RESUMO
Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.
Assuntos
Demência Frontotemporal , Proteínas de Membrana , Proteínas do Tecido Nervoso , Doenças Neurodegenerativas , Amiloide , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.
Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ativação do Complemento , Complemento C1q/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Envelhecimento/imunologia , Animais , Líquido Cefalorraquidiano , Complemento C1q/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos/metabolismo , Redes e Vias Metabólicas , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Progranulinas , Sinapses/metabolismo , Tálamo/metabolismoRESUMO
OBJECTIVE: Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers. METHODS: We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses. We applied K-means clustering to explore connectivity heterogeneity in presymptomatic carriers at baseline. Neuropsychological measures, plasma neurofilament light chain, and gray matter volume were compared at baseline and longitudinally between the presymptomatic subgroups defined by their baseline whole-brain connectivity profiles. RESULTS: Symptomatic and presymptomatic carriers had connectivity disruptions within MAPT-syndromic networks. Compared to controls, presymptomatic carriers showed regions of connectivity alterations with age. Two presymptomatic subgroups were identified by clustering analysis, exhibiting predominantly either whole-brain hypoconnectivity or hyperconnectivity at baseline. At baseline, these two presymptomatic subgroups did not differ in neuropsychological measures, although the hypoconnectivity subgroup had greater plasma neurofilament light chain levels than controls. Longitudinally, both subgroups showed visual memory decline (vs controls), yet the subgroup with baseline hypoconnectivity also had worsening verbal memory and neuropsychiatric symptoms, and extensive bilateral mesial temporal gray matter decline. INTERPRETATION: Network connectivity alterations arise as early as the presymptomatic phase. Future studies will determine whether presymptomatic carriers' baseline connectivity profiles predict symptomatic conversion. ANN NEUROL 2023;94:632-646.
Assuntos
Demência Frontotemporal , Proteínas tau , Humanos , Estudos Transversais , Proteínas tau/genética , Encéfalo/diagnóstico por imagem , Mutação/genética , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Demência Frontotemporal/genética , BiomarcadoresRESUMO
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10-5. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.
Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Medula Espinal , Superóxido Dismutase-1 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Córtex Motor/patologia , Córtex Motor/metabolismo , Mutação/genética , Medula Espinal/patologia , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Biomarcadores/análiseRESUMO
Transmembrane protein 106B (TMEM106B) is a tightly regulated glycoprotein predominantly localized to endosomes and lysosomes. Genetic studies have implicated TMEM106B haplotypes in the development of multiple neurodegenerative diseases with the strongest effect in frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), especially in progranulin (GRN) mutation carriers. Recently, cryo-electron microscopy studies showed that a C-terminal fragment (CTF) of TMEM106B (amino acid residues 120-254) forms amyloid fibrils in the brain of patients with FTLD-TDP, but also in brains with other neurodegenerative conditions and normal ageing brain. The functional implication of these fibrils and their relationship to the disease-associated TMEM106B haplotype remain unknown. We performed immunoblotting using a newly developed antibody to detect TMEM106B CTFs in the sarkosyl-insoluble fraction of post-mortem human brain tissue from patients with different proteinopathies (n = 64) as well as neuropathologically normal individuals (n = 10) and correlated the results with age and TMEM106B haplotype. We further compared the immunoblot results with immunohistochemical analyses performed in the same study population. Immunoblot analysis showed the expected â¼30 kDa band in the sarkosyl-insoluble fraction of frontal cortex tissue in at least some individuals with each of the conditions evaluated. Most patients with GRN mutations showed an intense band representing TMEM106B CTF, whereas in most neurologically normal individuals it was absent or much weaker. In the overall cohort, the presence of TMEM106B CTFs correlated strongly with both age (rs = 0.539, P < 0.001) and the presence of the TMEM106B risk haplotype (rs = 0.469, P < 0.001). Although there was a strong overall correlation between the results of immunoblot and immunohistochemistry (rs = 0.662, P < 0.001), 27 cases (37%) were found to have higher amounts of TMEM106B CTFs detected by immunohistochemistry, including most of the older individuals who were neuropathologically normal and individuals who carried two protective TMEM106B haplotypes. Our findings suggest that the formation of sarkosyl-insoluble TMEM106B CTFs is an age-related feature which is modified by TMEM106B haplotype, potentially underlying its disease-modifying effect. The discrepancies between immunoblot and immunohistochemistry in detecting TMEM106B pathology suggests the existence of multiple species of TMEM106B CTFs with possible biological relevance and disease implications.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/patologia , Haplótipos , Microscopia Crioeletrônica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Degeneração Lobar Frontotemporal/patologia , Encéfalo/patologiaRESUMO
Nodding syndrome is an enigmatic recurrent epidemic neurologic disease that affects children in East Africa. The illness begins with vertical nodding of the head and can progress to grand mal seizures and death after several years. The most recent outbreak of nodding syndrome occurred in northern Uganda. We now describe the clinicopathologic spectrum of nodding syndrome in northern Uganda. The neuropathologic findings of 16 children or young adults with fatal nodding syndrome were correlated with the onset, duration and progression of their neurological illness. The affected individuals ranged in age from 14 to 25 years at the time of death with a duration of illness ranging from 6-15 years. All 16 cases had chronic seizures. In 10 cases, detailed clinical histories were available and showed that three individuals had a clinical course that was predominantly characterized by epilepsy, whereas the other seven individuals had progressive cognitive, behavioural and motor decline, in addition to epilepsy. The main neuropathologic findings included: tau pathology (16/16 cases), cerebellar degeneration (11/16 cases) and white matter degeneration (7/16 cases). The tau pathology was characterized by filamentous tau-positive deposits in the form of neurofibrillary tangles, pre-tangles and dot-like grains and threads in the neuropil. All cases showed some degree of tau pathology in the neocortex and in the locus coeruleus with frequent involvement of the substantia nigra and tegmental nuclei and lesser involvement of other grey matter sites, but there was a lack of glial tau pathology. The tau pathology in the neocortex showed a multifocal superficial laminar pattern. We conclude that nodding syndrome is a clinicopathological entity associated consistently with tau pathology, but our observations did not establish the cause of the disease, or an explanation for the tau pathology.
Assuntos
Epilepsia , Síndrome do Cabeceio , Criança , Adulto Jovem , Humanos , Adolescente , Adulto , Uganda/epidemiologia , Síndrome do Cabeceio/epidemiologia , Síndrome do Cabeceio/complicações , Síndrome do Cabeceio/patologia , Epilepsia/patologia , Emaranhados Neurofibrilares/patologia , Convulsões/complicaçõesRESUMO
INTRODUCTION: Biomarkers of TDP-43 pathology are needed to distinguish frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) from phenotypically related disorders. While normal physiological TDP-43 is not a promising biomarker, low-resolution techniques have suggested truncated forms of TDP-43 may be specific to TDP-43 pathology. To advance biomarker efforts for FTLD-TDP, we employed a high-resolution structural technique to characterize TDP-43 post-translational modifications in FTLD-TDP. METHODS: High-resolution mass spectrometry was used to characterize TDP-43 proteoforms in brain tissue from FTLD-TDP, non-TDP-43 dementias and neuropathologically unaffected cases. Findings were then verified in a larger cohort of FTLD-TDP and non-TDP-43 dementias via targeted quantitative mass spectrometry. RESULTS: In the discovery phase, truncated TDP-43 identified FTLD-TDP with 85% sensitivity and 100% specificity. The verification phase revealed similar findings, with 83% sensitivity and 89% specificity. DISCUSSION: The concentration of truncated TDP-43 proteoforms-in particular, in vivo generated C-terminal fragments-have high diagnostic accuracy for FTLD-TDP. HIGHLIGHTS: Discovery: Truncated TDP-43 differentiates FTLD-TDP from related dementias. Verification: Truncated TDP-43 concentration has high accuracy for FTLD-TDP. TDP-43 proteoforms <28 kDa have highest discriminatory power for TDP-43 pathology.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , BiomarcadoresRESUMO
INTRODUCTION: Cardiovascular health is important for brain aging, yet its role in the clinical manifestation of autosomal dominant or atypical forms of dementia has not been fully elucidated. We examined relationships between Life's Simple 7 (LS7) and clinical trajectories in individuals with autosomal dominant frontotemporal lobar degeneration (FTLD). METHODS: Two hundred forty-seven adults carrying FTLD pathogenic genetic variants (53% asymptomatic) and 189 non-carrier controls completed baseline LS7, and longitudinal neuroimaging and neuropsychological testing. RESULTS: Among variant carriers, higher baseline LS7 is associated with slower accumulation of frontal white matter hyperintensities (WMHs), as well as slower memory and language declines. Higher baseline LS7 associated with larger baseline frontotemporal volume, but not frontotemporal volume trajectories. DISCUSSION: Better baseline cardiovascular health related to slower cognitive decline and accumulation of frontal WMHs in autosomal dominant FTLD. Optimizing cardiovascular health may be an important modifiable approach to bolster cognitive health and brain integrity in FTLD. HIGHLIGHTS: Better cardiovascular health associates with slower cognitive decline in frontotemporal lobar degeneration (FTLD). Lifestyle relates to the accumulation of frontal white matter hyperintensities in FTLD. More optimal cardiovascular health associates with greater baseline frontotemporal lobe volume. Optimized cardiovascular health relates to more favorable outcomes in genetic dementia.
Assuntos
Progressão da Doença , Degeneração Lobar Frontotemporal , Testes Neuropsicológicos , Humanos , Masculino , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Pessoa de Meia-Idade , Testes Neuropsicológicos/estatística & dados numéricos , Imageamento por Ressonância Magnética , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Heterozigoto , Idoso , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , NeuroimagemRESUMO
AIMS: Psychotic symptoms are increasingly recognized as a distinguishing clinical feature in patients with dementia due to frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Within this group, carriers of the C9orf72 repeat expansion are particularly prone to develop delusions and hallucinations. METHODS: The present retrospective study sought to provide novel details about the relationship between FTLD-TDP pathology and the presence of psychotic symptoms during life. RESULTS: We found that FTLD-TDP subtype B was more frequent in patients with psychotic symptoms than in those without. This relationship was present even when corrected for the presence of C9orf72 mutation, suggesting that pathophysiological processes leading to the development of subtype B pathology may increase the risk of psychotic symptoms. Within the group of FTLD-TDP cases with subtype B pathology, psychotic symptoms tended to be associated with a greater burden of TDP-43 pathology in the white matter and a lower burden in lower motor neurons. When present, pathological involvement of motor neurons was more likely to be asymptomatic in patients with psychosis. CONCLUSIONS: This work suggests that psychotic symptoms in patients with FTLD-TDP tend to be associated with subtype B pathology. This relationship is not completely explained by the effects of the C9orf72 mutation and raises the possibility of a direct link between psychotic symptoms and this particular pattern of TDP-43 pathology.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Transtornos Psicóticos , Humanos , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Transtornos Psicóticos/complicações , Estudos RetrospectivosRESUMO
Several studies using cryogenic electron microscopy (cryo-EM) techniques recently reported the isolation and characterization of novel protein filaments, composed of a C-terminal fragment (CTF) of the endolysosomal transmembrane protein 106B (TMEM106B), from human post-mortem brain tissue with various neurodegenerative conditions and normal aging. Genetic variation in TMEM106B is known to influence the risk and presentation of several neurodegenerative diseases, especially frontotemporal dementia (FTD) caused by mutations in the progranulin gene (GRN). To further elucidate the significance of TMEM106B CTF, we performed immunohistochemistry with antibodies directed against epitopes within the filament-forming C-terminal region of TMEM106B. Accumulation of TMEM106B C-terminal immunoreactive (TMEM-ir) material was a common finding in all the conditions evaluated, including frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), Alzheimer's disease, tauopathies, synucleinopathies and neurologically normal aging. TMEM-ir material was present in a wide range of brain cell types and in a broad neuroanatomical distribution; however, there was no co-localization of TMEM-ir material with other neurodegenerative proteins in cellular inclusions. In most conditions, the presence and abundance of TMEM-ir aggregates correlated strongly with patient age and showed only a weak correlation with the TMEM106B haplotype or the primary pathological diagnosis. However, all patients with FTD caused by GRN mutations were found to have high levels of TMEM-ir material, including several who were relatively young (< 60 years). These findings suggest that the accumulation of TMEM106B CTF is a common age-related phenomenon, which may reflect lysosomal dysfunction. Although its significance in most neurodegenerative conditions remains uncertain, the consistent finding of extensive TMEM-ir material in cases of FTLD-TDP with GRN mutations further supports a pathomechanistic role of TMEM106B and lysosomal dysfunction in this specific disease population.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Doenças Neurodegenerativas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Degeneração Lobar Frontotemporal/genética , Envelhecimento/genéticaRESUMO
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genéticaRESUMO
At present, no research criteria exist for the diagnosis of prodromal behavioural variant frontotemporal dementia (bvFTD), though early detection is of high research importance. Thus, we sought to develop and validate a proposed set of research criteria for prodromal bvFTD, termed 'mild behavioural and/or cognitive impairment in bvFTD' (MBCI-FTD). Participants included 72 participants deemed to have prodromal bvFTD; this comprised 55 carriers of a pathogenic mutation known to cause frontotemporal lobar degeneration, and 17 individuals with autopsy-confirmed frontotemporal lobar degeneration. All had mild behavioural and/or cognitive changes, as judged by an evaluating clinician. Based on extensive clinical workup, the prodromal bvFTD group was divided into a Development Group (n = 22) and a Validation Group (n = 50). The Development Group was selected to be the subset of the prodromal bvFTD group for whom we had the strongest longitudinal evidence of conversion to bvFTD, and was used to develop the MBCI-FTD criteria. The Validation Group was the remainder of the prodromal bvFTD group and was used as a separate sample on which to validate the criteria. Familial non-carriers were included as healthy controls (n = 165). The frequencies of behavioural and neuropsychiatric features, neuropsychological deficits, and social cognitive dysfunction in the prodromal bvFTD Development Group and healthy controls were assessed. Based on sensitivity and specificity analyses, seven core features were identified: apathy without moderate-severe dysphoria, behavioural disinhibition, irritability/agitation, reduced empathy/sympathy, repetitive behaviours (simple and/or complex), joviality/gregariousness, and appetite changes/hyperorality. Supportive features include a neuropsychological profile of impaired executive function or naming with intact orientation and visuospatial skills, reduced insight for cognitive or behavioural changes, and poor social cognition. Three core features or two core features plus one supportive feature are required for the diagnosis of possible MBCI-FTD; probable MBCI-FTD requires imaging or biomarker evidence, or a pathogenic genetic mutation. The proposed MBCI-FTD criteria correctly classified 95% of the prodromal bvFTD Development Group, and 74% of the prodromal bvFTD Validation Group, with a false positive rate of <10% in healthy controls. Finally, the MBCI-FTD criteria were tested on a cohort of individuals with prodromal Alzheimer's disease, and the false positive rate of diagnosis was 11-16%. Future research will need to refine the sensitivity and specificity of these criteria, and incorporate emerging biomarker evidence.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença de Alzheimer/psicologia , Biomarcadores , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Humanos , Testes NeuropsicológicosRESUMO
Frontotemporal dementia (FTD) is a devastating neurodegenerative condition for which there is currently no effective treatment. Although it is much less common than Alzheimer's disease, the impact of FTD is increased by its relatively early onset and high heritability. Clinical heterogeneity and overlap with other neurodegenerative and psychiatric syndromes complicate diagnosis. However, recent advances in our understanding of the molecular basis of FTD provide a foundation for the development of much-needed biomarkers and targeted therapies. This review provides a summary of the recently revised clinical criteria for FTD, highlights diagnostic challenges, briefly summarizes recent molecular discoveries and then focuses on promising developments in biomarkers and clinical trials.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Biomarcadores , SíndromeRESUMO
INTRODUCTION: Empathy relies on fronto-cingular and temporal networks that are selectively vulnerable in behavioral variant frontotemporal dementia (bvFTD). This study modeled when in the disease process empathy changes begin, and how they progress. METHODS: Four hundred thirty-one individuals with asymptomatic genetic FTD (n = 114), genetic and sporadic bvFTD (n = 317), and 163 asymptomatic non-carrier controls were enrolled. In sub-samples, we investigated empathy measured by the informant-based Interpersonal Reactivity Index (IRI) at each disease stage and over time (n = 91), and its correspondence to underlying atrophy (n = 51). RESULTS: Empathic concern (estimate = 4.38, 95% confidence interval [CI] = 2.79, 5.97; p < 0.001) and perspective taking (estimate = 5.64, 95% CI = 3.81, 7.48; p < 0.001) scores declined between the asymptomatic and very mild symptomatic stages regardless of pathogenic variant status. More rapid loss of empathy corresponded with subcortical atrophy. DISCUSSION: Loss of empathy is an early and progressive symptom of bvFTD that is measurable by IRI informant ratings and can be used to monitor behavior in neuropsychiatry practice and treatment trials.
Assuntos
Empatia , Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Testes Neuropsicológicos , Atrofia , Imageamento por Ressonância MagnéticaRESUMO
INTRODUCTION: Caregivers of patients with frontotemporal lobar degeneration (FTLD) spectrum disorders experience tremendous burden, which has been associated with the neuropsychiatric and behavioral features of the disorders. METHODS: In a sample of 558 participants with FTLD spectrum disorders, we performed multiple-variable regressions to identify the behavioral features that were most strongly associated with caregiver burden, as measured by the Zarit Burden Interview, at each stage of disease. RESULTS: Apathy and disinhibition, as rated by both clinicians and caregivers, as well as clinician-rated psychosis, showed the strongest associations with caregiver burden, a pattern that was consistent when participants were separated cross-sectionally by disease stage. In addition, behavioral features appeared to contribute most to caregiver burden in patients with early dementia. DISCUSSION: Caregivers should be provided with early education on the management of the behavioral features of FTLD spectrum disorders. Interventions targeting apathy, disinhibition, and psychosis may be most useful to reduce caregiver burden.
Assuntos
Apatia , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Sobrecarga do Cuidador , Cuidadores/psicologia , Demência Frontotemporal/psicologia , Degeneração Lobar Frontotemporal/psicologia , HumanosRESUMO
Frontotemporal lobar degeneration with TPD-43-immunoreactive pathology (FTLD-TDP) is subclassified based on the type and cortical laminar distribution of neuronal inclusions. The relevance of these pathological subtypes is supported by the presence of relatively specific clinical and genetic correlations. Recent evidence suggests that the different patterns of pathology are a reflection of biochemical differences in the pathological TDP-43 species, each of which is influenced by differing genetic factors. As a result, patient FTLD-TDP subtype may be an important factor to consider when developing biomarkers and targeted therapies for frontotemporal dementia. In this chapter, we first describe the pathological features, clinical and genetic correlations of the currently recognized FTLD-TDP subtypes. We then discuss a number of novel patterns of TDP-43 pathology. Finally, we provide an overview of what is currently known about the biochemical basis of the different FTLD-TDP subtypes and how this may explain the observed phenotypic and pathological heterogeneity.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença de Pick , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Humanos , Corpos de InclusãoRESUMO
Extracellular vesicles (EVs) are secreted by myriad cells in culture and also by unicellular organisms, and their identification in mammalian fluids suggests that EV release also occurs at the organism level. However, although it is clearly important to better understand EVs' roles in organismal biology, EVs in solid tissues have received little attention. Here, we modified a protocol for EV isolation from primary neural cell culture to collect EVs from frozen whole murine and human neural tissues by serial centrifugation and purification on a sucrose gradient. Quantitative proteomics comparing brain-derived EVs from nontransgenic (NTg) and a transgenic amyotrophic lateral sclerosis (ALS) mouse model, superoxide dismutase 1 (SOD1)G93A, revealed that these EVs contain canonical exosomal markers and are enriched in synaptic and RNA-binding proteins. The compiled brain EV proteome contained numerous proteins implicated in ALS, and EVs from SOD1G93A mice were significantly depleted in myelin-oligodendrocyte glycoprotein compared with those from NTg animals. We observed that brain- and spinal cord-derived EVs, from NTg and SOD1G93A mice, are positive for the astrocyte marker GLAST and the synaptic marker SNAP25, whereas CD11b, a microglial marker, was largely absent. EVs from brains and spinal cords of the SOD1G93A ALS mouse model, as well as from human SOD1 familial ALS patient spinal cord, contained abundant misfolded and nonnative disulfide-cross-linked aggregated SOD1. Our results indicate that CNS-derived EVs from an ALS animal model contain pathogenic disease-causing proteins and suggest that brain astrocytes and neurons, but not microglia, are the main EV source.
Assuntos
Esclerose Lateral Amiotrófica/genética , Astrócitos/patologia , Vesículas Extracelulares/enzimologia , Neurônios/patologia , Dobramento de Proteína , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/patologia , Glicoproteínas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Proteômica , Medula Espinal/patologia , Superóxido Dismutase-1/metabolismoRESUMO
Frontotemporal lobar degeneration with TDP-43 immunoreactive (TDP-ir) inclusions (FTLD-TDP) is sub-classified based on the pattern of neocortical pathology, with each subtype showing clinical and genetic correlations. Recent studies indicate that accurate subtyping of cases may be important to help identify genetic risk factors and develop biomarkers. Although most FTLD-TDP cases are easily classified, some do not match well to one of the existing subtypes. In particular, cases with the C9orf72 repeat expansion (C9+) have been reported to show FTLD-TDP type A, type B or a combination of A and B pathology (A + B). In our series of FTLD-TDP cases, we found that those lacking the C9orf72 mutation (non-C9) were all readily classified as type A (n = 29), B (n = 16) or C (n = 18), using current criteria and standard observational methods. This classification was validated using non-biased hierarchical cluster analysis (HCA) of neocortical pathology data. In contrast, only 14/28 (50%) of the C9+ cases were classified as either pure type A or pure type B, with the remainder showing A + B features. HCA confirmed separation of the C9+ cases into three groups. We then investigated whether patterns of subcortical TDP-ir pathology helped to classify the difficult cases. For the non-C9 cases, each subtype showed a consistent pattern of subcortical involvement with significant differences among the groups. The most distinguishing features included white matter threads, neuronal intranuclear inclusions in hippocampus and striatum, and delicate threads in CA1 in type A; glial cytoplasmic inclusions in white matter and neuronal cytoplasmic inclusions (NCI) in lower motor neurons in type B; compact NCI in striatum in type C. HCA of the C9+ cases based on subcortical features increased the number that clustered with the non-C9 type A (46%) or non-C9 type B (36%); however, there remained a C9+ group with A + B features (18%). These findings suggest that most FTLD-TDP cases can be classified using existing criteria and that each group also shows characteristic subcortical TDP-ir pathology. However, C9+ cases may be unique in the degree to which their pathology overlaps between FTLD-TDP types A and B.
Assuntos
Proteína C9orf72/genética , Demência Frontotemporal/classificação , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , MutaçãoRESUMO
Aggregation of hyperphosphorylated TDP-43 is the hallmark pathological feature of the most common molecular form of frontotemporal lobar degeneration (FTLD-TDP) and in the vast majority of cases with amyotrophic lateral sclerosis (ALS-TDP). However, most of the specific phosphorylation sites remain to be determined, and their relevance regarding pathogenicity and clinical and pathological phenotypic diversity in FTLD-TDP and ALS-TDP remains to be identified. Here, we generated a novel antibody raised against TDP-43 phosphorylated at serine 375 (pTDP-43S375) located in the low-complexity domain, and used it to investigate the presence of S375 phosphorylation in a series (n = 44) of FTLD-TDP and ALS-TDP cases. Immunoblot analysis demonstrated phosphorylation of S375 to be a consistent feature of pathological TDP-43 species, including full-length and C-terminal fragments, in all FTLD-TDP subtypes examined (A-C) and in ALS-TDP. Of particular interest, however, detailed immunohistochemical analysis showed striking differences in the immunoreactivity profile of inclusions with the pTDP-43S375 antiserum among pathological subtypes. TDP-43 pathology of ALS-TDP, FTLD-TDP type B (including cases with the C9orf72 mutation), and FTLD-TDP type C all showed strong pTDP-43S375 immunoreactivity that was similar in amount and morphology to that seen with an antibody against TDP-43 phosphorylated at S409/410 used as the gold standard. In stark contrast, TDP-43 pathology in sporadic and genetic forms of FTLD-TDP type A (including cases with GRN and C9orf72 mutations) was found to be almost completely negative by pTDP-43S375 immunohistochemistry. These data suggest a subtype-specific, conformation-dependent binding of pTDP-43S375 antiserum to TDP-43 aggregates, consistent with the idea of distinct structural TDP-43 conformers (i.e., TDP-43 strains) as the molecular basis for the phenotypic diversity in TDP-43 proteinopathies.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/química , Feminino , Demência Frontotemporal/patologia , Humanos , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Conformação ProteicaRESUMO
Cerebrospinal fluid (CSF) biomarkers amyloid-ß and tau have been validated for the antemortem diagnosis of Alzheimer disease (AD) and are included in the AT(N) research framework for AD. Recently, an AT(N) CSF profile has been described for dementia with Lewy bodies (DLB), a disorder which is difficult to distinguish clinically from AD, particularly early in the disease course. Herein we describe a 71-year old male who presented with an atypical dementia syndrome including years of stability after an initial abrupt decline, marked visuospatial dysfunction, and relative sparing of memory. CSF biomarkers combined with the pattern of cognitive symptoms made AD unlikely and were consistent with DLB. This classification was confirmed clinically, with the emergence of classic DLB symptoms, and at postmortem pathologic examination. This case highlights the role for AD CSF biomarkers in facilitating earlier diagnosis of non-Alzheimer neurodegenerative dementias.