Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255814

RESUMO

Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Bovinos , Animais , Citocinas , Proteínas da Matriz Extracelular , Pericárdio
2.
Cells Tissues Organs ; 211(4): 420-446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34433163

RESUMO

In this featured review manuscript, the aim is to present a critical survey on the processes available for fabricating bioartificial organs (BAOs). The focus will be on hollow tubular organs for the transport of anabolites and catabolites, i.e., vessels, trachea, esophagus, ureter and urethra, and intestine. First, the anatomic hierarchical structures of tubular organs, as well as their principal physiological functions, will be presented, as this constitutes the mandatory requirements for effectively designing and developing physiologically relevant BAOs. Second, 3D bioprinting, solution electrospinning, and melt electrowriting will be introduced, together with their capacity to match the requirements imposed by designing scaffolds compatible with the anatomical and physiologically relevant environment. Finally, the intrinsic correlation between processes, materials, and cells will be critically discussed, and directives defining the strengths, weaknesses, and opportunities offered by each process will be proposed for assisting bioengineers in the selection of the appropriate process for the target BAO and its specific required functions.


Assuntos
Órgãos Bioartificiais , Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
J Nanobiotechnology ; 20(1): 363, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933375

RESUMO

BACKGROUND: With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS: We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS: In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.


Assuntos
COVID-19 , Polímeros , Vacinas contra COVID-19 , Técnicas de Transferência de Genes , Humanos , Polietilenoimina , Transfecção
4.
Eur Heart J ; 42(18): 1760-1769, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33580685

RESUMO

AIMS: The rapid endothelialization of bare metal stents (BMS) is counterbalanced by inflammation-induced neointimal growth. Drug-eluting stents (DES) prevent leukocyte activation but impair endothelialization, delaying effective device integration into arterial walls. Previously, we have shown that engaging the vascular CD31 co-receptor is crucial for endothelial and leukocyte homeostasis and arterial healing. Furthermore, we have shown that a soluble synthetic peptide (known as P8RI) acts like a CD31 agonist. The aim of this study was to evaluate the effect of CD31-mimetic metal stent coating on the in vitro adherence of endothelial cells (ECs) and blood elements and the in vivo strut coverage and neointimal growth. METHODS AND RESULTS: We produced Cobalt Chromium discs and stents coated with a CD31-mimetic peptide through two procedures, plasma amination or dip-coating, both yielding comparable results. We found that CD31-mimetic discs significantly reduced the extent of primary human coronary artery EC and blood platelet/leukocyte activation in vitro. In vivo, CD31-mimetic stent properties were compared with those of DES and BMS by coronarography and microscopy at 7 and 28 days post-implantation in pig coronary arteries (n = 9 stents/group/timepoint). Seven days post-implantation, only CD31-mimetic struts were fully endothelialized with no activated platelets/leukocytes. At day 28, neointima development over CD31-mimetic stents was significantly reduced compared to BMS, appearing as a normal arterial media with the absence of thrombosis contrary to DES. CONCLUSION: CD31-mimetic coating favours vascular homeostasis and arterial wall healing, preventing in-stent stenosis and thrombosis. Hence, such coatings seem to improve the metal stent biocompatibility.


Assuntos
Stents Farmacológicos , Neointima , Animais , Vasos Coronários , Células Endoteliais , Inflamação/prevenção & controle , Neointima/prevenção & controle , Desenho de Prótese , Stents , Suínos
5.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364096

RESUMO

Anthocyanins obtained from jambolan have been used as active agents in different carboxymethyl starch-based tablet formulations and their release profiles evaluated in simulated gastric fluids (SGF) and simulated intestinal (SIF) fluids. Structural analysis highlighted a strong interaction between anthocyanins and carboxymethyl starch, evidenced by scanning electron microscopy and infrared analysis. Tablet dissolution behavior varied according to the pH of the media, being controlled by the swelling and/or erosion of the polymeric matrix. Various formulations for immediate, fast, and sustained release of anthocyanins for 30 min, 2 h and 12 h of dissolution have been developed. It was found that monolithic carboxymethyl starch tablets loaded with powdered jambolan extract efficiently afforded the complete delivery (100% of anthocyanins) to different sites of the simulated gastrointestinal tract and ensured the stability of these pigments, which maintained their antioxidant activity.


Assuntos
Antocianinas , Excipientes , Excipientes/química , Preparações de Ação Retardada , Amido/química , Comprimidos/química
6.
Nanomedicine ; 24: 102142, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843661

RESUMO

Healthcare-associated infections (HCAIs) are a major cause of morbidity and mortality worldwide. One of the main routes of transmission is by contact with contaminated surfaces, where nosocomial pathogens form sessile communities called biofilms. When forming biofilms, these pathogens are extremely resistant to antibiotics and standard cleaning procedures. In this regard, in order to eliminate the extent of biofilm formation on these surfaces, intensive efforts have been deployed, particularly in recent years, to develop new antibacterial surfaces containing silver or silver compounds, which can be used to prevent the formation of biofilm. In this review, recent developments in the design and manufacturing of silver-based antibacterial surfaces are described in detail. Up-to-date toxicity and governmental regulations are then extensively presented. Finally, based on current research in this promising field, the main challenges and perspectives for their effective implementation are discussed.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Biofilmes/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 113(3): 716-21, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729859

RESUMO

There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt%Ca-1wt%Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study.


Assuntos
Implantes Absorvíveis , Ligas/farmacologia , Magnésio/farmacologia , Animais , Feminino , Fêmur/diagnóstico por imagem , Fêmur/ultraestrutura , Seguimentos , Humanos , Masculino , Osteogênese/efeitos dos fármacos , Implantação de Prótese , Coelhos , Radiografia , Fatores de Tempo , Cicatrização/efeitos dos fármacos
10.
Phys Chem Chem Phys ; 18(29): 19637-46, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27381258

RESUMO

Understanding the interactions of a pure iron surface with biological elements, such as ions and proteins in an aqueous medium, is essential for an accurate in vitro assessment of corrosion patterns. In fact, the synergy of chlorides, carbonates, phosphates and complex organic molecules present in the body environment is a key factor affecting both in vivo and in vitro degradation of materials, especially iron and its alloys. The aim of this work was the assessment of degradation patterns of pure iron in 5 commercial pseudo-physiological solutions by a thorough study of degraded surface chemistry and morphology. It also provides a methodological basis to understand the short-term degradation mechanism of degradable iron depending on the surrounding physiological media. The standard static immersion corrosion test was modified to adapt the procedure to pseudo-physiological solutions. After a 14-day static immersion test, the surfaces of samples were investigated by scanning electron microscopy, stylus profilometry and atomic force microscopy techniques. The chemistry and phase composition of the degraded layers were evaluated, respectively, by X-ray photoelectron spectrometry and X-ray diffractometry. The morphology and composition of the degradation layers were found to be different for the test-solutions: for phosphate-rich solutions, the formation of an adherent passive layer was found; degradation mechanisms related to general corrosion were predominant for all the other solutions. In conclusion, the chemical composition of the used medium plays a fundamental role in the degradation pattern of pure iron, so that direct comparisons of solutions with different ion concentrations, as reported in the literature, need to be carefully assessed.

11.
Phys Chem Chem Phys ; 18(35): 24704-12, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27546569

RESUMO

Coatings for medical devices are expected to improve their surface biocompatibility mainly by being bioactive, i.e. stimulating healing-oriented interactions with living cells, tissues and organs. In particular, for stent applications, coatings are often designed to enhance the endothelialization process. The coating strategy will be primarily responsible for the interfacial properties between the substrate and the coating, which must show high stability. Therefore, the present work aims at comparing the stability of adsorbed and grafted fibronectin, a protein well-known to promote endothelialization. Fibronectin coatings were deposited on fluorocarbon films generated by a plasma-based process on stainless steel substrates. Then, deformation tests were performed in order to simulate the stenting procedure and stability tests were completed under static and under-flow conditions. Coatings were characterized by XPS, AFM, water contact angle, immunostaining and ToF-SIMS analyses. The results show higher stability for the grafted coatings; indeed, the integrity of the protein simply adsorbed was strongly compromised especially after under-flow tests. Both coatings exhibited similar behavior after deformation and static tests. These results clearly show the impact of the coating strategy on the overall stability of the coatings as well as the importance of under-flow investigations.

12.
Microsc Microanal ; 22(5): 997-1006, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27681083

RESUMO

Characterization of the topmost surface of biomaterials is crucial to understanding their properties and interactions with the local environment. In this study, the oxide layer microstructure of plasma-modified 316L stainless steel (SS316L) samples was analyzed by a combination of electron backscatter diffraction and electron channeling contrast imaging using low-energy incident electrons. Both techniques allowed clear identification of a nano-thick amorphous oxide layer, on top of the polycrystalline substrate, for the plasma-modified samples. A methodology was developed using Monte Carlo simulations combined with the experimental results to estimate thickness of the amorphous layer for different surface conditions. X-ray photoelectron spectroscopy depth profiles were used to validate these estimations.

13.
Ann Neurol ; 76(1): 31-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798518

RESUMO

OBJECTIVE: Huntington disease (HD) is caused by a genetically encoded pathological protein (mutant huntingtin [mHtt]), which is thought to exert its effects in a cell-autonomous manner. Here, we tested the hypothesis that mHtt is capable of spreading within cerebral tissue by examining genetically unrelated fetal neural allografts within the brains of patients with advancing HD. METHODS: The presence of mHtt aggregates within the grafted tissue was confirmed using 3 different types of microscopy (bright-field, fluorescence, and electron), 2 additional techniques consisting of Western immunoblotting and infrared spectroscopy, and 4 distinct antibodies targeting different epitopes of mHtt aggregates. RESULTS: We describe the presence of mHtt aggregates within intracerebral allografts of striatal tissue in 3 HD patients who received their transplants approximately 1 decade earlier and then died secondary to the progression of their disease. The mHtt(+) aggregates were observed in the extracellular matrix of the transplanted tissue, whereas in the host brain they were seen in neurons, neuropil, extracellular matrix, and blood vessels. INTERPRETATION: This is the first demonstration of the presence of mHtt in genetically normal and unrelated allografted neural tissue transplanted into the brain of affected HD patients. These observations raise questions on protein spread in monogenic neurodegenerative disorders of the central nervous system characterized by the formation of mutant protein oligomers/aggregates.


Assuntos
Aloenxertos/metabolismo , Transplante de Tecido Encefálico , Doença de Huntington/terapia , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adulto , Ensaios Clínicos como Assunto/tendências , Transplante de Tecido Fetal , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Pessoa de Meia-Idade , Neostriado/embriologia , Neostriado/transplante
14.
ScientificWorldJournal ; 2015: 859416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834840

RESUMO

Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.


Assuntos
Vasos Sanguíneos/citologia , Colágeno/química , Engenharia Tecidual , Animais , Géis , Modelos Teóricos , Ratos
15.
Front Bioeng Biotechnol ; 12: 1434435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295849

RESUMO

The fabrication of cell-laden biomimetic scaffolds represents a pillar of tissue engineering and regenerative medicine (TERM) strategies, and collagen is the gold standard matrix for cells to be. In the recent years, extrusion 3D bioprinting introduced new possibilities to increase collagen scaffold performances thanks to the precision, reproducibility, and spatial control. However, the design of pure collagen bioinks represents a challenge, due to the low storage modulus and the long gelation time, which strongly impede the extrusion of a collagen filament and the retention of the desired shape post-printing. In this study, the tannic acid-mediated crosslinking of the outer layer of collagen is proposed as strategy to enable collagen filament extrusion. For this purpose, a tannic acid solution has been used as supporting bath to act exclusively as external crosslinker during the printing process, while allowing the pH- and temperature-driven formation of collagen fibers within the core. Collagen hydrogels (concentration 2-6 mg/mL) were extruded in tannic acid solutions (concentration 5-20 mg/mL). Results proved that external interaction of collagen with tannic acid during 3D printing enables filament extrusion without affecting the bulk properties of the scaffold. The temporary collagen-tannic acid interaction resulted in the formation of a membrane-like external layer that protected the core, where collagen could freely arrange in fibers. The precision of the printed shapes was affected by both tannic acid concentration and needle diameter and can thus be tuned. Altogether, results shown in this study proved that tannic acid bath enables collagen bioprinting, preserves collagen morphology, and allows the manufacture of a cell-laden pure collagen scaffold.

16.
Biomedicines ; 12(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062083

RESUMO

Alginate/gelatin (Alg-Gel) hydrogels have been used experimentally, associated with mesenchymal stromal/stem cells (MSCs), to guide bone tissue formation. One of the main challenges for clinical application is optimizing Alg-Gel stiffness to guide osteogenesis. In this study, we investigated how Alg-Gel stiffness could modulate the dental pulp stem cell (DPSC) attachment, morphology, proliferation, and osteogenic differentiation, identifying the optimal conditions to uncouple osteogenesis from the other cell behaviors. An array of Alg-Gel hydrogels was prepared by casting different percentages of alginate and gelatin cross-linked with 2% CaCl2. We have selected two hydrogels: one with a stiffness of 11 ± 1 kPa, referred to as "low-stiffness hydrogel", formed by 2% alginate and 8% gelatin, and the other with a stiffness of 55 ± 3 kPa, referred to as "high-stiffness hydrogel", formed by 8% alginate and 12% gelatin. Hydrogel analyses showed that the average swelling rates were 20 ± 3% for the low-stiffness hydrogels and 35 ± 2% for the high-stiffness hydrogels. The degradation percentage was 47 ± 5% and 18 ± 2% for the low- and high-stiffness hydrogels, respectively. Both hydrogel types showed homogeneous surface shape and protein (Alg-Gel) interaction with CaCl2 as assessed by physicochemical characterization. Cell culture showed good adhesion of the DPSCs to the hydrogels and proliferation. Furthermore, better osteogenic activity, determined by ALP activity and ARS staining, was obtained with high-stiffness hydrogels (8% alginate and 12% gelatin). In summary, this study confirms the possibility of characterizing and optimizing the stiffness of Alg-Gel gel to guide osteogenesis in vitro without altering the other cellular properties of DPSCs.

17.
Bioact Mater ; 40: 524-540, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39040567

RESUMO

Iron and its alloys are attractive as biodegradable materials because of their low toxicity and suitable mechanical properties; however, they generally have a slow degradation rate. Given that corrosion is an electrochemical phenomenon where an exchange of electrons takes place, the application of magnetic fields from outside the body may accelerate the degradation of a ferrous temporary implant. In the present study, we have investigated the effect of alternating and direct low magnetic field (H = 6.5 kA/m) on the corrosion process of pure iron (Fe) and an iron-manganese alloy (FeMnC) in modified Hanks' solution. A 14-day static immersion test was performed on the materials. The corrosion rate was assessed by mass and cross-sectional loss measurements, scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy before and after degradation. The results show that the presence of magnetic fields significantly accelerates the degradation rate of both materials, with the corrosion rate being twice as high in the case of Fe and almost three times as high for FeMnC. In addition, a homogenous degradation layer is formed over the entire surface and the chemical composition of the degradation products is the same regardless of the presence of a magnetic field.

18.
Front Bioeng Biotechnol ; 12: 1452965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39205858

RESUMO

In the past years, the use of hydrogels derived from decellularized extracellular matrix (dECM) for regenerative medicine purposes has significantly increased. The intrinsic bioactive and immunomodulatory properties indicate these materials as promising candidates for therapeutical applications. However, to date, limitations such as animal-to-animal variability still hinder the clinical translation. Moreover, the choice of tissue source, decellularization and solubilization protocols leads to differences in dECM-derived hydrogels. In this context, detailed characterization of chemical, physical and biological properties of the hydrogels should be performed, with attention to how these properties can be affected by animal-to-animal variability. Herein, we report a detailed characterization of a hydrogel derived from the decellularized extracellular matrix of bovine pericardium (dBP). Protein content, rheological properties, injectability, surface microstructure, in vitro stability and cytocompatibility were evaluated, with particular attention to animal-to-animal variability. The gelation process showed to be thermoresponsive and the obtained dBP hydrogels are injectable, porous, stable up to 2 weeks in aqueous media, rapidly degrading in enzymatic environment and cytocompatible, able to maintain cell viability in human mesenchymal stromal cells. Results from proteomic analysis proved that dBP hydrogels are highly rich in composition, preserving bioactive proteoglycans and glycoproteins in addition to structural proteins such as collagen. With respect to the chemical composition, animal-to-animal variability was shown, but the biological properties were not affected, which remained consistent in different batches. Taken together these results show that dBP hydrogels are excellent candidates for regenerative medicine applications.

19.
Struct Heart ; 8(2): 100262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481716

RESUMO

Background: It is unknown whether bioprostheses used for transcatheter aortic valve implantation will have similar long-term durability as those used for surgical aortic valve replacement. Repetitive mechanical stress applied to the valve leaflets, particularly during diastole, is the main determinant of structural valve deterioration. Leaflet mechanical stress cannot be measured in vivo. The objective of this in vitro/in silico study was thus to compare the magnitude and regional distribution of leaflet mechanical stress in old vs new generations of self-expanding (SE) vs balloon expandable (BE) transcatheter heart valves (THVs). Methods: A double activation simulator was used for in vitro testing of two generations of SE THV (Medtronic CoreValve 26 mm and EVOLUT PRO 26 mm) and two generations of BE THV (Edwards SAPIEN 23 mm vs SAPIEN-3 23 mm). These THVs were implanted within a 21-mm aortic annulus. A noncontact system based on stereophotogammetry and digital image correlation with high spatial and temporal resolution (2000 img/sec) was used to visualize the valve leaflet motion and perform the three-dimensional analysis. A finite element model of the valve was developed, and the leaflet deformation obtained from the digital image correlation analysis was applied to the finite element model to calculate local leaflet mechanical stress during diastole. Results: The maximum von Mises leaflet stress was higher in early vs new THV generation (p < 0.05) and in BE vs SE THV (p < 0.05): early generation BE: 2.48 vs SE: 1.40 MPa; new generation BE: 1.68 vs SE: 1.07 MPa. For both types of THV, the highest values of leaflet stress were primarily observed in the upper leaflet edge near the commissures and to a lesser extent in the mid-portion of the leaflet body, which is the area where structural leaflet deterioration most often occurs in vivo. Conclusions: The results of this in vitro/in silico study suggest that: i) Newer generations of THVs have ∼30% lower leaflet mechanical stress than the early generations; ii) For a given generation, SE THVs have lower leaflet mechanical stress than BE THVs. Further studies are needed to determine if these differences between new vs early THV generations and between SE vs BE THVs will translate into significant differences in long-term valve durability in vivo.

20.
Pharmaceutics ; 16(8)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39204430

RESUMO

This research consolidates our group's advances in developing a therapeutic dressing with innovative enzymatic debridement, focusing on the physicochemical and in vitro biological properties of papain immobilized in wet oxidized bacterial cellulose (OxBC-Papain) dressing. OxBC membranes were produced with Komagataeibacter hansenii oxidized with NaIO4, and papain was immobilized on them. They were characterized in terms of enzyme stability (over 100 days), absorption capacity, water vapor transmission (WVT), hemocompatibility, cytotoxicity, and cell adhesion. The OxBC-Papain membrane showed 68.5% proteolytic activity after 100 days, demonstrating the benefit of using the OxBC wet membrane for papain stability. It had a WVT rate of 678 g/m2·24 h and cell viability of 99% and 86% for L929 and HaCat cells, respectively. The membranes exhibited non-hemolytic behavior and maintained 26% clotting capacity after 1 h. The wet OxBC-Papain membrane shows significant potential as a natural biomolecule-based therapeutic dressing for wound care, offering efficient debridement, moisture maintenance, exudate absorption, gas exchange, and hemostasis without cytotoxic effects or cell adhesion to the dressing. Further research, especially using in vivo models, is needed to assess its efficacy in inducing epithelialization. This study advances stomatherapy knowledge, providing a cost-effective solution for enzymatic debridement in healthcare.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa