Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G163-G175, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988603

RESUMO

The growing incidence of human diseases involving inflammation and increased gut permeability makes the quest for protective functional foods more crucial than ever. Propionibacterium freudenreichii (P. freudenreichii) is a beneficial bacterium used in the dairy and probiotic industries. Selected strains exert anti-inflammatory effects, and the present work addresses whether the P. freudenreichii CIRM-BIA129, consumed daily in a preventive way, could protect mice from acute colitis induced by dextran sodium sulfate (DSS), and more precisely, whether it could protect from intestinal epithelial breakdown induced by inflammation. P. freudenreichii CIRM-BIA129 mitigated colitis severity and inhibited DSS-induced permeability. It limited crypt length reduction and promoted the expression of zonula occludens-1 (ZO-1), without reducing interleukin-1ß mRNA (il-1ß) expression. In vitro, P. freudenreichii CIRM-BIA129 prevented the disruption of a Caco-2 monolayer induced by proinflammatory cytokines. It increased transepithelial electrical resistance (TEER) and inhibited permeability induced by inflammation, along with an increased ZO-1 expression. Extracellular vesicles (EVs) from P. freudenreichii CIRM-BIA129, carrying the surface layer protein (SlpB), reproduced the protective effect of P. freudenreichii CIRM-BIA129. A mutant strain deleted for slpB (ΔslpB), or EVs from this mutant strain, had lost their protective effects and worsened both DSS-induced colitis and inflammation in vivo. These results shown that P. freudenreichii CIRM-BIA129 daily consumption has the potential to greatly alleviate colitis symptoms and, particularly, to counter intestinal epithelial permeability induced by inflammation by restoring ZO-1 expression through mechanisms involving S-layer protein B. They open new avenues for the use of probiotic dairy propionibacteria and/or postbiotic fractions thereof, in the context of gut permeability.NEW & NOTEWORTHY Propionibacterium freudenreichii reduces dextran sodium sulfate (DSS)-induced intestinal permeability in vivo. P. freudenreichii does not inhibit inflammation but damages linked to inflammation. P. freudenreichii inhibits intestinal epithelial breakdown through S-layer protein B. The protective effects of P. freudenreichii depend on S-layer protein B. Extracellular vesicles from P. freudenreichii CB 129 mimic the protective effect of the probiotic.


Assuntos
Colite , Propionibacterium freudenreichii , Receptores Fc , Sulfatos , Humanos , Camundongos , Animais , Células CACO-2 , Dextranos/farmacologia , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças
2.
Appl Environ Microbiol ; 90(3): e0193623, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376234

RESUMO

In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE: To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Animais , Fermentação , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Aminoácidos/metabolismo , Glycine max , Sacarose/metabolismo , Lactobacillus delbrueckii/genética , Iogurte/microbiologia
3.
Appl Environ Microbiol ; 87(20): e0105521, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347516

RESUMO

Nutritional dependencies, especially those regarding nitrogen sources, govern numerous microbial positive interactions. As for lactic acid bacteria (LAB), responsible for the sanitary, organoleptic, and health properties of most fermented products, such positive interactions have previously been studied between yogurt bacteria. However, they have never been exploited to create artificial cocultures of LAB that would not necessarily coexist naturally, i.e., from different origins. The objective of this study was to promote LAB positive interactions, based on nitrogen dependencies in cocultures, and to investigate how these interactions affect some functional outputs, e.g., acidification rates, carbohydrate consumption, and volatile-compound production. The strategy was to exploit both proteolytic activities and amino acid auxotrophies of LAB. A chemically defined medium was thus developed to specifically allow the growth of six strains used, three proteolytic and three nonproteolytic. Each of the proteolytic strains, Enterococcus faecalis CIRM-BIA2412, Lactococcus lactis NCDO2125, and CIRM-BIA244, was cocultured with each one of the nonproteolytic LAB strains, L. lactis NCDO2111 and Lactiplantibacillus plantarum CIRM-BIA465 and CIRM-BIA1524. Bacterial growth was monitored using compartmented chambers to compare growth in mono- and cocultures. Acidification, carbohydrate consumption, and volatile-compound production were evaluated in direct cocultures. Each proteolytic strain induced different types of interactions: strongly positive interactions, weakly positive interactions, and no interactions were seen with E. faecalis CIRM-BIA2412, L. lactis NCDO2125, and L. lactis CIRM-BIA244, respectively. Strong interactions were associated with higher concentrations of tryptophan, valine, phenylalanine, leucine, isoleucine, and peptides. They led to higher acidification rates, lower pH, higher raffinose utilization, and higher concentrations of five volatile compounds. IMPORTANCE Interactions of lactic acid bacteria (LAB) are often studied in association with yeasts or propionibacteria in various fermented food products, and the mechanisms underlying their interactions are being quite well characterized. Concerning interactions between LAB, they have mainly been investigated to test antagonistic interactions. Understanding how they can positively interact could be useful in multiple food-related fields: production of fermented food products with enhanced functional properties or fermentation of new food matrices. This study investigated the exploitation of the proteolytic activity of LAB strains to promote positive interactions between proteolytic and nonproteolytic strains. The results suggest that proteolytic LAB do not equally stimulate nonproteolytic LAB and that the stronger the interactions between LAB are, the more functional outputs we can expect. Thus, this study gives insight into how to create new associations of LAB strains and to guarantee their positive interactions.


Assuntos
Lactobacillales/metabolismo , Interações Microbianas , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Animais , Técnicas de Cocultura , Microbiologia de Alimentos , Lactobacillales/crescimento & desenvolvimento , Lactose/metabolismo , Lupinus , Leite , Peptídeos , Proteólise , Rafinose/metabolismo , Sacarose/metabolismo , Compostos Orgânicos Voláteis/metabolismo
4.
Food Microbiol ; 86: 103317, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703862

RESUMO

The famous French dessert "ile flottante" consists of a sweet egg white foam floating on a vanilla custard cream, which contains highly nutritive raw materials, including milk, sugar and egg. Spoilage issues are therefore a key concern for the manufacturers. This study explored the bacterial diversity of 64 spoiled custard cream desserts manufactured by 2 French companies. B. cereus group bacteria, coagulase negative Staphylococcus, Enterococcus and Leuconostoc spp. were isolated from spoiled products. Thirty-one bacterial isolates representative of the main spoilage species were tested for their spoilage abilities. Significant growth and pH decrease were observed regardless of species. While off-odours were detected with B. cereus group and staphylococci, yoghurt odours were detected with Enterococcus spp. and Leuconostoc spp. B. cereus group bacteria produced various esters and several compounds derived from amino acid and sugar metabolism. Most Staphylococci produced phenolic compounds. Enterococcus spp. and Leuconostoc spp. isolates produced high levels of compounds derived from sugar metabolism. Each type of spoilage bacteria was associated with a specific volatile profile and lactic acid was identified as a potential marker of spoilage of custard cream-based desserts. These findings provide valuable information for manufacturers to improve food spoilage detection and prevention of chilled desserts made with milk and egg.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Clara de Ovo/microbiologia , Microbiologia de Alimentos , Leite/microbiologia , Animais , Bactérias/genética , Galinhas , Humanos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Paladar
5.
Food Microbiol ; 89: 103410, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32138982

RESUMO

This study explores the ability of lactic acid bacteria (LAB) to ferment soy juice. The ability of 276 LAB strains from 25 species to ferment the principal soy carbohydrates, sucrose, raffinose or stachyose was tested in synthetic media and a soy juice. Fermented soy juices (FSJs) were characterized for their odor. Selected FSJs were characterized by targeted metabolomics. All Streptococcus, 83% of Leuconostoc and Lactobacillus and 41% of Lactococcus strains were sucrose-positive, while only 36% of all the LAB strains tested were raffinose-positive and 6% stachyose-positive. Nearly all (97%) the sucrose-positive strains fermented soy juice, indicating that an ability to use sucrose is a good criterion to select strains for soy juice fermentation. Among the most efficient acidifying strains, 46 FSJs had an odor deemed to be acceptable. FSJ composition was dependent on both species and strains: 17/46 strains deglycosylated soy juice isoflavones, the 27 S. thermophilus strains converted a mean 4.4 ± 0.1 g/L of sucrose into 3.0 ± 0.1 g/L of lactic acid versus 5.2 ± 0.1 g/L into 2.2 ± 0.1 g/L for the 18 Lactobacillus and one Lactococcus strains. This study highlights the diversity of the metabolic profiles of LAB strains in soy juice fermentation.


Assuntos
Fermentação , Alimentos Fermentados/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Lactobacillales/metabolismo , Odorantes/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Lactobacillus/metabolismo , Lactococcus/metabolismo , Leuconostoc/metabolismo , Glycine max
6.
J Dairy Sci ; 100(9): 6918-6929, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28711258

RESUMO

Cheese flavor development is directly connected to the metabolic activity of microorganisms used during its manufacture, and the selection of metabolically diverse strains represents a potential tool for the production of cheese with novel and distinct flavor characteristics. Strains of Lactobacillus have been proven to promote the development of important cheese flavor compounds. As cheese production and ripening are long-lasting and expensive, model systems have been developed with the purpose of rapidly screening lactic acid bacteria for their flavor potential. The biodiversity of 10 strains of the Lactobacillus casei group was evaluated in 2 model systems and their volatile profiles were determined by gas chromatography-mass spectrometry. In model system 1, which represented a mixture of free AA, inoculated cells did not grow. In total, 66 compounds considered as flavor contributors were successfully identified, most of which were aldehydes, acids, and alcohols produced via AA metabolism by selected strains. Three strains (DPC2071, DPC3990, and DPC4206) had the most diverse metabolic capacities in model system 1. In model system 2, which was based on processed cheese curd, inoculated cells increased in numbers over incubation time. A total of 47 compounds were identified, and they originated not only from proteolysis, but also from glycolytic and lipolytic processes. Tested strains produced ketones, acids, and esters. Although strains produced different abundances of volatiles, diversity was less evident in model system 2, and only one strain (DPC4206) was distinguished from the others. Strains identified as the most dissimilar in both of the model systems could be more useful for cheese flavor diversification.


Assuntos
Queijo/microbiologia , Indústria de Laticínios/métodos , Aromatizantes/metabolismo , Lacticaseibacillus casei/metabolismo , Paladar , Animais , Aromatizantes/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Lactobacillus , Lacticaseibacillus casei/classificação
7.
BMC Genomics ; 17(1): 1007, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931189

RESUMO

BACKGROUND: Propionibacterium freudenreichii is an Actinobacterium widely used in the dairy industry as a ripening culture for Swiss-type cheeses, for vitamin B12 production and some strains display probiotic properties. It is reportedly a hardy bacterium, able to survive the cheese-making process and digestive stresses. RESULTS: During this study, P. freudenreichii CIRM-BIA 138 (alias ITG P9), which has a generation time of five hours in Yeast Extract Lactate medium at 30 °C under microaerophilic conditions, was incubated for 11 days (9 days after entry into stationary phase) in a culture medium, without any adjunct during the incubation. The carbon and free amino acids sources available in the medium, and the organic acids produced by the strain, were monitored throughout growth and survival. Although lactate (the preferred carbon source for P. freudenreichii) was exhausted three days after inoculation, the strain sustained a high population level of 9.3 log10 CFU/mL. Its physiological adaptation was investigated by RNA-seq analysis and revealed a complete disruption of metabolism at the entry into stationary phase as compared to exponential phase. CONCLUSIONS: P. freudenreichii adapts its metabolism during entry into stationary phase by down-regulating oxidative phosphorylation, glycolysis, and the Wood-Werkman cycle by exploiting new nitrogen (glutamate, glycine, alanine) sources, by down-regulating the transcription, translation and secretion of protein. Utilization of polyphosphates was suggested.


Assuntos
Adaptação Fisiológica , Propionibacterium freudenreichii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Regulação para Baixo , Glicólise/genética , Concentração de Íons de Hidrogênio , Metaboloma , Fosforilação Oxidativa , Oxigênio/metabolismo , Propionibacterium freudenreichii/genética , Propionibacterium freudenreichii/crescimento & desenvolvimento , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , RNA Bacteriano/metabolismo , Análise de Sequência de RNA
8.
Appl Environ Microbiol ; 82(1): 202-10, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497453

RESUMO

In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening.


Assuntos
Queijo/análise , Queijo/microbiologia , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Aminoácidos/análise , Contagem de Colônia Microbiana , Fermentação , Microbiologia de Alimentos
9.
Appl Environ Microbiol ; 82(15): 4641-4651, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235433

RESUMO

UNLABELLED: Propionibacterium freudenreichii is used as a cheese-ripening starter and as a probiotic. Its reported physiological effects at the gut level, including modulation of bifidobacteria, colon epithelial cell proliferation and apoptosis, and intestinal inflammation, rely on active metabolism in situ Survival and activity are thus key factors determining its efficacy, creating stress adaptation and tolerance bottlenecks for probiotic applications. Growth media and growth conditions determine tolerance acquisition. We investigated the possibility of using sweet whey, a dairy by-product, to sustain P. freudenreichii growth. It was used at different concentrations (dry matter) as a culture medium. Using hyperconcentrated sweet whey led to enhanced multistress tolerance acquisition, overexpression of key stress proteins, and accumulation of intracellular storage molecules and compatible solutes, as well as enhanced survival upon spray drying. A simplified process from growth to spray drying of propionibacteria was developed using sweet whey as a 2-in-1 medium to both culture P. freudenreichii and protect it from heat and osmotic injury without harvesting and washing steps. As spray drying is far cheaper and more energy efficient than freeze-drying, this work opens new perspectives for the sustainable development of new starter and probiotic preparations with enhanced robustness. IMPORTANCE: In this study, we demonstrate that sweet whey, a dairy industry by-product, not only allows the growth of probiotic dairy propionibacteria, but also triggers a multitolerance response through osmoadaptation and general stress response. We also show that propionibacteria accumulate compatible solutes under these culture conditions, which might account for the limited loss of viability after spray drying. This work opens new perspectives for more energy-efficient production of dairy starters and probiotics.


Assuntos
Meios de Cultura/metabolismo , Propionibacterium freudenreichii/fisiologia , Soro do Leite/metabolismo , Meios de Cultura/química , Propionibacterium freudenreichii/crescimento & desenvolvimento , Estresse Fisiológico , Soro do Leite/química
10.
Appl Microbiol Biotechnol ; 100(5): 2335-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685674

RESUMO

New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.


Assuntos
Queijo/microbiologia , Lactobacillus/química , Leuconostoc/química , Compostos Orgânicos Voláteis/análise , Carga Bacteriana , Meios de Cultura/química , Lactobacillus/crescimento & desenvolvimento , Leuconostoc/crescimento & desenvolvimento , Metabolômica , Modelos Biológicos
11.
Food Microbiol ; 46: 145-153, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475278

RESUMO

Microorganisms play an important role in the development of cheese flavor. The aim of this study was to develop an approach to facilitate screening of various cheese-related bacteria for their ability to produce aroma compounds. We combined i) curd-based slurry medium incubated under conditions mimicking cheese manufacturing and ripening, ii) powerful method of extraction of volatiles, headspace trap, coupled to gas chromatography-mass spectrometry (HS-trap-GC-MS), and iii) metabolomics-based method of data processing using the XCMS package of R software and multivariate analysis. This approach was applied to eleven species: five lactic acid bacteria (Leuconostoc lactis, Lactobacillus sakei, Lactobacillus paracasei, Lactobacillus fermentum, and Lactobacillus helveticus), four actinobacteria (Brachybacterium articum, Brachybacterium tyrofermentans, Brevibacterium aurantiacum, and Microbacterium gubbeenense), Propionibacterium freudenreichii, and Hafnia alvei. All the strains grew, with maximal populations ranging from 7.4 to 9.2 log (CFU/mL). In total, 52 volatile aroma compounds were identified, of which 49 varied significantly in abundance between bacteria. Principal component analysis of volatile profiles differentiated species by their ability to produce ethyl esters (associated with Brachybacteria), sulfur compounds and branched-chain alcohols (H. alvei), branched-chain acids (H. alvei, P. freudenreichii and L. paracasei), diacetyl and related carbonyl compounds (M. gubbeenense and L. paracasei), among others.


Assuntos
Bactérias/metabolismo , Queijo/microbiologia , Aromatizantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Bactérias/química , Bactérias/classificação , Bactérias/genética , Queijo/análise , Aromatizantes/química
12.
Appl Environ Microbiol ; 80(2): 751-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242250

RESUMO

Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1(T) for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis.


Assuntos
Queijo/microbiologia , Esterases/metabolismo , Lipólise , Propionibacterium/enzimologia , Esterases/genética , Microbiologia de Alimentos , Técnicas de Inativação de Genes , Variação Genética , Dados de Sequência Molecular , Propionibacterium/genética
13.
Food Res Int ; 168: 112691, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120186

RESUMO

Bisifusarium domesticum is among the main molds used during cheese-making for its "anticollanti" property that prevents the sticky smear defect of some cheeses. Previously, numerous cheese rinds were sampled to create a working collection and not only did we isolate B. domesticum but we observed a completely unexpected diversity of "Fusarium-like" fungi belonging to the Nectriaceae family. Four novel cheese-associated species belonging to two genera were described: Bisifusarium allantoides, Bisifusarium penicilloides, Longinectria lagenoides, and Longinectria verticilliformis. In this study, we thus aimed at determining their potential functional impact during cheese-making by evaluating their lipolytic and proteolytic activities as well as their capacity to produce volatile (HS-Trap GC-MS) and non-volatile secondary metabolites (HPLC & LC-Q-TOF). While all isolates were proteolytic and lipolytic, higher activities were observed at 12 °C for several B. domesticum, B. penicilloides and L. lagenoides isolates, which is in agreement with typical cheese ripening conditions. Using volatilomics, we identified multiple cheese-related compounds, especially ketones and alcohols. B. domesticum and B. penicilloides isolates showed higher aromatic potential although compounds of interest were also produced by B. allantoides and L. lagenoides. These species were also lipid producers. Finally, an untargeted extrolite analysis suggested a safety status of these strains as no known mycotoxins were produced and revealed the production of potential novel secondary metabolites. Biopreservation tests performed with B. domesticum suggested that it may be an interesting candidate for biopreservation applications in the cheese industry in the future.


Assuntos
Queijo , Fusarium , Queijo/análise , Álcoois/análise , Cromatografia Gasosa-Espectrometria de Massas
14.
Appl Environ Microbiol ; 78(17): 6357-64, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729537

RESUMO

Seven Propionibacterium freudenreichii strains exhibited similar responses when placed at 4°C. They slowed down cell machinery, displayed cold stress responses, and rerouted their carbon metabolism toward trehalose and glycogen synthesis, both accumulated in cells. These results highlight the molecular basis of long-term survival of P. freudenreichii in the cold.


Assuntos
Queijo/microbiologia , Glicogênio/metabolismo , Propionibacterium/fisiologia , Estresse Fisiológico , Trealose/metabolismo , Carbono/metabolismo , Temperatura Baixa , Propionibacterium/crescimento & desenvolvimento , Propionibacterium/metabolismo , Propionibacterium/efeitos da radiação
15.
Food Microbiol ; 32(1): 135-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22850385

RESUMO

Dairy propionibacteria display probiotic properties which require high populations of live and metabolically active propionibacteria in the colon. In this context, the probiotic vector determines probiotic efficiency. Fermented dairy products protect propionibacteria against digestive stresses and generally contain a complex mixture of lactic and propionic acid bacteria. This does not allow the identification of dairy propionibacteria specific beneficial effects. The aim of this study was to develop a dairy product exclusively fermented by dairy propionibacteria. As they grow poorly in milk, we determined their nutritional requirements concerning carbon and nitrogen by supplementing milk ultrafiltrate (UF) with different concentrations of lactate and casein hydrolysate. Milk or UF supplemented with 50 mM lactate and 5 g L(-1) casein hydrolysate allowed growth of all dairy propionibacteria studied. In these new fermented dairy products, dairy propionibacteria remained viable and stress-tolerant in vitro during minimum 15 days at 4 °C. The efficiency of milk fermented by the most tolerant Propionibacterium freudenreichii strain was evaluated in piglets. Viability and SCFA content in the colon evidenced survival and metabolic activity of P. freudenreichii. This work results in the design of a new food grade vector, which will allow preclinical and clinical trials.


Assuntos
Leite/microbiologia , Probióticos/metabolismo , Propionibacterium/metabolismo , Animais , Bovinos , Feminino , Fermentação , Trato Gastrointestinal/microbiologia , Humanos , Ácido Láctico/metabolismo , Masculino , Viabilidade Microbiana , Propionatos/metabolismo , Propionibacterium/citologia , Suínos
16.
Curr Res Food Sci ; 5: 665-676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434647

RESUMO

Food transition requires incorporating more plant-based ingredients in our diet, thus leading to the development of new plant-based products, such as yogurt alternatives (YAs). This study aimed at evaluating the impact of lactic acid bacteria (LAB) cocultures and formulation on the physico-chemical and sensory properties of YAs. YAs were made by emulsifying anhydrous milk fat (AMF) or coconut oil in milk and lupin protein suspensions. The starters used, in mono- and cocultures, were the strains Lactococcus lactis NCDO2125, Enteroccocus faecalis CIRM-BIA2412 and Lactiplantibacillus plantarum CIRM-BIA1524. Textural properties and metabolites of YAs were evaluated and their sensory properties compared using a sorting task. Some cocultures led to higher firmness, viscosity, and water holding capacity of YAs, compared to monocultures. AMF and a milk:lupin protein ratio of 67:33 gave firmer and more viscous YAs. YAs were sensorially discriminated on the basis of protein ratio and fat type, but not of starters. The cocultures exhibited more diverse functional outputs, such as texturing, production of flavour compounds, proteolysis, when the strains associated in coculture had distinct capacities. Appropriate associations of LAB and formulation offer interesting solutions to improve the perception of YAs, and ultimately, encourage their consumption.

17.
Microorganisms ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456786

RESUMO

In Algeria, Smen is a fermented butter produced in households using empirical methods. Smen fermentation is driven by autochthonous microorganisms; it improves butter shelf-life and yields highly fragrant products used as ingredients in traditional dishes as well as in traditional medicine. The present study is aimed at investigating microbial diversity and dynamics during Algerian Smen fermentation using both culture-dependent and culture-independent approaches, as well as by monitoring volatile organic compound production. To reach this goal, fifteen Smen samples (final products) produced in households from different regions in Algeria were collected and analyzed. In addition, microbial and volatile compound dynamics at the different stages of Smen manufacturing were investigated for one Smen preparation. The results showed that Smen is a microbiologically safe product, as all hygiene and safety criteria were respected. The dominant microorganisms identified by both techniques were LAB and yeasts. Lactococcus spp. and Streptococcus thermophilus were the main bacterial species involved in spontaneous raw milk fermentation preceding butter-making, while lactobacilli and enterococci were the only bacteria found to be viable during Smen maturation. Regarding fungal diversity, yeast species were only recovered from two mature Smen samples by culturing, while different species (e.g., Geotrichum candidum, Moniliella sp.) were identified in all samples by the culture-independent approach. Using microbial analysis of a single batch, many of these were found viable during manufacturing. Concerning the volatile profiles, they were highly diverse and characterized by a high prevalence of short chain fatty acids, methylketones, and esters. Correlation analysis between microbial diversity and volatile profiles showed that several yeast (Moniliella sp., K. marxianus) and LAB (e.g., Lactococcus spp., S. thermophilus) species were strongly correlated with one or more volatile organic compound families, including several ethyl esters and methyl ketones that can be linked to pleasant, sweetly floral, fruity, buttery, and creamy odors. This study clearly identified key microorganisms involved in Smen fermentation and maturation that could be used in the future for better fermentation control and improvement of quality attributes.

18.
Food Res Int ; 155: 111069, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400447

RESUMO

Nyons table olives, named after the French city where they are processed, are naturally fermented black table olives. Their specificity relies on the use of the "Tanche" olive variety harvested at full maturity and their slow spontaneous fermentation in 10% salt brine driven by yeast populations. This study aimed at investigating the benefit of inoculating autochthonous consortia to produce Nyons table olives by fermentation in 10% salt brine and in reduced salt conditions (8%). Two strategies were evaluated: inoculation with a defined autochthonous consortium and inoculation by spent brine backslopping. To define the consortium, yeasts were selected among 48 autochthonous isolates and key features included high halotolerance, low pectinolytic and proteolytic activities, however none had ß-glucosidase activities. The consortium included eight yeast strains with distinct technological properties belonging to five dominant species, i.e. Citeromyces nyonsensis, Pichia membranifaciens, Wickerhamomyces anomalus, Zygotorulaspora mrakii and Candida atlantica. Fermentation trials were conducted over a year and compared by evaluating microbial community shifts (16S and ITS metagenetics) and volatile profiles (GC-MS). Regarding fermentations with the defined consortium, four out of five species implanted in early stages while one, Pichia membranifaciens, persisted and largely dominated by the end of the fermentation. Altogether, inoculation with the defined consortium did not disrupt microbial shifts compared to traditional fermentations although minor differences were observed in volatile profiles. The backslopping method yielded the highest impact on microbial populations and olive volatile profiles, with higher ester abundances at the end of fermentation. Finally, reduced salt in brine gave very promising results as no deleterious effects on microbial communities, volatile dynamics but also safety criteria of the olives were observed compared to traditional fermented olives.


Assuntos
Olea , Fermentação , Microbiologia de Alimentos , Pichia , Sais , Cloreto de Sódio , Leveduras
19.
Food Res Int ; 147: 110549, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399526

RESUMO

Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.


Assuntos
Consórcios Microbianos , Microbiota , Acetobacter , Biofilmes , Brettanomyces , Fermentação , Hanseniaspora
20.
Int J Food Microbiol ; 345: 109130, 2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-33735781

RESUMO

Pélardon is an artisanal French raw goat's milk cheese, produced using natural whey as a backslop. The aim of this study was to identify key microbial players involved in the acidification and aroma production of this Protected Designation of Origin cheese. Microbial diversity of samples, collected from the raw milk to 3-month cheese ripening, was determined by culture-dependent (MALDI-TOF analysis of 2877 isolates) and -independent (ITS2 and 16S metabarcoding) approaches and linked to changes in biochemical profiles (volatile compounds and acids). In parallel, potential dominant autochthonous microorganism reservoirs were also investigated by sampling the cheese-factory environment. Complex and increasing microbial diversity was observed by both approaches during ripening although major discrepancies were observed regarding Lactococcus lactis and Lacticaseibacillus paracasei fate. By correlating microbial shifts to biochemical changes, Lactococcus lactis was identified as the main acidifying bacterium, while L. mesenteroides and Geotrichum candidum were prevalent and associated with amino acids catabolism after the acidification step. The three species were dominant in the whey (backslop). In contrast, L. paracasei, Enterococcus faecalis, Penicillium commune and Scopulariopsis brevicaulis, which dominated during ripening, likely originated from the cheese-making environment. All these four species were positively correlated to major volatile compounds responsible for the goaty and earthy Pélardon cheese aroma. Overall, this work highlighted the power of MALDI-TOF and molecular techniques combined with volatilome analyses to dynamically follow and identify microbial communities during cheese-making and successively identify the key-players involved in aroma production and contributing to the typicity of Pélardon cheese.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Queijo/microbiologia , Fungos/classificação , Fungos/metabolismo , Leite/microbiologia , Animais , Bactérias/isolamento & purificação , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/metabolismo , Fungos/isolamento & purificação , Geotrichum/isolamento & purificação , Geotrichum/metabolismo , Cabras , Lacticaseibacillus paracasei/isolamento & purificação , Lacticaseibacillus paracasei/metabolismo , Lactococcus lactis/isolamento & purificação , Lactococcus lactis/metabolismo , Microbiota , Odorantes/análise , Penicillium/isolamento & purificação , Penicillium/metabolismo , Scopulariopsis/isolamento & purificação , Scopulariopsis/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa