Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687174

RESUMO

In recent decades, driven by the needs of industry and medicine, researchers have been investigating how to remove carefully from the main flow microscopic particles or clusters of them. Among all the approaches proposed, crossflow filtration is one of the most attractive as it provides a non-destructive, label-free and in-flow sorting method. In general, the separation performance shows capture and separation efficiencies ranging from 70% up to 100%. However, the maximum flow rate achievable (µL/min) is still orders of magnitude away from those suitable for clinical or industrial applications mainly due to the low stiffness of the materials typically used. In this work, we propose an innovative hydrodynamic-crossflow hybrid filter geometry, buried in a fused silica substrate by means of the femtosecond laser irradiation followed by chemical etching technique. The material high stiffness combined with the accuracy of our manufacturing technique allows the 3D fabrication of non-deformable channels with higher aspect ratio posts, while keeping the overall device dimensions compact. The filter performance has been validated through experiments with both Newtonian (water-based solution of microbeads) and non-Newtonian fluids (blood), achieving separation efficiencies of up to 94% and large particles recovery rates of 100%, even at very high flow rates (mL/h).

2.
J Nanobiotechnology ; 22(1): 350, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902746

RESUMO

BACKGROUND: Breast cancer (BC) is a heterogeneous neoplasm characterized by several subtypes. One of the most aggressive with high metastasis rates presents overexpression of the human epidermal growth factor receptor 2 (HER2). A quantitative evaluation of HER2 levels is essential for a correct diagnosis, selection of the most appropriate therapeutic strategy and monitoring the response to therapy. RESULTS: In this paper, we propose the synergistic use of SERS and Raman technologies for the identification of HER2 expressing cells and its accurate assessment. To this end, we selected SKBR3 and MDA-MB-468 breast cancer cell lines, which have the highest and lowest HER2 expression, respectively, and MCF10A, a non-tumorigenic cell line from normal breast epithelium for comparison. The combined approach provides a quantitative estimate of HER2 expression and visualization of its distribution on the membrane at single cell level, clearly identifying cancer cells. Moreover, it provides a more comprehensive picture of the investigated cells disclosing a metabolic signature represented by an elevated content of proteins and aromatic amino acids. We further support these data by silencing the HER2 gene in SKBR3 cells, using the RNA interference technology, generating stable clones further analysed with the same combined methodology. Significant changes in HER2 expression are detected at single cell level before and after HER2 silencing and the HER2 status correlates with variations of fatty acids and downstream signalling molecule contents in the context of the general metabolic rewiring occurring in cancer cells. Specifically, HER2 silencing does reduce the growth ability but not the lipid metabolism that, instead, increases, suggesting that higher fatty acids biosynthesis and metabolism can occur independently of the proliferating potential tied to HER2 overexpression. CONCLUSIONS: Our results clearly demonstrate the efficacy of the combined SERS and Raman approach to definitely pose a correct diagnosis, further supported by the data obtained by the HER2 gene silencing. Furthermore, they pave the way to a new approach to monitor the efficacy of pharmacologic treatments with the aim to tailor personalized therapies and optimize patients' outcome.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Nanopartículas Metálicas/química
3.
Zygote ; 32(1): 38-48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050697

RESUMO

The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca2+ signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca2+ release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.


Assuntos
Actinas , Análise Espectral Raman , Animais , Masculino , Actinas/metabolismo , Sêmen , Citoesqueleto de Actina/metabolismo , Fertilização/fisiologia , Ouriços-do-Mar/metabolismo , Óvulo/metabolismo
4.
Am J Geriatr Psychiatry ; 31(1): 44-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184377

RESUMO

Psychedelics and related compounds have shown efficacy for the treatment of a variety of conditions that are prevalent among older adults, including mood disorders, the psychological distress associated with a serious medical illness, post-traumatic stress disorder (PTSD), and prolonged grief disorder. Psychedelics also have properties that could help provide therapeutic benefits for patients with dementing disorders, as well as promoting personal growth among healthy older adults. This article focuses on psilocybin, a classic psychedelic, and MDMA, a substituted amphetamine with properties similar to classic psychedelics. Both act on the 5HT2A receptor. Psychedelics can be safely administered to healthy adults in controlled conditions. However, both psilocybin and MDMA can increase blood pressure and heart rate, which could be a concern if used in older adults with cardiovascular disease. Very few older adults or patients with serious comorbidities have been included in clinical trials of psychedelics to date, raising the question of how generalizable study results are for the patients that most geropsychiatrists will be treating. Research on the neurophysiologic and mechanistic effects of psychedelics in older adults could also provide insights into the aging brain that could have clinical applications in the future. Given the potential of psychedelic compounds to benefit older adults, more research is needed to establish safety and efficacy among older adults, particularly those with multi-morbidity.


Assuntos
Alucinógenos , N-Metil-3,4-Metilenodioxianfetamina , Humanos , Idoso , Alucinógenos/efeitos adversos , Psilocibina/efeitos adversos , Encéfalo
5.
Cell Commun Signal ; 19(1): 48, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902596

RESUMO

BACKGROUND: The G-protein-coupled receptor GPR55 has been implicated in multiple biological activities, which has fuelled interest in its functional targeting. Its controversial pharmacology and often species-dependent regulation have impacted upon the potential translation of preclinical data involving GPR55. RESULTS: With the aim to identify novel GPR55 regulators, we have investigated lysophosphatidylinositol (LPI)-induced GPR55-mediated signal transduction. The expression system for wild-type and mutated GPR55 was HeLa cells silenced for their endogenous receptor by stable expression of a short-hairpin RNA specific for GPR55 5'-UTR, which allowed definition of the requirement of GPR55 Lys80 for LPI-induced MAPK activation and receptor internalisation. In RAW264.7 macrophages, GPR55 pathways were investigated by Gpr55 silencing using small-interfering RNAs, which demonstrated that LPI increased intracellular Ca2+ levels and induced actin filopodium formation through GPR55 activation. Furthermore, the LPI/GPR55 axis was shown to have an active role in osteoclastogenesis of precursor RAW264.7 cells induced by 'receptor-activator of nuclear factor kappa-ß ligand' (RANKL). Indeed, this differentiation into mature osteoclasts was associated with a 14-fold increase in Gpr55 mRNA levels. Moreover, GPR55 silencing and antagonism impaired RANKL-induced transcription of the osteoclastogenesis markers: 'nuclear factor of activated T-cells, cytoplasmic 1', matrix metalloproteinase-9, cathepsin-K, tartrate-resistant acid phosphatase, and the calcitonin receptor, as evaluated by real-time PCR. Phage display was previously used to identify peptides that bind to GPR55. Here, the GPR55-specific peptide-P1 strongly inhibited osteoclast maturation of RAW264.7 macrophages, confirming its activity as a blocker of GPR55-mediated functions. Although osteoclast syncytium formation was not affected by pharmacological regulation of GPR55, osteoclast activity was dependent on GPR55 signalling, as shown with resorption assays on bone slices, where LPI stimulated and GPR55 antagonists inhibited bone erosion. CONCLUSIONS: Our data indicate that GPR55 represents a target for development of novel therapeutic approaches for treatment of pathological conditions caused by osteoclast-exacerbated bone degradation, such as in osteoporosis or during establishment of bone metastases. Video abstract.


Assuntos
Lisofosfolipídeos/metabolismo , Osteogênese , Peptídeos/metabolismo , Receptores de Canabinoides/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Cálcio/metabolismo , Diferenciação Celular , Endocitose , Células HEK293 , Humanos , Ligantes , Lisina/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Osteoclastos/metabolismo , Pseudópodes/metabolismo , Células RAW 264.7
6.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256921

RESUMO

Aromatase inhibitors (AIs) show promising features as drugs to treat estrogen-responsive breast cancer as they block aromatase activity, the key enzyme in estrogen synthesis. The current AIs approved by the Food and Drug Administration for breast cancer treatment present severe adverse effects. For these reasons, it is important to develop of new AIs that are more specific and sensitive. In this paper, we report the synthesis and the characterization of new nonsteroidal aromatase AIs containing triazoles moieties for the treatment of hormone-dependent breast cancer in post-menopausal women. A new series of 1,2,3-triazole based molecules were successfully synthetized and their chemical structures were determined from the spectral data (FT-IR, 13C NMR, 1H NMR, mass spectroscopy) and micro-analytical data. Additionally, the physical properties of the newly synthesized derivatives were reported. The novel compounds were also tested for their anticancer activity in both breast cancer (MCF7 and T-47D) and normal breast (MCF 10A) cell lines, evaluating their effect on cell proliferation, migration, and invasion. The results revealed that the compounds exhibited promising and specific anti-cancer action.

7.
Front Bioeng Biotechnol ; 11: 1057216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815877

RESUMO

Circulating tumor cells (CTCs) are tumor cells that have penetrated the circulatory system preserving tumor properties and heterogeneity. Detection and characterization of CTCs has high potential clinical values and many technologies have been developed for CTC identification. These approaches remain challenged by the extraordinary rarity of CTCs and the difficulty of efficiently distinguishing cancer from the much larger number of white blood cells in the bloodstream. Consequently, there is still a need for efficient and rapid methods to capture the broad spectrum of tumor cells circulating in the blood. Herein, we exploit the peculiarities of cancer metabolism for discriminating cancer from WBCs. Using deuterated glucose and Raman microscopy we show that a) the known ability of cancer cells to take up glucose at greatly increased rates compared to non-cancer cells results in the lipid generation and accumulation into lipid droplets and, b) by contrast, leukocytes do not appear to generate visible LDs. The difference in LD abundance is such that it provides a reliable parameter for distinguishing cancer from blood cells. For LD sensitive detections in a cell at rates suitable for screening purposes, we test a polarization-sensitive digital holographic imaging (PSDHI) technique that detects the birefringent properties of the LDs. By using polarization-sensitive digital holographic imaging, cancer cells (prostate cancer, PC3 and hepatocarcinoma cells, HepG2) can be rapidly discriminated from leukocytes with reliability close to 100%. The combined Raman and PSDHI microscopy platform lays the foundations for the future development of a new label-free, simple and universally applicable cancer cells' isolation method.

8.
Commun Biol ; 6(1): 9, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599901

RESUMO

Profilin 1-encoded by PFN1-is a small actin-binding protein with a tumour suppressive role in various adenocarcinomas and pagetic osteosarcomas. However, its contribution to tumour development is not fully understood. Using fix and live cell imaging, we report that Profilin 1 inactivation results in multiple mitotic defects, manifested prominently by anaphase bridges, multipolar spindles, misaligned and lagging chromosomes, and cytokinesis failures. Accordingly, next-generation sequencing technologies highlighted that Profilin 1 knock-out cells display extensive copy-number alterations, which are associated with complex genome rearrangements and chromothripsis events in primary pagetic osteosarcomas with Profilin 1 inactivation. Mechanistically, we show that Profilin 1 is recruited to the spindle midzone at anaphase, and its deficiency reduces the supply of actin filaments to the cleavage furrow during cytokinesis. The mitotic defects are also observed in mouse embryonic fibroblasts and mesenchymal cells deriving from a newly generated knock-in mouse model harbouring a Pfn1 loss-of-function mutation. Furthermore, nuclear atypia is also detected in histological sections of mutant femurs. Thus, our results indicate that Profilin 1 has a role in regulating cell division, and its inactivation triggers mitotic defects, one of the major mechanisms through which tumour cells acquire chromosomal instability.


Assuntos
Fibroblastos , Instabilidade Genômica , Profilinas , Animais , Humanos , Camundongos , Anáfase/genética , Citocinese/genética , Instabilidade Genômica/genética , Mitose/genética , Profilinas/genética , Profilinas/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo
9.
Front Cell Dev Biol ; 10: 966950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105351

RESUMO

Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.

10.
J Exp Clin Cancer Res ; 41(1): 315, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289544

RESUMO

BACKGROUND: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood. METHODS: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-ß) signaling. RESULTS: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-ß signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-ß type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells. CONCLUSIONS: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I , RNA Interferente Pequeno , Neoplasias Pancreáticas/patologia , Células-Tronco Neoplásicas/metabolismo , Fator de Crescimento Transformador beta , RNA Mensageiro , Receptores de Ativinas , Movimento Celular/genética , Linhagem Celular Tumoral , Laminina/genética , Laminina/metabolismo , Neoplasias Pancreáticas
11.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685120

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has become a powerful tool for biosensing applications owing to its fingerprint recognition, high sensitivity, multiplex detection, and biocompatibility. This review provides an overview of the most significant aspects of SERS for biomedical and biosensing applications. We first introduced the mechanisms at the basis of the SERS amplifications: electromagnetic and chemical enhancement. We then illustrated several types of substrates and fabrication methods, with a focus on gold-based nanostructures. We further analyzed the relevant factors for the characterization of the SERS sensor performances, including sensitivity, reproducibility, stability, sensor configuration (direct or indirect), and nanotoxicity. Finally, a representative selection of applications in the biomedical field is provided.

12.
Nanotoxicology ; 15(4): 558-576, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33784953

RESUMO

The interaction between engineered nanoparticles and the bacterial lipopolysaccharide, or endotoxin, is an event that warrants attention. Endotoxin is one of the most potent stimulators of inflammation and immune reactions in human beings, and is a very common contaminant in research labs. In nanotoxicology and nanomedicine, the presence of endotoxin on the nanoparticle surface affects their biological properties leading to misinterpretation of results. This review discusses the importance of detecting the endotoxin contamination on nanoparticles, focusing on the current method of endotoxin detection and their suitability for nanoparticulate materials. Conversely, the capacity of nanoparticles to bind endotoxin can be enhanced by functionalization with endotoxin-capturing molecules, opening the way to the development of novel endotoxin detection assays.


Assuntos
Nanopartículas , Bioensaio , Endotoxinas/toxicidade , Humanos , Inflamação , Lipopolissacarídeos/toxicidade , Nanopartículas/toxicidade
13.
Front Immunol ; 12: 758410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691081

RESUMO

Engineered gold nanoparticles (AuNPs) find application in several fields related to human activities (i.e., food and cosmetic industry or water purification) including medicine, where they are employed for diagnosis, drug delivery and cancer therapy. As for any material/reagent for human use, the safety of AuNPs needs accurate evaluation. AuNPs are prone to contamination by bacterial endotoxin (lipopolysaccharide, LPS), a potent elicitor of inflammatory responses in mammals. It is therefore important, when assessing AuNP immunosafety and immune-related effects, to discriminate between inflammatory effects intrinsic to the NPs from those caused by an undeliberate and undetected LPS contamination. Detection of LPS contamination in AuNP preparations poses different problems when using the current LPS detection assays, given the general interference of NPs, similar to other particulate agents, with the assay reagents and endpoints. This leads to time-consuming search for optimal assay conditions for every NP batch, with unpredictable results, and to the use in parallel of different assays, each with its weaknesses and unpredictability. Thus, the development of highly sensitive, quantitative and accurate assays able to detect of LPS on AuNPs is very important, in view of their medical applications. Surface-enhanced Raman spectroscopy (SERS) is a label-free, sensitive, chemical-specific, nondestructive and fast technique that can be used to directly obtain molecular fingerprint information and a quantitative analysis of LPS adsorbed on AuNPs. Within this study, we describe the use of SERS for the label-free identification and quantitative evaluation - down to few attograms - of the LPS adsorbed on the surface of 50 nm AuNPs. We thus propose SERS as an efficient tool to detect LPS on the AuNP surface, and as the basis for the development of a new sensitive and specific LPS-detection sensor based on the use of AuNPs and SERS.


Assuntos
Ouro/química , Lipopolissacarídeos/análise , Nanopartículas Metálicas/química , Técnicas Biossensoriais , Humanos , Análise Espectral Raman , Propriedades de Superfície
14.
ACS Nano ; 14(11): 15417-15427, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33171041

RESUMO

Herein, we demonstrate a cavity-enhanced hyperspectral refractometric imaging using an all-dielectric photonic crystal slab (PhCS). Our approach takes advantage of the synergy between two mechanisms, surface-enhanced fluorescence (SEF) and refractometric sensing, both based on high-Q resonances in proximity of bound states in the continuum (BICs). The enhanced local optical field of the first resonance amplifies of 2 orders of magnitude the SEF emission of a probe dye. Simultaneously, hyperspectral refractometric sensing, based on Fano interference between second mode and fluorescence emission, is used for mapping the spatially variant refractive index produced by the specimen on the PhCS. The spectral matching between first resonance and input laser is modulated by the specimen local refractive index, and thanks to the calibrated dependence with the spectral shift of the Fano resonance, the cavity tuning is used to achieve an enhanced correlative refractometric map with a resolution of 10-5 RIU within femtoliter-scale sampling volumes. This is experimentally applied also on live prostate cancer cells grown on the PhCS, reconstructing enhanced surface refractive index images at the single-cell level. This dual mechanism of quasi-BIC spatially variant gain tracked by quasi-BIC refractometric sensing provides a correlative imaging platform that can find application in many fields for monitoring physical and biochemical processes, such as molecular interactions, chemical reactions, or surface cell analysis.


Assuntos
Óptica e Fotônica , Refratometria , Lasers , Luz
15.
Biomed Pharmacother ; 123: 109764, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31901551

RESUMO

Recent insights have indicated an active role of the complex complement system not only in immunity, but also in bone remodeling. Evidence from knockout mice and observations from skeletal diseases have drawn attention to the C5a/C5aR axis of the complement cascade in the modulation of osteoclast functions and as potential therapeutic targets for treatment of bone pathologies. With the aim to identify novel C5aR regulators, a medicinal chemistry program was initiated, driven by structural information on a minor pocket of C5aR that has been proposed to be a key motif for C5aR intracellular activation. The impact of the peptidomimetic orthosteric C5aR antagonist (PMX-53), of two newly synthesized allosteric C5aR antagonists (DF2593A, DF3016A), and of C5aR down-regulation by specific siRNAs, were examined for regulation of osteoclastogenesis, using a well-validated in-vitro model starting from RAW264.7 precursor cells. Both pharmacological and molecular approaches reduced osteoclast maturation of RAW264.7 cells induced by receptor-activator of nuclear factor kappa-B ligand (RANKL), which limited the transcription of several differentiation markers evaluated by real-time PCR, including nuclear factor of activated T-cell 1, matrix metalloproteinase-9, cathepsin-K, and tartrate-resistant acid phosphatase. These treatments were ineffective on the subsequent step of osteoclast syncytium formation, apparently as a consequence of reduction of C5aR mRNA levels in the course of osteoclastogenesis, as monitored by real-time PCR. Among the C5aR antagonists analyzed, DF3016A inhibited osteoclast degradation activity through inhibition of C5aR signal transduction and transcription. These data confirm the preclinical relevance of this novel therapeutic candidate.


Assuntos
Reabsorção Óssea/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Tetrazóis/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7
16.
Cells ; 9(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979412

RESUMO

Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.


Assuntos
Vacina BCG/farmacologia , Ouro/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Nanopartículas Metálicas/química , Monócitos/imunologia , Humanos , Lipopolissacarídeos/farmacologia , Nanopartículas Metálicas/ultraestrutura , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/ultraestrutura
17.
Oncotarget ; 8(3): 5179-5195, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28029647

RESUMO

Expression of the lysophosphatidylinositol receptor GPR55 correlates with invasive potential of metastatic cells and bone metastasis formation of different types of tumors. These findings suggest a role for GPR55 signaling in cancer progression, including in lymphoproliferative diseases. Here, we screened a M13-phage-displayed random library using the bait of HEK293 cells that heterologously expressed full-length HA-GPR55. We selected a set of phagotopes that carried 7-mer insert peptides flanked by a pair of cysteine residues, which resulted in cyclized peptides. Sequencing of selected phagotopes dictated the primary structure for the synthetic FITC-labeled peptide P1, which was analyzed for binding specificity to immunoprecipitated HA-GPR55, and to endogenously expressed GPR55, using cells interfered or not for GPR55, as well as for co-localization imaging with HA-GPR55 at the membrane level. The peptide P1 stimulated GPR55 endocytosis and inhibited GPR55-dependent proliferation of EHEB and DeFew cells, two human B-lymphoblastoid cell lines. Our data support the potential therapeutic application of peptide ligands of GPR55 for targeting and inhibiting growth of neoplastic cells, which overexpress GPR55 and are dependent on GPR55 signaling for their proliferation.


Assuntos
Antineoplásicos/farmacologia , Transtornos Linfoproliferativos/metabolismo , Peptídeos Cíclicos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Antineoplásicos/química , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose , Células HEK293 , Células HeLa , Humanos , Terapia de Alvo Molecular , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Receptores de Canabinoides
18.
Cells ; 9(2): 284, 2020.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17377

RESUMO

Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFa, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.

19.
Cells, v. 9, n. 2. p. 284, jan. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2911

RESUMO

Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFa, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa