Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(6): 2355-60, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24474805

RESUMO

Mucociliary transport (MCT) is an innate defense mechanism that removes particulates, noxious material, and microorganisms from the lung. Several airway diseases exhibit abnormal MCT, including asthma, chronic bronchitis, and cystic fibrosis. However, it remains uncertain whether MCT abnormalities contribute to the genesis of disease or whether they are secondary manifestations that may fuel disease progression. Limitations of current MCT assays and of current animal models of human disease have hindered progress in addressing these questions. Therefore, we developed an in vivo assay of MCT, and here we describe its use in newborn wild-type pigs. We studied pigs because they share many physiological, biochemical, and anatomical features with humans and can model several human diseases. We used X-ray multidetector-row-computed tomography to track movement of individual particles in the large airways of newborn pigs. Multidetector-row-computed tomography imaging provided high spatial and temporal resolution and registration of particle position to airway anatomy. We discovered that cilia orientation directs particles to the ventral tracheal surface. We also observed substantial heterogeneity in the rate of individual particle movement, and we speculate that variations in mucus properties may be responsible. The increased granularity of MCT data provided by this assay may provide an opportunity to better understand host defense mechanisms and the pathogenesis of airway disease.


Assuntos
Depuração Mucociliar/fisiologia , Traqueia/fisiologia , Animais , Animais Recém-Nascidos , Suínos
2.
N Engl J Med ; 363(13): 1233-44, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20860505

RESUMO

BACKGROUND: Endobronchial valves that allow air to escape from a pulmonary lobe but not enter it can induce a reduction in lobar volume that may thereby improve lung function and exercise tolerance in patients with pulmonary hyperinflation related to advanced emphysema. METHODS: We compared the safety and efficacy of endobronchial-valve therapy in patients with heterogeneous emphysema versus standard medical care. Efficacy end points were percent changes in the forced expiratory volume in 1 second (FEV1) and the 6-minute walk test on intention-to-treat analysis. We assessed safety on the basis of the rate of a composite of six major complications. RESULTS: Of 321 enrolled patients, 220 were randomly assigned to receive endobronchial valves (EBV group) and 101 to receive standard medical care (control group). At 6 months, there was an increase of 4.3% in the FEV1 in the EBV group (an increase of 1.0 percentage point in the percent of the predicted value), as compared with a decrease of 2.5% in the control group (a decrease of 0.9 percentage point in the percent of the predicted value). Thus, there was a mean between-group difference of 6.8% in the FEV1 (P=0.005). Roughly similar between-group differences were observed for the 6-minute walk test. At 12 months, the rate of the complications composite was 10.3% in the EBV group versus 4.6% in the control group (P=0.17). At 90 days, in the EBV group, as compared with the control group, there were increased rates of exacerbation of chronic obstructive pulmonary disease (COPD) requiring hospitalization (7.9% vs. 1.1%, P=0.03) and hemoptysis (6.1% vs. 0%, P=0.01). The rate of pneumonia in the target lobe in the EBV group was 4.2% at 12 months. Greater radiographic evidence of emphysema heterogeneity and fissure completeness was associated with an enhanced response to treatment. CONCLUSIONS: Endobronchial-valve treatment for advanced heterogeneous emphysema induced modest improvements in lung function, exercise tolerance, and symptoms at the cost of more frequent exacerbations of COPD, pneumonia, and hemoptysis after implantation. (Funded by Pulmonx; ClinicalTrials.gov number, NCT00129584.)


Assuntos
Próteses e Implantes , Enfisema Pulmonar/terapia , Adulto , Idoso , Antibioticoprofilaxia , Broncodilatadores/uso terapêutico , Broncoscopia , Tolerância ao Exercício , Volume Expiratório Forçado , Humanos , Pessoa de Meia-Idade , Pneumonectomia/métodos , Modelos de Riscos Proporcionais , Doença Pulmonar Obstrutiva Crônica/complicações , Enfisema Pulmonar/complicações , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/mortalidade , Fenômenos Fisiológicos Respiratórios
3.
Proc Natl Acad Sci U S A ; 107(16): 7485-90, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368443

RESUMO

Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.


Assuntos
Enfisema/diagnóstico por imagem , Pulmão/patologia , Enfisema Pulmonar/diagnóstico por imagem , Fumar/efeitos adversos , Adulto , Estudos de Coortes , Enfisema/etiologia , Enfisema/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão , Fenótipo , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/patologia , Interpretação de Imagem Radiográfica Assistida por Computador , Fluxo Sanguíneo Regional , Tomografia Computadorizada por Raios X/métodos
4.
COPD ; 9(2): 151-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22429093

RESUMO

UNLABELLED: The purposes of this study were: to describe chest CT findings in normal non-smoking controls and cigarette smokers with and without COPD; to compare the prevalence of CT abnormalities with severity of COPD; and to evaluate concordance between visual and quantitative chest CT (QCT) scoring. METHODS: Volumetric inspiratory and expiratory CT scans of 294 subjects, including normal non-smokers, smokers without COPD, and smokers with GOLD Stage I-IV COPD, were scored at a multi-reader workshop using a standardized worksheet. There were 58 observers (33 pulmonologists, 25 radiologists); each scan was scored by 9-11 observers. Interobserver agreement was calculated using kappa statistic. Median score of visual observations was compared with QCT measurements. RESULTS: Interobserver agreement was moderate for the presence or absence of emphysema and for the presence of panlobular emphysema; fair for the presence of centrilobular, paraseptal, and bullous emphysema subtypes and for the presence of bronchial wall thickening; and poor for gas trapping, centrilobular nodularity, mosaic attenuation, and bronchial dilation. Agreement was similar for radiologists and pulmonologists. The prevalence on CT readings of most abnormalities (e.g. emphysema, bronchial wall thickening, mosaic attenuation, expiratory gas trapping) increased significantly with greater COPD severity, while the prevalence of centrilobular nodularity decreased. Concordances between visual scoring and quantitative scoring of emphysema, gas trapping and airway wall thickening were 75%, 87% and 65%, respectively. CONCLUSIONS: Despite substantial inter-observer variation, visual assessment of chest CT scans in cigarette smokers provides information regarding lung disease severity; visual scoring may be complementary to quantitative evaluation.


Assuntos
Enfisema/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Estudos de Casos e Controles , Educação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Prevalência , Projetos de Pesquisa , Fumar
5.
Radiology ; 259(3): 875-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325035

RESUMO

UNLABELLED: Quantitative imaging biomarkers could speed the development of new treatments for unmet medical needs and improve routine clinical care. However, it is not clear how the various regulatory and nonregulatory (eg, reimbursement) processes (often referred to as pathways) relate, nor is it clear which data need to be collected to support these different pathways most efficiently, given the time- and cost-intensive nature of doing so. The purpose of this article is to describe current thinking regarding these pathways emerging from diverse stakeholders interested and active in the definition, validation, and qualification of quantitative imaging biomarkers and to propose processes to facilitate the development and use of quantitative imaging biomarkers. A flexible framework is described that may be adapted for each imaging application, providing mechanisms that can be used to develop, assess, and evaluate relevant biomarkers. From this framework, processes can be mapped that would be applicable to both imaging product development and to quantitative imaging biomarker development aimed at increasing the effectiveness and availability of quantitative imaging. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100800/-/DC1.


Assuntos
Biomarcadores , Diagnóstico por Imagem , Difusão de Inovações , Avaliação da Tecnologia Biomédica/normas , Pesquisa Biomédica/organização & administração , Conflito de Interesses , Aprovação de Equipamentos , Europa (Continente) , Humanos , Valor Preditivo dos Testes , Estados Unidos , United States Food and Drug Administration
6.
Med Phys ; 38(2): 915-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452728

RESUMO

PURPOSE: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. METHODS: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. RESULTS: The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "nodule > or =3 mm" by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. CONCLUSIONS: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.


Assuntos
Bases de Dados Factuais , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Diagnóstico por Computador , Humanos , Neoplasias Pulmonares/patologia , Controle de Qualidade , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia Torácica , Padrões de Referência , Carga Tumoral
7.
Am J Respir Crit Care Med ; 182(10): 1251-61, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20622026

RESUMO

RATIONALE: Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. OBJECTIVES: To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. METHODS: We studied newborn CFTR⁻(/)⁻ pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. MEASUREMENTS AND MAIN RESULTS: We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. CONCLUSIONS: Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life.


Assuntos
Fibrose Cística/fisiopatologia , Traqueia/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Pré-Escolar , Fibrose Cística/etiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Lactente , Análise em Microsséries , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Mucosa Respiratória/patologia , Mucosa Respiratória/fisiopatologia , Estudos Retrospectivos , Suínos , Tomografia Computadorizada por Raios X , Traqueia/patologia , Traqueia/fisiopatologia
8.
J Magn Reson Imaging ; 32(6): 1353-69, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21105140

RESUMO

This review compares the emerging technologies and approaches in the application of magnetic resonance (MR) and computed tomography (CT) imaging for the assessment of pulmonary nodules and staging of malignant findings. Included in this review is a brief definition of pulmonary nodules and an introduction to the challenges faced. We have highlighted the current status of both MR and CT for the early detection of lung nodules. Developments are detailed in this review for the management of pulmonary nodules using advanced imaging, including: dynamic imaging studies, dual energy CT, computer aided detection and diagnosis, and imaging assisted nodule biopsy approaches which have improved lung nodule detection and diagnosis rates. Recent advancements linking in vivo imaging to corresponding histological pathology are also highlighted. In vivo imaging plays a pivotal role in the clinical staging of pulmonary nodules through TNM assessment. While CT and positron emission tomography (PET)/CT are currently the most commonly clinically employed modalities for pulmonary nodule staging, studies are presented that highlight the augmentative potential of MR.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico , Imageamento por Ressonância Magnética/métodos , Nódulo Pulmonar Solitário/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Algoritmos , Biópsia , Diagnóstico por Computador/métodos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias/métodos , Radiografia Torácica/métodos , Nódulo Pulmonar Solitário/patologia , Parede Torácica/diagnóstico por imagem
9.
Med Phys ; 37(9): 4793-805, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20964199

RESUMO

PURPOSE: Small animal micro-CT imaging is being used increasingly in preclinical biomedical research to provide phenotypic descriptions of genomic models. Most of this imaging is coincident with animal death and is used to show the extent of disease as an end point. Longitudinal imaging overcomes the limitation of single time-point imaging because it enables tracking of the natural history of disease and provides qualitative and, where possible, quantitative assessments of the effects of an intervention. The pulmonary system is affected by many disease conditions, such as lung cancer, chronic obstructive pulmonary disease, asthma, and granulomatous disorders. Noninvasive imaging can accurately assess the lung phenotype within the living animal, evaluating not only global lung measures, but also regional pathology. However, imaging the lung in the living animal is complicated by rapid respiratory motion, which leads to image based artifacts. Furthermore, no standard mouse lung imaging protocols exist for longitudinal assessment, with each group needing to develop their own systematic approach. METHODS: In this article, the authors present an outline for performing longitudinal breath-hold gated micro-CT imaging for the assessment of lung nodules in a mouse model of lung cancer. The authors describe modifications to the previously published intermittent isopressure breath-hold technique including a new animal preparation and anesthesia protocol, implementation of a ring artifact reduction, variable scanner geometry, and polynomial beam hardening correction. In addition, the authors describe a multitime-point data set registration and tumor labeling and tracking strategy. RESULTS: In vivo micro-CT data sets were acquired at months 2, 3, and 4 posturethane administration in cancer mice (n = 5) and simultaneously in control mice (n = 3). 137 unique lung nodules were identified from the cancer mice while no nodules were detected in the control mice. A total of 411 nodules were segmented and labeled over the three time-points. Lung nodule metrics including RECIST, Ortho, WHO, and 3D volume were determined and extracted. A tumor incidence rate of 30.44 +/- 1.93 SEM for n = 5 was found with identification of nodules as small as 0.11 mm (RECIST) and as large as 1.66 mm (RECIST). In addition, the tumor growth and doubling rate between months 2-3 and 3-4 were calculated. Here, the growth rate was slightly higher in the second period based on the 3D volume data (0.12 +/- 0.13 to 0.13 +/- 0.17 microl) but significantly less based on the linear diameter metrics [RECIST (0.33 +/- 0.19 to 0.17 +/- 0.18 mm); Ortho (0.24 +/- 0.15 to 0.16 +/- 0.15 mm)], indicating the need to understand how each metric is obtained and how to correctly interpret change in tumor size. CONCLUSIONS: In conclusion, micro-CT imaging provides a unique platform for in vivo longitudinal assessment of pulmonary lung cancer progression and potentially tracking of therapies at very high resolutions. The ability to evaluate the same subject over time provides for a sensitive assay that can be carried out on a smaller sample size. When integrated with image processing and analysis routines as detailed in this study, the data acquired from micro-CT imaging can now provide a very powerful assessment of pulmonary disease outcomes.


Assuntos
Progressão da Doença , Neoplasias Pulmonares/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Anestesia , Animais , Camundongos , Interpretação de Imagem Radiográfica Assistida por Computador , Fatores de Tempo
10.
Am J Respir Crit Care Med ; 179(9): 791-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19179484

RESUMO

RATIONALE: Biologic lung volume reduction (BioLVR) is a new endobronchial treatment for advanced emphysema that reduces lung volume through tissue remodeling. OBJECTIVES: Assess the safety and therapeutic dose of BioLVR hydrogel in upper lobe predominant emphysema. METHODS: Open-labeled, multicenter phase 2 dose-ranging studies were performed with BioLVR hydrogel administered to eight subsegmental sites (four in each upper lobe) involving: (1) low-dose treatment (n = 28) with 10 ml per site (LD); and (2) high-dose treatment (n = 22) with 20 ml per site (HD). Safety was assessed by the incidence of serious medical complications. Efficacy was assessed by change from baseline in pulmonary function tests, dyspnea score, 6-minute walk distance, and health-related quality of life. MEASUREMENTS AND MAIN RESULTS: After treatment there were no deaths and four serious treatment-related complications. A reduction in residual volume to TLC ratio at 12 weeks (primary efficacy outcome) was achieved with both LD (-6.4 +/- 9.3%; P = 0.002) and HD (-5.5 +/- 9.4%; P = 0.028) treatments. Improvements in pulmonary function in HD (6 mo: DeltaFEV(1) = +15.6%; P = 0.002; DeltaFVC = +9.1%; P = 0.034) were greater than in LD patients (6 mo: DeltaFEV(1) = +6.7%; P = 0.021; DeltaFVC = +5.1%; P = 0.139). LD- and HD-treated groups both demonstrated improved symptom scores and health-related quality of life. CONCLUSIONS: BioLVR improves physiology and functional outcomes up to 6 months with an acceptable safety profile in upper lobe predominant emphysema. Overall improvement was greater and responses more durable with 20 ml per site than 10 ml per site dosing. Clinical trial registered with www.clinicaltrials.gov (NCT 00435253 and NCT 00515164).


Assuntos
Hidrogéis/administração & dosagem , Pulmão/efeitos dos fármacos , Enfisema Pulmonar/terapia , Idoso , Broncoscopia , Dispneia/terapia , Fadiga/etiologia , Feminino , Febre/etiologia , Humanos , Hidrogéis/efeitos adversos , Leucocitose/etiologia , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/terapia , Enfisema Pulmonar/diagnóstico por imagem , Qualidade de Vida , Radiografia , Testes de Função Respiratória
11.
Am J Respir Cell Mol Biol ; 38(5): 572-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18096874

RESUMO

The change in alveolar size and number during the full breathing cycle in mammals remains unanswered, yet these descriptors are fundamental for understanding alveolar-based diseases and for improving ventilator management. Genetic and environmental mouse models are used increasingly to evaluate the evolution of disease in the peripheral lung; however, little is known regarding alveolar structure and function in the fresh, intact lung. Therefore, we have developed an optical confocal process to evaluate alveolar dynamics in the fresh intact mouse lung and as an initial experiment, have evaluated mouse alveolar dynamics during a single respiratory cycle immediately after passive lung deflation. We observe that alveoli become smaller and more numerous at the end of inspiration, and propose that this is direct evidence for alveolar recruitment in the mouse lung. The findings reported support a new hypothesis that requires recruitable secondary (daughter) alveoli to inflate via primary (mother) alveoli rather than from a conducting airway.


Assuntos
Alvéolos Pulmonares/anatomia & histologia , Alvéolos Pulmonares/fisiologia , Respiração , Animais , Fenômenos Biomecânicos , Cateterismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pleura/anatomia & histologia , Pleura/fisiologia , Volume de Ventilação Pulmonar/fisiologia
12.
Med Phys ; 35(12): 5575-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19175115

RESUMO

Tracking lung tissues during the respiratory cycle has been a challenging task for diagnostic CT and CT-guided radiotherapy. We propose an intensity- and landmark-based image registration algorithm to perform image registration and warping of 3D pulmonary CT image data sets, based on consistency constraints and matching corresponding airway branchpoints. In this paper, we demonstrate the effectivenss and accuracy of this algorithm in tracking lung tissues by both animal and human data sets. In the animal study, the result showed a tracking accuracy of 1.9 mm between 50% functional residual capacity (FRC) and 85% total lung capacity (TLC) for 12 metal seeds implanted in the lungs of a breathing sheep under precise volume control using a pulmonary ventilator. Visual inspection of the human subject results revealed the algorithm's potential not only in matching the global shapes, but also in registering the internal structures (e.g., oblique lobe fissures, pulmonary artery branches, etc.). These results suggest that our algorithm has significant potential for warping and tracking lung tissue deformation with applications in diagnostic CT, CT-guided radiotherapy treatment planning, and therapeutic effect evaluation.


Assuntos
Pulmão/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Diagnóstico por Imagem/métodos , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/patologia , Modelos Estatísticos , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Respiração , Ovinos , Dosimetria Termoluminescente/métodos , Ventiladores Mecânicos
13.
Acad Radiol ; 15(6): 786-98, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18486014

RESUMO

RATIONALE AND OBJECTIVES: Many imaging modalities and methodologies exist for evaluating the pulmonary airways. Individually, each modality provides insight to the state of the airways; however, alone they do not necessarily provide a comprehensive description. The goal of this work is to integrate complementary medical imaging datasets to form a synergistic description of the airways. MATERIALS AND METHODS: Two digital bronchoscopic techniques were used to evaluate the pulmonary mucosa. A digital color bronchoscopic system was used to detect mucosal color alterations, and a fluorescence detection system was used to assess the microvasculature of the bronchial mucosa. Study participants were also imaged with a multidetector row computed tomographic (MDCT) scanner. Virtual bronchoscopic and image registration techniques were exploited to combine three-dimensional surface renderings, extracted from the MDCT data, together with the two-dimensional digital bronchoscopic images. Validation of the fusion process was performed on a rubber phantom of an adult airway with 4 embedded metal beads. RESULTS: The fusion of the MDCT extracted airway tree and the digital bronchoscopic datasets were presented for three study participants. In addition, the detected accuracy of the registration method to reliably align the MDCT and bronchoscopic image datasets was determined to be 1.98 mm in the phantom airway model. CONCLUSION: We have demonstrated that merging of three distinct digital datasets to provide a single synergistic description of the airways is possible. This is a pilot project in the field of eidomics, the process of combining digital image datasets and image-based processes together. We anticipate that in the future eidomics will provide a universal and predictive imaging language that will change health care delivery.


Assuntos
Broncopatias/diagnóstico , Broncoscopia/métodos , Aumento da Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Interface Usuário-Computador
14.
Respir Physiol Neurobiol ; 157(2-3): 295-309, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17360247

RESUMO

A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouthpiece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to six generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three-folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus, airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry.


Assuntos
Laringe/fisiologia , Ventilação Pulmonar/fisiologia , Mecânica Respiratória/fisiologia , Transporte Respiratório/fisiologia , Tórax/fisiologia , Resistência das Vias Respiratórias/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Modelos Biológicos
15.
Laryngoscope ; 117(12): 2159-62, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921904

RESUMO

OBJECTIVES: Laryngotracheostenosis (LTS) is a condition in which the airway is narrowed between the vocal cords and the carina. We seek to examine whether flexible bronchoscopy with neodymium-doped yttrium aluminum garnet (Nd:YAG) laser incision and balloon dilation tracheoplasty is a practical choice in the management of patients with subglottic or tracheal stenosis. METHODS: A retrospective chart review was performed at a tertiary care hospital. All subjects with laryngotracheostenosis treated between January 1, 2000, and April 2005 who underwent endoscopic Nd:YAG laser incision and balloon dilation tracheoplasty performed using topical anesthesia and intravenous sedation were included. RESULTS: A total of 18 patients comprised the study and 36 procedures were performed without complication. Only one procedure was required by eight subjects, while five subjects required two procedures, three subjects had three procedures, one subject had four procedures, and one subject had five procedures until an adequate stable airway was obtained. The average follow-up was 22 months (range 3-55 months). The average body mass index (BMI) was 32.0 kg/m (range = 20.8-42.2 kg/m) and 11 of the 18 subjects (61.1%) were categorized as obese or morbidly obese by BMI criteria. CONCLUSION: Combined Nd:YAG laser incision and balloon dilation in an awake, spontaneously breathing patient is a safe and effective management tool in the treatment of laryngotracheostenosis. This technique may be particularly beneficial in patients who are at increased risk for general anesthesia such as those with morbid obesity or who have had a history of airway problems during anesthesia.


Assuntos
Cateterismo/estatística & dados numéricos , Terapia a Laser/estatística & dados numéricos , Procedimentos de Cirurgia Plástica/métodos , Traqueia/cirurgia , Estenose Traqueal/terapia , Adulto , Idoso , Broncoscopia , Cateterismo/métodos , Feminino , Seguimentos , Humanos , Terapia a Laser/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Traqueia/patologia , Estenose Traqueal/diagnóstico , Resultado do Tratamento
16.
Acad Radiol ; 14(12): 1455-63, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18035275

RESUMO

RATIONALE AND OBJECTIVES: Computer-aided diagnostic (CAD) systems fundamentally require the opinions of expert human observers to establish "truth" for algorithm development, training, and testing. The integrity of this "truth," however, must be established before investigators commit to this "gold standard" as the basis for their research. The purpose of this study was to develop a quality assurance (QA) model as an integral component of the "truth" collection process concerning the location and spatial extent of lung nodules observed on computed tomography (CT) scans to be included in the Lung Image Database Consortium (LIDC) public database. MATERIALS AND METHODS: One hundred CT scans were interpreted by four radiologists through a two-phase process. For the first of these reads (the "blinded read phase"), radiologists independently identified and annotated lesions, assigning each to one of three categories: "nodule >or=3 mm," "nodule <3 mm," or "non-nodule >or=3 mm." For the second read (the "unblinded read phase"), the same radiologists independently evaluated the same CT scans, but with all of the annotations from the previously performed blinded reads presented; each radiologist could add to, edit, or delete their own marks; change the lesion category of their own marks; or leave their marks unchanged. The post-unblinded read set of marks was grouped into discrete nodules and subjected to the QA process, which consisted of identification of potential errors introduced during the complete image annotation process and correction of those errors. Seven categories of potential error were defined; any nodule with a mark that satisfied the criterion for one of these categories was referred to the radiologist who assigned that mark for either correction or confirmation that the mark was intentional. RESULTS: A total of 105 QA issues were identified across 45 (45.0%) of the 100 CT scans. Radiologist review resulted in modifications to 101 (96.2%) of these potential errors. Twenty-one lesions erroneously marked as lung nodules after the unblinded reads had this designation removed through the QA process. CONCLUSIONS: The establishment of "truth" must incorporate a QA process to guarantee the integrity of the datasets that will provide the basis for the development, training, and testing of CAD systems.


Assuntos
Bases de Dados como Assunto/normas , Diagnóstico por Computador/normas , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/normas , Humanos , Bases de Conhecimento , Variações Dependentes do Observador , Garantia da Qualidade dos Cuidados de Saúde , Radiologia/normas , Sistemas de Informação em Radiologia/normas , Nódulo Pulmonar Solitário/diagnóstico por imagem
17.
Acad Radiol ; 14(12): 1475-85, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18035277

RESUMO

RATIONALE AND OBJECTIVES: The goal was to investigate the effects of choosing between different metrics in estimating the size of pulmonary nodules as a factor both of nodule characterization and of performance of computer aided detection systems, because the latter are always qualified with respect to a given size range of nodules. MATERIALS AND METHODS: This study used 265 whole-lung CT scans documented by the Lung Image Database Consortium (LIDC) using their protocol for nodule evaluation. Each inspected lesion was reviewed independently by four experienced radiologists who provided boundary markings for nodules larger than 3 mm. Four size metrics, based on the boundary markings, were considered: a unidimensional and two bidimensional measures on a single image slice and a volumetric measurement based on all the image slices. The radiologist boundaries were processed and those with four markings were analyzed to characterize the interradiologist variation, while those with at least one marking were used to examine the difference between the metrics. RESULTS: The processing of the annotations found 127 nodules marked by all of the four radiologists and an extended set of 518 nodules each having at least one observation with three-dimensional sizes ranging from 2.03 to 29.4 mm (average 7.05 mm, median 5.71 mm). A very high interobserver variation was observed for all these metrics: 95% of estimated standard deviations were in the following ranges for the three-dimensional, unidimensional, and two bidimensional size metrics, respectively (in mm): 0.49-1.25, 0.67-2.55, 0.78-2.11, and 0.96-2.69. Also, a very large difference among the metrics was observed: 0.95 probability-coverage region widths for the volume estimation conditional on unidimensional, and the two bidimensional size measurements of 10 mm were 7.32, 7.72, and 6.29 mm, respectively. CONCLUSIONS: The selection of data subsets for performance evaluation is highly impacted by the size metric choice. The LIDC plans to include a single size measure for each nodule in its database. This metric is not intended as a gold standard for nodule size; rather, it is intended to facilitate the selection of unique repeatable size limited nodule subsets.


Assuntos
Bases de Dados como Assunto , Diagnóstico por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Calibragem , Diagnóstico por Computador/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Bases de Conhecimento , Variações Dependentes do Observador , Radiologia , Sistemas de Informação em Radiologia , Tomografia Computadorizada por Raios X/métodos
18.
Acad Radiol ; 14(11): 1409-21, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17964464

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study was to analyze the variability of experienced thoracic radiologists in the identification of lung nodules on computed tomography (CT) scans and thereby to investigate variability in the establishment of the "truth" against which nodule-based studies are measured. MATERIALS AND METHODS: Thirty CT scans were reviewed twice by four thoracic radiologists through a two-phase image annotation process. During the initial "blinded read" phase, radiologists independently marked lesions they identified as "nodule >or=3 mm (diameter)," "nodule <3 mm," or "non-nodule >or=3 mm." During the subsequent "unblinded read" phase, the blinded read results of all four radiologists were revealed to each radiologist, who then independently reviewed their marks along with the anonymous marks of their colleagues; a radiologist's own marks then could be deleted, added, or left unchanged. This approach was developed to identify, as completely as possible, all nodules in a scan without requiring forced consensus. RESULTS: After the initial blinded read phase, 71 lesions received "nodule >or=3 mm" marks from at least one radiologist; however, all four radiologists assigned such marks to only 24 (33.8%) of these lesions. After the unblinded reads, a total of 59 lesions were marked as "nodule >or=3 mm" by at least one radiologist. Twenty-seven (45.8%) of these lesions received such marks from all four radiologists, three (5.1%) were identified as such by three radiologists, 12 (20.3%) were identified by two radiologists, and 17 (28.8%) were identified by only a single radiologist. CONCLUSION: The two-phase image annotation process yields improved agreement among radiologists in the interpretation of nodules >or=3 mm. Nevertheless, substantial variability remains across radiologists in the task of lung nodule identification.


Assuntos
Algoritmos , Inteligência Artificial , Bases de Dados Factuais , Reconhecimento Automatizado de Padrão/métodos , Competência Profissional/estatística & dados numéricos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Variações Dependentes do Observador , Intensificação de Imagem Radiográfica/métodos , Radiologia/estatística & dados numéricos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
19.
Acad Radiol ; 14(12): 1464-74, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18035276

RESUMO

RATIONALE AND OBJECTIVES: The Lung Image Database Consortium (LIDC) is developing a publicly available database of thoracic computed tomography (CT) scans as a medical imaging research resource to promote the development of computer-aided detection or characterization of pulmonary nodules. To obtain the best estimate of the location and spatial extent of lung nodules, expert thoracic radiologists reviewed and annotated each scan. Because a consensus panel approach was neither feasible nor desirable, a unique two-phase, multicenter data collection process was developed to allow multiple radiologists at different centers to asynchronously review and annotate each CT scan. This data collection process was also intended to capture the variability among readers. MATERIALS AND METHODS: Four radiologists reviewed each scan using the following process. In the first or "blinded" phase, each radiologist reviewed the CT scan independently. In the second or "unblinded" review phase, results from all four blinded reviews were compiled and presented to each radiologist for a second review, allowing the radiologists to review their own annotations together with the annotations of the other radiologists. The results of each radiologist's unblinded review were compiled to form the final unblinded review. An XML-based message system was developed to communicate the results of each reading. RESULTS: This two-phase data collection process was designed, tested, and implemented across the LIDC. More than 500 CT scans have been read and annotated using this method by four expert readers; these scans either are currently publicly available at http://ncia.nci.nih.gov or will be in the near future. CONCLUSIONS: A unique data collection process was developed, tested, and implemented that allowed multiple readers at distributed sites to asynchronously review CT scans multiple times. This process captured the opinions of each reader regarding the location and spatial extent of lung nodules.


Assuntos
Coleta de Dados/métodos , Bases de Dados como Assunto , Diagnóstico por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Sistemas de Gerenciamento de Base de Dados , Humanos , Bases de Conhecimento , Variações Dependentes do Observador , Radiografia Torácica , Radiologia , Sistemas de Informação em Radiologia , Nódulo Pulmonar Solitário/diagnóstico por imagem
20.
BMC Pulm Med ; 7: 10, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17711594

RESUMO

BACKGROUND: Lung volume reduction surgery is effective at improving lung function, quality of life, and mortality in carefully selected individuals with advanced emphysema. Recently, less invasive bronchoscopic approaches have been designed to utilize these principles while avoiding the associated perioperative risks. The Endobronchial Valve for Emphysema PalliatioN Trial (VENT) posits that occlusion of a single pulmonary lobe through bronchoscopically placed Zephyr endobronchial valves will effect significant improvements in lung function and exercise tolerance with an acceptable risk profile in advanced emphysema. METHODS: The trial design posted on Clinical trials.gov, on August 10, 2005 proposed an enrollment of 270 subjects. Inclusion criteria included: diagnosis of emphysema with forced expiratory volume in one second (FEV1) < 45% of predicted, hyperinflation (total lung capacity measured by body plethysmography > 100%; residual volume > 150% predicted), and heterogeneous emphysema defined using a quantitative chest computed tomography algorithm. Following standardized pulmonary rehabilitation, patients were randomized 2:1 to receive unilateral lobar placement of endobronchial valves plus optimal medical management or optimal medical management alone. The co-primary endpoint was the mean percent change in FEV1 and six minute walk distance at 180 days. Secondary end-points included mean percent change in St. George's Respiratory Questionnaire score and the mean absolute changes in the maximal work load measured by cycle ergometry, dyspnea (mMRC) score, and total oxygen use per day. Per patient response rates in clinically significant improvement/maintenance of FEV1 and six minute walk distance and technical success rates of valve placement were recorded. Apriori response predictors based on quantitative CT and lung physiology were defined. CONCLUSION: If endobronchial valves improve FEV1 and health status with an acceptable safety profile in advanced emphysema, they would offer a novel intervention for this progressive and debilitating disease. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00129584.


Assuntos
Enfisema/terapia , Cuidados Paliativos/métodos , Pneumonectomia/instrumentação , Próteses e Implantes , Broncoscopia , Humanos , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa