(-) cells. We therefore propose that full-length Aap is expressed on cells of S. epidermidis NCTC 11047 as tufts of short fibrils and that fibril expression is regulated at a posttranscriptional level.


Assuntos
Proteínas de Bactérias/metabolismo , Staphylococcus epidermidis/metabolismo , Membrana Celular/metabolismo , Primers do DNA , Humanos , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/metabolismo , Pele/microbiologia , Staphylococcus epidermidis/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa