Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202317997, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380789

RESUMO

Copying information is vital for life's propagation. Current life forms maintain a low error rate in replication, using complex machinery to prevent and correct errors. However, primitive life had to deal with higher error rates, limiting its ability to evolve. Discovering mechanisms to reduce errors would alleviate this constraint. Here, we introduce a new mechanism that decreases error rates and corrects errors in synthetic self-replicating systems driven by self-assembly. Previous work showed that macrocycle replication occurs through the accumulation of precursor material on the sides of the fibrous replicator assemblies. Stochastic simulations now reveal that selective precursor binding to the fiber surface enhances replication fidelity and error correction. Centrifugation experiments show that replicator fibers can exhibit the necessary selectivity in precursor binding. Our results suggest that synthetic replicator systems are more evolvable than previously thought, encouraging further evolution-focused experiments.


Assuntos
Modelos Biológicos
2.
Angew Chem Int Ed Engl ; 61(18): e202117605, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35179808

RESUMO

Among the key characteristics of living systems are their ability to self-replicate and the fact that they exist in an open system away from equilibrium. Herein, we show how the outcome of the competition between two self-replicators, differing in size and building block composition, is different depending on whether the experiments are conducted in a closed vial or in an open and out-of-equilibrium replication-destruction regime. In the closed system, the slower replicator eventually prevails over the faster competitor. In a replication-destruction regime, implemented through a flow system, the outcome of the competition is reversed and the faster replicator dominates. The interpretation of the experimental observations is supported by a mass-action-kinetics model. These results represent one of the few experimental manifestations of selection among competing self-replicators based on dynamic kinetic stability and pave the way towards Darwinian evolution of abiotic systems.


Assuntos
Cinética
3.
Angew Chem Int Ed Engl ; 60(20): 11344-11349, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689197

RESUMO

Unravelling how the complexity of living systems can (have) emerge(d) from simple chemical reactions is one of the grand challenges in contemporary science. Evolving systems of self-replicating molecules may hold the key to this question. Here we show that, when a system of replicators is subjected to a regime where replication competes with replicator destruction, simple and fast replicators can give way to more complex and slower ones. The structurally more complex replicator was found to be functionally more proficient in the catalysis of a model reaction. These results show that chemical fueling can maintain systems of replicators out of equilibrium, populating more complex replicators that are otherwise not readily accessible. Such complexification represents an important requirement for achieving open-ended evolution as it should allow improved and ultimately also new functions to emerge.

4.
J Am Chem Soc ; 142(39): 16868-16876, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32905701

RESUMO

Unidirectional molecular rotation based on alternating photochemical and thermal isomerizations of overcrowded alkenes is well established, but rotary cycles based purely on photochemical isomerizations are rare. Herein we report three new second-generation molecular motors featuring a phosphorus center in the lower half, which engenders a unique element of axial chirality. These motors exhibit unusual behavior, in that all four diastereomeric states can interconvert solely photochemically. Kinetic analysis and modeling reveal that the behavior of the new motors is consistent with all-photochemical unidirectional rotation. Furthermore, X-ray crystal structures of all four diastereomeric states of two of these new motors were obtained, which constitute the first achievements of crystallographic characterization of the full 360° rotational cycle of overcrowded-alkene-based molecular motors. Finally, the axial phosphorus stereoelement in the phosphine motor can be thermally inverted, and this epimerization enables a "shortcut" of the traditional rotational cycle of these compounds.

5.
J Am Chem Soc ; 142(32): 13709-13717, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786814

RESUMO

Self-assembly features prominently in fields ranging from materials science to biophysical chemistry. Assembly pathways, often passing through transient intermediates, can control the outcome of assembly processes. Yet, the mechanisms of self-assembly remain largely obscure due to a lack of experimental tools for probing these pathways at the molecular level. Here, the self-assembly of self-replicators into fibers is visualized in real-time by high-speed atomic force microscopy (HS-AFM). Fiber growth requires the conversion of precursor molecules into six-membered macrocycles, which constitute the fibers. HS-AFM experiments, supported by molecular dynamics simulations, revealed that aggregates of precursor molecules accumulate at the sides of the fibers, which then diffuse to the fiber ends where growth takes place. This mechanism of precursor reservoir formation, followed by one-dimensional diffusion, which guides the precursor molecules to the sites of growth, reduces the entropic penalty associated with colocalizing precursors and growth sites and constitutes a new mechanism for supramolecular polymerization.

6.
BMC Evol Biol ; 14: 265, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25547629

RESUMO

BACKGROUND: The quasispecies model refers to information carriers that undergo self-replication with errors. A quasispecies is a steady-state population of biopolymer sequence variants generated by mutations from a master sequence. A quasispecies error threshold is a minimal replication accuracy below which the population structure breaks down. Theory and experimentation of this model often refer to biopolymers, e.g. RNA molecules or viral genomes, while its prebiotic context is often associated with an RNA world scenario. Here, we study the possibility that compositional entities which code for compositional information, intrinsically different from biopolymers coding for sequential information, could show quasispecies dynamics. RESULTS: We employed a chemistry-based model, graded autocatalysis replication domain (GARD), which simulates the network dynamics within compositional molecular assemblies. In GARD, a compotype represents a population of similar assemblies that constitute a quasi-stationary state in compositional space. A compotype's center-of-mass is found to be analogous to a master sequence for a sequential quasispecies. Using single-cycle GARD dynamics, we measured the quasispecies transition matrix (Q) for the probabilities of transition from one center-of-mass Euclidean distance to another. Similarly, the quasispecies' growth rate vector (A) was obtained. This allowed computing a steady state distribution of distances to the center of mass, as derived from the quasispecies equation. In parallel, a steady state distribution was obtained via the GARD equation kinetics. Rewardingly, a significant correlation was observed between the distributions obtained by these two methods. This was only seen for distances to the compotype center-of-mass, and not to randomly selected compositions. A similar correspondence was found when comparing the quasispecies time dependent dynamics towards steady state. Further, changing the error rate by modifying basal assembly joining rate of GARD kinetics was found to display an error catastrophe, similar to the standard quasispecies model. Additional augmentation of compositional mutations leads to the complete disappearance of the master-like composition. CONCLUSIONS: Our results show that compositional assemblies, as simulated by the GARD formalism, portray significant attributes of quasispecies dynamics. This expands the applicability of the quasispecies model beyond sequence-based entities, and potentially enhances validity of GARD as a model for prebiotic evolution.


Assuntos
Células/química , Simulação por Computador , Modelos Químicos , Mutação , RNA/química , RNA/genética
7.
J Theor Biol ; 357: 26-34, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24831416

RESUMO

Present life portrays a two-tier phenomenology: molecules compose supramolecular structures, such as cells or organisms, which in turn portray population behaviors, including selection, evolution and ecological dynamics. Prebiotic models have often focused on evolution in populations of self-replicating molecules, without explicitly invoking the intermediate molecular-to-supramolecular transition. Here, we explore a prebiotic model that allows one to relate parameters of chemical interaction networks within molecular assemblies to emergent population dynamics. We use the graded autocatalysis replication domain (GARD) model, which simulates the network dynamics within amphiphile-containing molecular assemblies, and exhibits quasi-stationary compositional states termed compotype species. These grow by catalyzed accretion, divide and propagate their compositional information to progeny in a replication-like manner. The model allows us to ask how molecular network parameters influence assembly evolution and population dynamics parameters. In 1000 computer simulations, each embodying different parameter set of the global chemical interaction network parameters, we observed a wide range of behaviors. These were analyzed by a multi species logistic model often used for analyzing population ecology (r-K or Lotka-Volterra competition model). We found that compotypes with a larger intrinsic molecular repertoire show a higher intrinsic growth (r) and lower carrying capacity (K), as well as lower replication fidelity. This supports a prebiotic scenario initiated by fast-replicating assemblies with a high molecular diversity, evolving into more faithful replicators with narrower molecular repertoires.


Assuntos
Simulação por Computador , Modelos Químicos , Prebióticos
8.
Life (Basel) ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541614

RESUMO

Early steps in the origin of life were necessarily connected to the unlikely formation of self-reproducing structures from chaotic chemistry. Simulations of chemical kinetics based on the graded autocatalysis replication domain (GARD) model demonstrate the ability of a micellar system to become self-reproducing units away from equilibrium. Even though they may be very rare in the initial state of the system, the property of their endogenous mutually catalytic networks being dynamic attractors greatly enhanced reproduction propensity, revealing their potential for selection and Darwinian evolution processes. In parallel, order and complexity have been shown to be crucial parameters in successful evolution. Here, we probe these parameters in the dynamics of GARD-governed entities in an attempt to identify characteristic mechanisms of their development in non-covalent molecular assemblies. Using a virtual random walk perspective, a value for consecutive order is defined based on statistical thermodynamics. The complexity, on the other hand, is determined by the size of a minimal algorithm fully describing the statistical properties of the random walk. By referring to a previously published diagonal line in an order/complexity diagram that represents the progression of evolution, it is shown that the GARD model has the potential to advance in this direction. These results can serve as a solid foundation for identifying general criteria for future analyses of evolving systems.

9.
Orig Life Evol Biosph ; 42(5): 469-73; discussion 474, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23114973

RESUMO

In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study--under a unified and concise prebiotic evolutionary framework--both a variety of initial conditions of the universe and the OEE of species that evolve from them.


Assuntos
Evolução Biológica , Prebióticos , Modelos Teóricos
10.
Phys Biol ; 8(6): 066001, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21946049

RESUMO

We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers.


Assuntos
Lipídeos/química , Micelas , Tensoativos/química , Simulação por Computador , Cinética , Bicamadas Lipídicas/química , Lipossomos/química , Modelos Biológicos , Modelos Químicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa