Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Sep Sci ; 45(5): 1042-1050, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997662

RESUMO

An ion chromatography system employing a low-cost three-dimensional printed absorbance detector for indirect ultraviolet detection towards portable phosphate analysis of environmental and industrial waters has been developed. The optical detection cell was fabricated using stereolithography three-dimensional printing of nanocomposite material. Chromatographic analysis and detection of phosphate were carried out using a CS5A 4 × 250 mm analytical column with indirect ultraviolet detection using a 255 nm light-emitting diode. Isocratic elution using a 0.6 mM potassium phthalate eluent combined with 1.44 mM sodium bicarbonate was employed at a flow rate of 0.75 mL/min. A linear calibration range of 0.5 to 30 mg/L PO4 3- applicable to environmental and wastewater analysis was achieved. For retention time and peak area repeatability, relative standard deviation values were 0.68 and 4.09%, respectively. Environmental and wastewater samples were analyzed with the optimized ion chromatography platform and the results were compared to values obtained by an accredited ion chromatograph. For the analysis of environmental samples, relative errors of <14 % were achieved. Recovery analysis was also carried out on both freshwater and wastewater samples and recovery results were within the acceptable range for water analysis using standard ion chromatography methods.

2.
Sensors (Basel) ; 20(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963277

RESUMO

The development of sensitive methods for in situ detection of biomarkers is a real challenge to bring medical diagnosis a step forward. The proof-of-concept of a remote multiplexed biomolecular interaction detection through a plasmonic optical fiber bundle is demonstrated here. The strategy relies on a fiber optic biosensor designed from a 300 µm diameter bundle composed of 6000 individual optical fibers. When appropriately etched and metallized, each optical fiber exhibits specific plasmonic properties. The surface plasmon resonance phenomenon occurring at the surface of each fiber enables to measure biomolecular interactions, through the changes of the retro-reflected light intensity due to light/plasmon coupling variations. The functionalization of the microstructured bundle by multiple protein probes was performed using new polymeric 3D-printed microcantilevers. Such soft cantilevers allow for immobilizing the probes in micro spots, without damaging the optical microstructures nor the gold layer. We show here the potential of this device to perform the multiplexed detection of two different antibodies with limits of detection down to a few tenths of nanomoles per liter. This tool, adapted for multiparametric, real-time, and label free monitoring is minimally invasive and could then provide a useful platform for in vivo targeted molecular analysis.


Assuntos
Técnicas Biossensoriais/métodos , Fibras Ópticas , Ressonância de Plasmônio de Superfície/métodos , Animais , Anticorpos/análise , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Ouro/química , Limite de Detecção , Ratos , Ressonância de Plasmônio de Superfície/instrumentação , Propriedades de Superfície
3.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28558136

RESUMO

The realization of 3D architectures for the study of cell growth, proliferation, and differentiation is a task of fundamental importance for both technological and biological communities involved in the development of biomimetic cell culture environments. Here we report the fabrication of 3D freestanding scaffolds, realized by multiphoton direct laser writing and seeded with neuroblastoma cells, and their multitechnique characterization using advanced 3D fluorescence imaging approaches. The high accuracy of the fabrication process (≈200 nm) allows a much finer control of the micro- and nanoscale features compared to other 3D printing technologies based on fused deposition modeling, inkjet printing, selective laser sintering, or polyjet technology. Scanning electron microscopy (SEM) provides detailed insights about the morphology of both cells and cellular interconnections around the 3D architecture. On the other hand, the nature of the seeding in the inner core of the 3D scaffold, inaccessible by conventional SEM imaging, is unveiled by light sheet fluorescence microscopy and multiphoton confocal imaging highlighting an optimal cell colonization both around and within the 3D scaffold as well as the formation of long neuritic extensions. The results open appealing scenarios for the use of the developed 3D fabrication/3D imaging protocols in several neuroscientific contexts.


Assuntos
Materiais Biocompatíveis/química , Imageamento Tridimensional/métodos , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
4.
Lab Chip ; 24(2): 254-271, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38059908

RESUMO

Bacterial biofilms that grow in porous media are critical to ecosystem processes and applications ranging from soil bioremediation to bioreactors for treating wastewater or producing value-added products. However, understanding and engineering the complex phenomena that drive the development of biofilms in such systems remains a challenge. Here we present a novel micromodel technology to explore bacterial biofilm development in porous media flows. The technology consists of a set of modules that can be combined as required for any given experiment and conveniently tuned for specific requirements. The core module is a 3D-printed micromodel where biofilm is grown into a perfusable porous substrate. High-precision additive manufacturing, in particular stereolithography, is used to fabricate porous scaffolds with precisely controlled architectures integrating flow channels with diameters down to several hundreds of micrometers. The system is instrumented with: ultraviolet-C light-emitting diodes; on-line measurements of oxygen consumption and pressure drop across the porous medium; camera and spectrophotometric cells for the detection of biofilm detachment events at the outlet. We demonstrate how this technology can be used to study the development of Pseudomonas aeruginosa biofilm for several days within a network of flow channels. We find complex dynamics whereby oxygen consumption reaches a steady-state but not the pressure drop, which instead features a permanent regime with large fluctuations. We further use X-ray computed microtomography to image the spatial distribution of biofilms and computational fluid dynamics to link biofilm development with local flow properties. By combining the advantages of additive manufacturing for the creation of reproducible 3D porous microarchitectures with the flow control and instrumentation accuracy of microfluidics, our system provides a platform to study the dynamics of biofilm development in 3D porous media and to rapidly test new concepts in process engineering.


Assuntos
Ecossistema , Microfluídica , Porosidade , Biofilmes , Microtomografia por Raio-X/métodos
5.
Lab Chip ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934387

RESUMO

Stereolithography 3D printing, although an increasingly used fabrication method for microfluidic chips, has the main disadvantage of producing monolithic chips in a single material. We propose to incorporate during printing various objects using a "print-pause-print" strategy. Here, we demonstrate that this novel approach can be used to incorporate glass slides, hydrosoluble films, paper pads, steel balls, elastic or nanoporous membranes and silicon-based microdevices, in order to add microfluidic functionalities as diverse as valves, fluidic diodes, shallow chambers, imaging windows for bacteria tracking, storage of reagents, blue energy harvesting or filters for cell capture and culture.

6.
Methods ; 57(3): 297-307, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22796377

RESUMO

At first mostly dedicated to molecular analysis, microfluidic systems are rapidly expanding their range of applications towards cell biology, thanks to their ability to control the mechanical, biological and fluidic environment at the scale of the cells. A number of new concepts based on microfluidics were indeed proposed in the last ten years for cell sorting. For many of these concepts, progress remains to be done regarding automation, standardization, or throughput, but it is now clear that microfluidics will have a major contribution to the field, from fundamental research to point-of-care diagnosis. We present here an overview of cells sorting in microfluidics, with an emphasis on circulating tumor cells. Sorting principles are classified in two main categories, methods based on physical properties of the cells, such as size, deformability, electric or optical properties, and methods based on biomolecular properties, notably specific surface antigens. We document potential applications, discuss the main advantages and limitations of different approaches, and tentatively outline the main remaining challenges in this fast evolving field.


Assuntos
Separação Celular/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/patologia , Antígenos de Superfície/análise , Células Sanguíneas/citologia , Adesão Celular , Movimento Celular , Separação Celular/instrumentação , Centrifugação , Eletroforese , Células Endoteliais/citologia , Filtração , Fluorescência , Humanos , Magnetismo , Técnicas Analíticas Microfluídicas , Microfluídica/instrumentação
7.
Proc Natl Acad Sci U S A ; 107(33): 14524-9, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679245

RESUMO

We propose a unique method for cell sorting, "Ephesia," using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples--blood, pleural effusion, and fine needle aspirates--issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost.


Assuntos
Separação Celular/métodos , Imageamento Tridimensional/métodos , Magnetismo , Microfluídica/métodos , Modelos Teóricos , Algoritmos , Linhagem Celular Tumoral , Separação Celular/instrumentação , Citometria de Fluxo , Humanos , Imunofenotipagem , Células Jurkat , Microfluídica/instrumentação , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Neoplasias/metabolismo , Neoplasias/patologia
8.
Microsyst Nanoeng ; 9: 109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680311

RESUMO

Liquid biopsy, in particular circulating tumor DNA (ctDNA) analysis, has paved the way for a new noninvasive approach to cancer diagnosis, treatment selection and follow-up. As a crucial step in the analysis, the extraction of the genetic material from a complex matrix needs to meet specific requirements such as high specificity and low loss of target. Here, we developed a new generation of microfluidic fluidized beds (FBs) that enable the efficient extraction and preconcentration of specific ctDNA sequences from human serum with flow rates up to 15 µL/min. We first demonstrated that implementation of a vibration system inducing flow rate fluctuations combined with a mixture of different bead sizes significantly enhanced bead homogeneity, thereby increasing capture efficiency. Taking advantage of this new generation of high-throughput magnetic FBs, we then developed a new method to selectively capture a double-stranded (dsDNA) BRAF mutated DNA sequence in complex matrices such as patient serum. Finally, as proof of concept, ligation chain reaction (LCR) assays were performed to specifically amplify a mutated BRAF sequence, allowing the detection of concentrations as low as 6 × 104 copies/µL of the mutated DNA sequence in serum.

9.
Microsyst Nanoeng ; 9: 85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408536

RESUMO

In this work, we introduce a polymer version of a previously developed silicon MEMS drop deposition tool for surface functionalization that consists of a microcantilever integrating an open fluidic channel and a reservoir. The device is fabricated by laser stereolithography, which offers the advantages of low-cost and fast prototyping. Additionally, thanks to the ability to process multiple materials, a magnetic base is incorporated into the cantilever for convenient handling and attachment to the holder of a robotized stage used for spotting. Droplets with diameters ranging from ∼50 µm to ∼300 µm are printed upon direct contact of the cantilever tip with the surface to pattern. Liquid loading is achieved by fully immersing the cantilever into a reservoir drop, where a single load results in the deposition of more than 200 droplets. The influences of the size and shape of the cantilever tip and the reservoir on the printing outcome are studied. As a proof-of-concept of the biofunctionalization capability of this 3D printed droplet dispenser, microarrays of oligonucleotides and antibodies displaying high specificity and no cross-contamination are fabricated, and droplets are deposited at the tip of an optical fiber bundle.

10.
Adv Sci (Weinh) ; 10(31): e2301499, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37731092

RESUMO

Obesity and type 2 diabetes are becoming a global sociobiomedical burden. Beige adipocytes are emerging as key inducible actors and putative relevant therapeutic targets for improving metabolic health. However, in vitro models of human beige adipose tissue are currently lacking and hinder research into this cell type and biotherapy development. Unlike traditional bottom-up engineering approaches that aim to generate building blocks, here a scalable system is proposed to generate pre-vascularized and functional human beige adipose tissue organoids using the human stromal vascular fraction of white adipose tissue as a source of adipose and endothelial progenitors. This engineered method uses a defined biomechanical and chemical environment using tumor growth factor ß (TGFß) pathway inhibition and specific gelatin methacryloyl (GelMA) embedding parameters to promote the self-organization of spheroids in GelMA hydrogel, facilitating beige adipogenesis and vascularization. The resulting vascularized organoids display key features of native beige adipose tissue including inducible Uncoupling Protein-1 (UCP1) expression, increased uncoupled mitochondrial respiration, and batokines secretion. The controlled assembly of spheroids allows to translate organoid morphogenesis to a macroscopic scale, generating vascularized centimeter-scale beige adipose micro-tissues. This approach represents a significant advancement in developing in vitro human beige adipose tissue models and facilitates broad applications ranging from basic research to biotherapies.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Organoides/metabolismo
11.
Lab Chip ; 23(20): 4445-4455, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740366

RESUMO

Conventional culture conditions are oftentimes insufficient to study tissues, organisms, or 3D multicellular assemblies. They lack both dynamic chemical and mechanical control over the microenvironment. While specific microfluidic devices have been developed to address chemical control, they often do not allow the control of compressive forces emerging when cells proliferate in a confined environment. Here, we present a generic microfluidic device to control both chemical and mechanical compressive forces. This device relies on the use of sliding elements consisting of microfabricated rods that can be inserted inside a microfluidic device. Sliding elements enable the creation of reconfigurable closed culture chambers for the study of whole organisms or model micro-tissues. By confining the micro-tissues, we studied the biophysical impact of growth-induced pressure and showed that this mechanical stress is associated with an increase in macromolecular crowding, shedding light on this understudied type of mechanical stress. Our mechano-chemostat allows the long-term culture of biological samples and can be used to study both the impact of specific conditions as well as the consequences of mechanical compression.


Assuntos
Microfluídica , Estresse Mecânico , Pressão
12.
Cells ; 11(9)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35563700

RESUMO

Compared to cell suspensions or monolayers, 3D cell aggregates provide cellular interactions organized in space and heterogeneity that better resume the real organization of native tissues. They represent powerful tools to narrow down the gap between in vitro and in vivo models, thanks to their self-evolving capabilities. Recent strategies have demonstrated their potential as building blocks to generate microtissues. Developing specific methodologies capable of organizing these cell aggregates into 3D architectures and environments has become essential to convert them into functional microtissues adapted for regenerative medicine or pharmaceutical screening purposes. Although the techniques for producing individual cell aggregates have been on the market for over a decade, the methodology for engineering functional tissues starting from them is still a young and quickly evolving field of research. In this review, we first present a panorama of emerging cell aggregates microfabrication and assembly technologies. We further discuss the perspectives opened in the establishment of functional tissues with a specific focus on controlled architecture and heterogeneity to favor cell differentiation and proliferation.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Ciclo Celular , Diferenciação Celular , Microtecnologia , Engenharia Tecidual/métodos
13.
Sci Rep ; 12(1): 9468, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676309

RESUMO

The cytokine interleukin 6 (IL-6) is involved in the pathogenesis of different inflammatory diseases, including cancer, and its monitoring could help diagnosis, prognosis of relapse-free survival and recurrence. Here, we report an innovative microfluidic approach that uses the fluidization of magnetic beads to specifically extract, preconcentrate and fluorescently detect IL-6 directly on-chip. We assess how the physical properties of the beads can be tuned to improve assay performance by enhancing mass transport, reduce non-specific binding and multiply the detection signal threefold by transitioning between packed and fluidization states. With the integration of a full ELISA protocol in a single microfluidic chamber, we show a twofold reduction in LOD compared to conventional methods along with a large dynamic range (10 pg/mL to 2 ng/mL). We additionally demonstrate its application to IL-6 detection in undiluted serum samples.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Biomarcadores , Citocinas , Interleucina-6 , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos
14.
Phys Rev Lett ; 107(1): 014501, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797546

RESUMO

We combine technical, experimental, and theoretical efforts to investigate the collective dynamics of artificial microcilia in a viscous fluid. We take advantage of soft lithography and colloidal self-assembly to devise microcarpets made of hundreds of slender magnetic rods. This novel experimental setup is used to investigate the dynamics of extended cilia arrays driven by a precessing magnetic field. Whereas the dynamics of an isolated cilium is a rigid body rotation, collective beating results in a symmetry breaking of the precession patterns. The trajectories of the cilia are anisotropic and experience a significant structural evolution as the actuation frequency increases. We present a minimal model to account for our experimental findings and demonstrate how the global geometry of the array imposes the shape of the trajectories via long-range hydrodynamic interactions.


Assuntos
Cílios/fisiologia , Campos Magnéticos , Modelos Biológicos , Coloides , Viscosidade
15.
Phys Rev Lett ; 107(18): 188102, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22107677

RESUMO

The precise role of the microenvironment on tumor growth is poorly understood. Whereas the tumor is in constant competition with the surrounding tissue, little is known about the mechanics of this interaction. Using a novel experimental procedure, we study quantitatively the effect of an applied mechanical stress on the long-term growth of a spheroid cell aggregate. We observe that a stress of 10 kPa is sufficient to drastically reduce growth by inhibition of cell proliferation mainly in the core of the spheroid. We compare the results to a simple numerical model developed to describe the role of mechanics in cancer progression.


Assuntos
Esferoides Celulares/patologia , Estresse Fisiológico , Apoptose , Proliferação de Células , Simulação por Computador , Humanos , Modelos Biológicos , Células Tumorais Cultivadas
16.
J Tissue Eng ; 12: 2041731420985202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104387

RESUMO

The intestinal epithelium, the fastest renewing tissue in human, is a complex tissue hosting multiple cell types with a dynamic and multiparametric microenvironment, making it particularly challenging to recreate in vitro. Convergence of recent advances in cellular biology and microfabrication technologies have led to the development of various bioengineered systems to model and study the intestinal epithelium. Theses microfabricated in vitro models may constitute an alternative to current approaches for studying the fundamental mechanisms governing intestinal homeostasis and pathologies, as well as for in vitro drug screening and testing. Herein, we review the recent advances in bioengineered in vitro intestinal models.

17.
Cancers (Basel) ; 13(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916891

RESUMO

Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC's development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells' genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells' differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.

18.
ACS Appl Bio Mater ; 4(12): 8443-8455, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005920

RESUMO

In nature, cells exist in three-dimensional (3D) microenvironments with topography, stiffness, surface chemistry, and biological factors that strongly dictate their phenotype and behavior. The cellular microenvironment is an organized structure or scaffold that, together with the cells that live within it, make up living tissue. To mimic these systems and understand how the different properties of a scaffold, such as adhesion, proliferation, or function, influence cell behavior, we need to be able to fabricate cellular microenvironments with tunable properties. In this work, the nanotopography and functionality of scaffolds for cell culture were modified by coating 3D printed materials (DS3000 and poly(ethylene glycol)diacrylate, PEG-DA) with cellulose nanocrystals (CNCs). This general approach was demonstrated on a variety of structures designed to incorporate macro- and microscale features fabricated using photopolymerization and 3D printing techniques. Atomic force microscopy was used to characterize the CNC coatings and showed the ability to tune their density and in turn the surface nanoroughness from isolated nanoparticles to dense surface coverage. The ability to tune the density of CNCs on 3D printed structures could be leveraged to control the attachment and morphology of prostate cancer cells. It was also possible to introduce functionalization onto the surface of these scaffolds, either by directly coating them with CNCs grafted with the functionality of interest or with a more general approach of functionalizing the CNCs after coating using biotin-streptavidin coupling. The ability to carefully tune the nanostructure and functionalization of different 3D-printable materials is a step forward to creating in vitro scaffolds that mimic the nanoscale features of natural microenvironments, which are key to understanding their impact on cells and developing artificial tissues.


Assuntos
Celulose , Nanopartículas , Celulose/química , Hidrogéis/química , Nanopartículas/química , Impressão Tridimensional , Alicerces Teciduais/química
19.
J Colloid Interface Sci ; 603: 333-343, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197983

RESUMO

HYPOTHESIS: Recently, a low molecular weight hydrogel based on a carbohydrate alkyl amide has been successfully used as biomaterial for neuron cell culture and for 3D printing. Varying the molecular structure should make it possible to extend the library of carbohydrate low molecular weight hydrogels available for these applications and to improve their performances. EXPERIMENTS: Thirteen molecules easy to synthetize and designed to be potentially biocompatible were prepared. They are based on gluconamide, glucoheptonamide, galactonamide, glucamide, aliphatic chains and glycine. Their gelation in water was investigated in thermal conditions and wet spinning conditions, namely by dimethylsulfoxide-water exchange under injection. FINDINGS: Nine molecules give hydrogels in thermal conditions. By wet spinning, six molecules self-assemble fast enough, within few seconds, to form continous hydrogel filaments. Therefore, the method enables to shape by injection these mechanically fragile hydrogels, notably in the perspective of 3D printing. Depending on the molecular structure, persistent or soluble gel filaments are obtained. The microstructures are varied, featuring entangled ribbons, platelets or particles. In thermal gelation, molecules with a symmetrical polar head (galacto, glucoheptono) give flat ribbons and molecules with an asymmetrical polar head (gluco) give helical ribbons. The introduction of an extra glycine linker disturbs this trend.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Carboidratos , Peso Molecular , Impressão Tridimensional
20.
Biomaterials ; 269: 120624, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421710

RESUMO

Bone is the most frequent metastasis site for breast cancer. As well as dramatically increasing disease burden, bone metastases are also an indicator of poor prognosis. One of the main challenges in investigating bone metastasis in breast cancer is engineering in vitro models that replicate the features of in vivo bone environments. Such in vitro models ideally enable the biology of the metastatic cells to mimic their in vivo behavior as closely as possible. Here, taking benefit of cutting-edge technologies both in microfabrication and cancer cell biology, we have developed an in vitro breast cancer bone-metastasis model. To do so we first 3D printed a bone scaffold that reproduces the trabecular architecture and that can be conditioned with osteoblast-like cells, a collagen matrix, and mineralized calcium. We thus demonstrated that this device offers an adequate soil to seed primary breast cancer bone metastatic cells. In particular, patient-derived xenografts being considered as a better approach than cell lines to achieve clinically relevant results, we demonstrate the ability of this biomimetic bone niche model to host patient-derived xenografted metastatic breast cancer cells. These patient-derived xenograft cells show a long-term survival in the bone model and maintain their cycling propensity, and exhibit the same modulated drug response as in vivo. This experimental system enables access to the idiosyncratic features of the bone microenvironment and cancer bone metastasis, which has implications for drug testing.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Animais , Biomimética , Neoplasias Ósseas/patologia , Osso e Ossos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica/patologia , Osteoblastos/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa