Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FEMS Yeast Res ; 22(1)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35472165

RESUMO

The breast and ovarian cancer susceptibility genes, BRCA1 and BRCA2, are key players in the homologous recombination (HR) repair pathway and act as tumor suppressors by maintaining genome stability. The yeast Saccharomyces cerevisiae has no BRCA1/2 homolog; however, a number of HR genes are evolutionary conserved between human and yeast. Among them, RAD52 is involved in DNA double strand break (DSB) repair by HR, and promotes genome stability. We previously reported that the heterologous expression of cancer-associated BRCA1/2 missense variants in growing yeast cultures affects both spontaneous HR and gene reversion (GR) suggesting that yeast could be a reliable system to assess the functional impact of variants. Because inhibition of Rad52p is lethal in BRCA1/2 mutated tumors, and Rad52p is conserved between humans and yeast, we asked if the effect of BRCA1/2 variants on HR and GR could be affected by loss of RAD52. We found that the rad52∆ mutation predominantly suppressed the stimulation of HR in yeast by pathogenic BRCA1 variants but also facilitated increased GR by pathogenic variants. Conversely, the rad52∆ mutation stimulated HR by a pathogenic BRCA2 variant in yeast but had no effect on GR. These results demonstrate a functional interplay between the pathogenic BRCA1/2 variants and Rad52p in budding yeast, supporting the use of budding yeast as a suitable system for evaluating potential chemotherapeutic strategies.


Assuntos
Proteína Rad52 de Recombinação e Reparo de DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparo do DNA , Instabilidade Genômica , Recombinação Homóloga , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409408

RESUMO

Germline mutations in the BRCA1 gene have been reported to increase the lifetime risk of developing breast and/or ovarian cancer (BOC). By new sequencing technologies, numerous variants of uncertain significance (VUS) are identified. It is mandatory to develop new tools to evaluate their functional impact and pathogenicity. As the expression of pathogenic BRCA1 variants in Saccharomyces cerevisiae increases the frequency of intra- and inter-chromosomal homologous recombination (HR), and gene reversion (GR), we validated the two HR and the GR assays by testing 23 benign and 23 pathogenic variants and compared the results with those that were obtained in the small colony phenotype (SCP) assay, an additional yeast-based assay, that was validated previously. We demonstrated that they scored high accuracy, sensitivity, and sensibility. By using a classifier that was based on majority of voting, we have integrated data from HR, GR, and SCP assays and developed a reliable method, named yBRCA1, with high sensitivity to obtain an accurate VUS functional classification (benign or pathogenic). The classification of BRCA1 variants, important for assessing the risk of developing BOC, is often difficult to establish with genetic methods because they occur rarely in the population. This study provides a new tool to get insights on the functional impact of the BRCA1 variants.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Genes BRCA1 , Predisposição Genética para Doença , Humanos , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Cell Mol Life Sci ; 77(16): 3215-3229, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31686119

RESUMO

To dissect the TBX5 regulatory circuit, we focused on microRNAs (miRNAs) that collectively contribute to make TBX5 a pivotal cardiac regulator. We profiled miRNAs in hearts isolated from wild-type, CRE, Tbx5lox/+and Tbx5del/+ mice using a Next Generation Sequencing (NGS) approach. TBX5 deficiency in cardiomyocytes increased the expression of the miR-183 cluster family that is controlled by Kruppel-like factor 4, a transcription factor repressed by TBX5. MiR-182-5p, the most highly expressed miRNA of this family, was functionally analyzed in zebrafish. Transient overexpression of miR-182-5p affected heart morphology, calcium handling and the onset of arrhythmias as detected by ECG tracings. Accordingly, several calcium channel proteins identified as putative miR-182-5p targets were downregulated in miR-182-5p overexpressing hearts. In stable zebrafish transgenic lines, we demonstrated that selective miRNA-182-5p upregulation contributes to arrhythmias. Moreover, cardiac-specific down-regulation of miR-182-5p rescued cardiac defects in a zebrafish model of Holt-Oram syndrome. In conclusion, miR-182-5p exerts an evolutionarily conserved role as a TBX5 effector in the onset of cardiac propensity for arrhythmia, and constitutes a relevant target for mediating the relationship between TBX5, arrhythmia and heart development.


Assuntos
Coração/crescimento & desenvolvimento , MicroRNAs/genética , Proteínas com Domínio T/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Linhagem Celular , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica/genética , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Gravidez , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Peixe-Zebra/metabolismo
4.
Mol Cancer ; 16(1): 85, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454577

RESUMO

BACKGROUND: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood. RESULTS: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs. The expression levels of BRAF-ref and BRAF-X1/X2 are inversely correlated, while the most prevalent among the three isoforms varies from cancer type to cancer type. In melanoma cells, the X1 isoform is expressed at the highest level in both therapy-naïve cells and cells with acquired resistance to vemurafenib driven by BRAF gene amplification or expression of the Δ[3-10] splicing variant. In addition to the BRAF-ref protein, the BRAF-X1 protein (the full length as well as the Δ[3-10] variant) is also translated. The expression levels of the BRAF-ref and BRAF-X1 proteins are similar, and together they account for BRAF functional activities. In contrast, the endogenous BRAF-X2 protein is hard to detect because the C-terminal domain is selectively recognized by the ubiquitin-proteasome pathway and targeted for degradation. CONCLUSIONS: By shedding light on the repertoire of BRAF mRNA and protein variants, and on the complex regulation of their expression, our work paves the way to a deeper understanding of a crucially important player in human cancer and to a more informed development of new therapeutic strategies.


Assuntos
Melanoma/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Processamento Alternativo/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Éxons/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Indóis/administração & dosagem , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA Mensageiro/genética , Sulfonamidas/administração & dosagem , Vemurafenib
5.
FEMS Yeast Res ; 17(8)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069390

RESUMO

Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain localization and functional conservation between yeast and human, the selected variants are ranked by the RS. The RS is assigned by an algorithm that computes functional data, type of mutation, chemistry of amino acid substitution and the degree of mutation transferability between human and yeast protein. Mutations giving a positive RS are highly transferable to yeast and, therefore, yeast functional assays will be more predictable. To validate the web application, we have analyzed 8078 cancer-associated variants located in 31 genes that have a yeast homologue. More than 50% of variants are transferable to yeast. Incidentally, 88% of all transferable mutations have a reliability score >0. Moreover, we analyzed by CTY 72 functionally validated missense variants located in yeast genes at positions corresponding to the human cancer-associated variants. All these variants gave a positive RS. To further validate CTY, we analyzed 3949 protein variants (with positive RS) by the predictive algorithm PROVEAN. This analysis shows that yeast-based functional assays will be more predictable for the variants with positive RS. We believe that CTY could be an important resource for the cancer research community by providing information concerning the functional impact of specific mutations, as well as for the design of functional assays useful for decision support in precision medicine.


Assuntos
Variação Biológica da População , Biologia Computacional/métodos , Análise Mutacional de DNA , Biologia Molecular/métodos , Proteínas Mutantes/genética , Neoplasias/genética , Saccharomyces cerevisiae/genética , Humanos , Internet , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto
6.
Int J Mol Sci ; 18(7)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703747

RESUMO

On the grounds that miRNAs present in the blood of prostate cancer (PCa) patients are released in the growth medium by PCa cells, it is conceivable that PCa cells resistant to docetaxel (DCT) (DCTR) will release miRNAs that may be found in PCa patients under DCT therapy if resistant PCa cells appear. We isolated DCTR clones respectively from 22Rv1 and DU-145 PCa cell lines and performed through next-generation sequencing (NGS) the miRNAs profiles of the released miRNAs. The analysis of the NGS data identified 105 and 1 miRNAs which were differentially released in the growth medium of the 22Rv1/DCTR and DU-145/DCTR clones, respectively. Using additional filters, we selected 12 and 1 miRNA more released by all 22Rv1/DCTR and DU-145/DCTR clones, respectively. Moreover, we showed that 6 of them were more represented in the growth medium of the DCTR cells than the ones of DCT-treated cells. We speculated that they have the pre-requisite to be tested as predictive biomarkers of the DCT resistance in PCa patients under DCT therapy. We propose the utilization of clones resistant to a given drug as in vitro model to identify the differentially released miRNAs, which in perspective could be tested as predictive biomarkers of drug resistance in tumor patients under therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Modelos Biológicos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Taxoides/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Clonais , Docetaxel , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/metabolismo , Neoplasias da Próstata/patologia , Taxoides/farmacologia
7.
JHLT Open ; 3: None, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357297

RESUMO

Background: Ventricular assist device (VAD) implant represents a therapeutic option for pediatric patients with end-stage heart failure (HF). Heart unloading by VAD can modify several molecular pathways underlying cardiac function in HF. Among them, the potential role of microRNA (miRNAs) in response to VAD implant is emerging. This study was aimed at investigating in HF pediatric patients the effect of VAD-modified miRNAs on the adiponectin (ADPN) system, known to exert cardioprotective actions. Methods: ADPN was measured in plasma samples obtained from HF children, before and 1 month after VAD implant, and from healthy control children. miRNA profile and molecules belonging to ADPN system were determined in cardiac biopsies collected at the time of VAD implantation (pre-VAD) and at the moment of heart transplant (post-VAD). An in vitro study using HL-1 cell line was performed to verify the regulatory role of the VAD-modified miRNA on the ADPN system. Results: VAD implant did not affect circulating and cardiac levels of ADPN, but increased the cardiac mRNA expression of ADPN receptors, including AdipoR1, AdipoR2, and T-cad. AdipoR2 and T-cad were inversely related to the VAD-modified miRNA levels. The in vitro study confirmed the regulatory role of miR-1246 and miR-199b-5p on AdipoR2, and of miR-199b-5p on T-cad. Conclusions: These data suggest that VAD treatment could regulate the expression of the cardioprotective ADPN system by epigenetic mediators, suggesting that miRNAs have a potential role as therapeutic targets to improve cardiac function in HF pediatric patients.

8.
J Cell Mol Med ; 17(8): 1006-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23802567

RESUMO

Endothelial cells growing in high glucose-containing medium show reduced cell proliferation and in vitro angiogenesis. Evidence suggests that the molecular pathways leading to these cellular responses are controlled by microRNAs, endogenous post-transcriptional regulators of gene expression. To identify the microRNAs and their targeted genes involved in the glucose responses, we performed the miRNA signature of Human Umbelical Vein Endothelial Cells (HUVECs) exposed and unexposed to high glucose. Among differentially expressed microRNAs, we analysed miR-492 and showed that its overexpression was able to reduce proliferation, migration and tube formation of HUVEC. These effects were accompanied by the down-regulation of eNOS, a key regulator of the endothelial cell function. We showed that eNOS was indirectly down-regulated by miR-492 and we discovered that miR-492 was able to bind mRNAs involved in proliferation, migration, tube formation and regulation of eNOS activity and expression. Moreover, we found that miR-492 decreased VEGF expression in HUVEC and impaired in vivo angiogenesis in a tumour xenograft model, suggesting a role also in modulating the secretion of pro-angiogenic factors. Taken together, the data indicate that miR-492 exerts a potent anti-angiogenic activity in endothelial cells and therefore miR-492 seems a promising tool for anti-angiogenic therapy.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Regiões 3' não Traduzidas/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Ensaios Enzimáticos , Regulação da Expressão Gênica , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Luciferases/metabolismo , MicroRNAs/genética , Neovascularização Patológica/patologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ligação Proteica/genética , Fator de Transcrição Sp1/metabolismo , Transfecção
9.
Cell Death Discov ; 9(1): 445, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065937

RESUMO

Docetaxel (DCT) resistance is one of the main factors responsible for treatment failure in metastatic prostate cancer (PCa). Although several mechanisms of DCT resistance have been elucidated, the issue is still far from comprehensive. In this work we show that miR-96-5p, miR-183-5p and miR-210-3p (referred to as sDCTR-miRNAs) are specifically released by DCT resistant (DCTR) PCa clones and decrease the efficacy of DCT in PCa cells when overexpressed. Through bioinformatic analysis, we identified several potential targets of sDCTR-miRNAs' activity including FOXO1, IGFBP3, and PDCD4 known to exert a role in DCT resistance. Additionally, we found that PPP2CB and INSIG1 mediated the ability of sDCTR-miRNAs to reduce the efficacy of DCT. We explored whether secreted sDCTR-miRNAs could affect the phenotype of PCa cells. We found that exposure to exosomes derived from DCTR PCa clones (in which the content of sDCTR-miRNAs was higher than in exosomes from parental cells), as well as exposure to exosome loaded with sDCTR-miRNAs, reduced the cytotoxicity of DCT in PCa cells sensitive to the drug. Finally, we validated circulating miR-183-5p and miR-21-5p as potential predictive biomarkers of DCT resistance in PCa patients. Our study suggests a horizontal transfer mechanism mediated by exosomal miRNAs that contributes to reduce docetaxel sensitivity and highlights the relevance of cell-to-cell communication in drug resistance.

10.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765859

RESUMO

BACKGROUND: The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells. METHODS: Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos). RESULTS: Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as GPR143, OCA2, RAB27A, RAB32 and TYRP1 mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem. CONCLUSION: We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells.

11.
J Biol Chem ; 285(50): 39551-63, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20923760

RESUMO

Leukemia/lymphoma-related factor (LRF) is a transcriptional repressor, which by recruiting histone deacetylases specifically represses p19/ARF expression, thus behaving as an oncogene. Conversely, in mouse embryonic fibroblasts (MEF), LRF inhibition causes aberrant p19ARF up-regulation resulting in proliferative defects and premature senescence. We have recently shown that LRF is controlled by microRNAs. Here we show that LRF acts on MEF proliferation and senescence/apoptosis by repressing miR-28 and miR-505, revealing a regulatory circuit where microRNAs (miRNAs) work both upstream and downstream of LRF. By analyzing miRNA expression profiles of MEF transfected with LRF-specific short interfering RNAs, we found that miR-28 and miR-505 are modulated by LRF. Both miRNAs are predicted to target alternative splicing factor/splicing factor 2 (ASF/SF2), a serine/arginine protein essential for cell viability. In vertebrates, loss or inactivation of ASF/SF2 may result in genomic instability and induce G(2) cell cycle arrest and apoptosis. We showed that miR-28 and miR-505 modulate ASF/SF2 by directly binding ASF/SF2 3'-UTR. Decrease in LRF causes a decrease in ASF/SF2, which depends on up-regulation of miR-28 and miR-505. Alteration of each of the members of the LRF/miR-28/miR-505/ASF/SF2 axis affects MEF proliferation and the number of senescent and apoptotic cells. Consistently, the axis is coordinately modulated as cell senescence increases with passages in MEF culture. In conclusion, we show that LRF-dependent miRNAs miR-28 and miR-505 control MEF proliferation and survival by targeting ASF/SF2 and suggest a central role of LRF-related miRNAs, in addition to the role of LRF-dependent p53 control, in cellular homeostasis.


Assuntos
Processamento Alternativo , Apoptose , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , MicroRNAs/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Senescência Celular , Células HEK293 , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Processamento de Serina-Arginina
12.
Biomedicines ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680526

RESUMO

Ventricular Assist Device (VAD) therapy is considered as a part of standard care for end-stage Heart Failure (HF) children unresponsive to medical management, but the potential role of miRNAs in response to VAD therapy on molecular pathways underlying LV remodeling and cardiac function in HF is unknown. The aims of this study were to evaluate the effects of VAD on miRNA expression profile in cardiac tissue obtained from HF children, to determine the putative miRNA targets by an in-silico analysis as well as to verify the changes of predicated miRNA target in the same cardiac samples. The regulatory role of selected miRNAs on predicted targets was evaluated by a dedicated in vitro study. miRNA profile was determined in cardiac samples obtained from 13 HF children [median: 29 months; 19 LVEF%; 9 Kg] by NGS before VAD implant (pre-VAD) and at the moment of heart transplant (Post-VAD). Only hsa-miR-199b-5p, hsa-miR-19a-3p, hsa-miR-1246 were differentially expressed at post-VAD when compared to pre-VAD, and validated by real-time PCR. Putative targets of the selected miRNAs were involved in regulation of sarcomere genes, such as cardiac troponin (cTns) complex. The expression levels of fetal ad adult isoforms of cTns resulted significantly higher after VAD in cardiac tissue of HF pediatric patients when compared with HF adults. An in vitro study confirmed a down-regulatory effect of hsa-miR-19a-3p on cTnC expression. The effect of VAD on sarcomere organization through cTn isoform expression may be epigenetically regulated, suggesting for miRNAs a potential role as therapeutic targets to improve heart function in HF pediatric patients.

13.
Stem Cell Reports ; 16(6): 1496-1509, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019815

RESUMO

Cerebral cortical development is controlled by key transcription factors that specify the neuronal identities in the different layers. The mechanisms controlling their expression in distinct cells are only partially known. We investigated the expression and stability of Tbr1, Bcl11b, Fezf2, Satb2, and Cux1 mRNAs in single developing mouse cortical cells. We observe that Satb2 mRNA appears much earlier than its protein and in a set of cells broader than expected, suggesting an initial inhibition of its translation, subsequently released during development. Mechanistically, Satb2 3'UTR modulates protein translation of GFP reporters during mouse corticogenesis. We select miR-541, a eutherian-specific miRNA, and miR-92a/b as the best candidates responsible for SATB2 inhibition, being strongly expressed in early and reduced in late progenitor cells. Their inactivation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our findings indicate RNA interference as a major mechanism in timing cortical cell identities.


Assuntos
Córtex Cerebral/metabolismo , Eutérios/genética , Eutérios/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Neurogênese
14.
Cells ; 9(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987653

RESUMO

The LncRNA my-heart (Mhrt) and the chromatin remodeler Brg1 inhibit each other to respectively prevent or favor the maladaptive α-myosin-heavy-chain (Myh6) to ß-myosin-heavy-chain (Myh7) switch, so their balance crucially guides the outcome of cardiac remodeling under stress conditions. Even though triiodothyronine (T3) has long been recognized as a critical regulator of the cardiac Myh isoform composition, its role as a modulator of the Mhrt/Brg1 axis is still unexplored. Here the effect of T3 on the Mhrt/Brg1 regulatory circuit has been analyzed in relation with chromatin remodeling and previously identified T3-dependent miRNAs. The expression levels of Mhrt, Brg1 and Myh6/Myh7 have been assessed in rat models of hyperthyroidism or acute myocardial ischemia/reperfusion (IR) treated with T3 replacement therapy. To gain mechanistic insights, in silico analyses and site-directed mutagenesis have been adopted in combination with gene reporter assays and loss or gain of function strategies in cultured cardiomyocytes. Our results indicate a pivotal role of Mhrt over-expression in the T3-dependent regulation of Myh switch. Mechanistically, T3 activates the Mhrt promoter at two putative thyroid hormone responsive elements (TRE) located in a crucial region that is necessary for both Mhrt activation and Brg1-dependent Mhrt repression. This newly identified T3 mode of action requires DNA chromatinization and is critically involved in mitigating the repressive function of the Brg1 protein on Mhrt promoter. In addition, T3 is also able to prevent the Brg1 over-expression observed in the post-IR setting through a pathway that might entail the T3-mediated up-regulation of miR-208a. Taken together, our data evidence a novel T3-responsive network of cross-talking epigenetic factors that dictates the cardiac Myh composition and could be of great translational relevance.


Assuntos
DNA Helicases/metabolismo , Epigênese Genética , Cadeias Pesadas de Miosina/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Tri-Iodotironina/farmacologia , Animais , Animais Recém-Nascidos , Montagem e Desmontagem da Cromatina/genética , DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética , Ratos Wistar , Regulação para Cima/efeitos dos fármacos
15.
Cells ; 9(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028704

RESUMO

miR-28-5p is downregulated in some tumor tissues in which it has been demonstrated to have tumor suppressor (TS) activity. Here, we demonstrate that miR-28-5p acts as a TS in prostate cancer (PCa) cells affecting cell proliferation/survival, as well as migration and invasion. Using the miRNA pull out assay and next generation sequencing, we collected the complete repertoire of miR-28-5p targets, obtaining a data set (miR-28-5p targetome) of 191 mRNAs. Filtering the targetome with TargetScan 7, PITA and RNA22, we found that 61% of the transcripts had miR-28-5p binding sites. To assign a functional value to the captured transcripts, we grouped the miR-28-5p targets into gene families with annotated function and showed that six transcripts belong to the transcription factor category. Among them we selected SREBF2, a gene with an important role in PCa. We validated miR-28-5p/SREBF2 interaction, demonstrating that SREBF2 inhibition affects almost all the tumor processes altered by miR-28-5p re-expression, suggesting that SREBF2 is an important mediator of miR-28-5p TS activity. Our findings support the identification of the targetome of cancer-related miRNAs as a tool to discover genes and pathways fundamental for tumor development, and potential new targets for anti-tumor therapy.


Assuntos
Genes Supressores de Tumor , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
16.
Physiol Genomics ; 39(3): 210-8, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19723773

RESUMO

The culture-induced senescence of mouse embryo fibroblasts (MEF) correlates with reduction of cell proliferation. In this work we found that the accumulation of cells with 4C DNA content and the transcriptional change of several microRNAs (miRNAs or miRs) are relevant events in culture senescence. By comparing the miRNA expression profiles of physiologically senescent MEF and that of senescent MEF induced by the downregulation of leukemia-related factor, we identified miR-290 as a common upregulated miRNA. When miR-290 was transfected in presenescent MEF, SA-beta-gal(+) cells and p16, two markers of culture senescence, increased compared with control, indicating that miR-290 is causally involved in senescence. Interestingly, nocodazole (NCZ), which induces G2/M block, increased the percentage of senescent cells as well as the expression of miR-290 and of the tumor suppressor p16, thus mimicking culture senescence. As miR-290 was overexpressed in NCZ-treated cells and it was able to induce senescence in proliferating MEF, we investigated whether miR-290 and NCZ could share common mechanisms of culture senescence. Whereas the induction of SA-beta-gal(+) by miR-290 was not strengthened by coupling its transfection with NCZ treatment, the transfection of the antagomir 290 (d-290) plus NCZ treatment, while blocking cells at G2/M, suppressed SA-beta-gal(+) and p16 induction. On the basis of these findings we conclude that miR-290 might act as a physiological effector of NCZ induced as well as culture senescence via p16 regulation expanding the role of this miRNA from embryonic stem to differentiated cells.


Assuntos
Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fibroblastos/metabolismo , MicroRNAs/genética , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Nocodazol/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Med ; 15(9-10): 297-306, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19603101

RESUMO

Aberrant coronary vascular smooth muscle cell (CSMC) proliferation is a pivotal event underlying intimal hyperplasia, a phenomenon impairing the long-term efficacy of bypass surgery and angioplasty procedures. Consequently research has become focused on efforts to identify molecules that are able to control CSMC proliferation. We investigated downregulation of CSMC growth by small interfering RNAs (siRNAs) targeted against E2F1, cyclin E1, and cyclin E2 genes, whose contribution to CSMC proliferation is only now being recognized. Chemically synthesized siRNAs were delivered by two different transfection reagents to asynchronous and synchronous growing human CSMCs cultivated either in normo- or hyperglycemic conditions. The depletion of each of the three target genes affected the expression of the other two genes, demonstrating a close regulatory control. The clearest effects associated with the inhibition of the E2F1-cyclin E1/E2 circuit were the reduction in the phosphorylation levels of the retinoblastoma protein pRB and a decrease in the amount of cyclin A2. At the phenotypic level the downmodulation of CSMC proliferation resulted in a decrease of S phase matched by an increase of G1-G0 phase cell amounts. The antiproliferative effect was cell-donor and transfectant independent, reversible, and effective in asynchronous and synchronous growing CSMCs. Importantly, it was also evident in hyperglycemia, a condition that underlies diabetes. No significant aspecific cytotoxicity was observed. Our data demonstrate the interrelation among E2F1-cyclin E1-cyclin E2 and the pivotal role this circuit exerts in CSMC proliferation. Additionally, our work validates the concept of utilizing anti-E2F1-cyclin E1-cyclin E2 siRNAs to develop a potential novel therapy to control intimal hyperplasia.


Assuntos
Vasos Coronários/citologia , Ciclina E/fisiologia , Ciclinas/fisiologia , Fator de Transcrição E2F1/fisiologia , Miócitos de Músculo Liso/fisiologia , Proteínas Oncogênicas/fisiologia , Adulto , Análise de Variância , Morte Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Ciclina E/genética , Ciclinas/genética , Regulação para Baixo , Fator de Transcrição E2F1/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Oncogênicas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
18.
Oncotarget ; 10(28): 2722-2737, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31105872

RESUMO

Knowledge of interaction network between different proteins can be a useful tool in cancer therapy. To develop new therapeutic treatments, understanding how these proteins contribute to dysregulated cellular pathways is an important task. PARP1 inhibitors are drugs used in cancer therapy, in particular where DNA repair is defective. It is crucial to find new candidate interactors of PARP1 as new therapeutic targets in order to increase efficacy of PARP1 inhibitors and expand their clinical utility. By a yeast-based genome wide screening, we previously discovered 90 candidate deletion genes that suppress growth-inhibition phenotype conferred by PARP1 in yeast. Here, we performed an integrated and computational analysis to deeply study these genes. First, we identified which pathways these genes are involved in and putative relations with PARP1 through g:Profiler. Then, we studied mutation pattern and their relation to cancer by interrogating COSMIC and DisGeNET database; finally, we evaluated expression and alteration in several cancers with cBioPortal, and the interaction network with GeneMANIA. We identified 12 genes belonging to PARP1-related pathways. We decided to further validate RIT1, INCENP and PSTA1 in MCF7 breast cancer cells. We found that RIT1 and INCENP affected PARylation and PARP1 protein level more significantly in PARP1 inhibited cells. Furthermore, downregulation of RIT1, INCENP and PSAT1 affected olaparib sensitivity of MCF7 cells. Our study identified candidate genes that could have an effect on PARP inhibition therapy. Moreover, we also confirm that yeast-based screenings could be very helpful to identify novel potential therapy factors.

19.
Oncotarget ; 8(15): 25395-25417, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445987

RESUMO

Despite increasing amounts of experimental evidence depicting the involvement of non-coding RNAs in cancer, the study of BRAFV600E-regulated genes has thus far focused mainly on protein-coding ones. Here, we identify and study the microRNAs that BRAFV600E regulates through the ERK pathway.By performing small RNA sequencing on A375 melanoma cells and a vemurafenib-resistant clone that was taken as negative control, we discover miR-204 and miR-211 as the miRNAs most induced by vemurafenib. We also demonstrate that, although belonging to the same family, these two miRNAs have distinctive features. miR-204 is under the control of STAT3 and its expression is induced in amelanotic melanoma cells, where it acts as an effector of vemurafenib's anti-motility activity by targeting AP1S2. Conversely, miR-211, a known transcriptional target of MITF, is induced in melanotic melanoma cells, where it targets EDEM1 and consequently impairs the degradation of TYROSINASE (TYR) through the ER-associated degradation (ERAD) pathway. In doing so, miR-211 serves as an effector of vemurafenib's pro-pigmentation activity. We also show that such an increase in pigmentation in turn represents an adaptive response that needs to be overcome using appropriate inhibitors in order to increase the efficacy of vemurafenib.In summary, we unveil the distinct and context-dependent activities exerted by miR-204 family members in melanoma cells. Our work challenges the widely accepted "same miRNA family = same function" rule and provides a rationale for a novel treatment strategy for melanotic melanomas that is based on the combination of ERK pathway inhibitors with pigmentation inhibitors.


Assuntos
Melanoma Amelanótico/genética , Melanoma/genética , MicroRNAs/genética , Neoplasias Cutâneas/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Melanoma/patologia , Melanoma Amelanótico/tratamento farmacológico , Melanoma Amelanótico/metabolismo , Melanoma Amelanótico/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Sulfonamidas/farmacologia , Transfecção , Vemurafenib
20.
Mutat Res ; 774: 14-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25779917

RESUMO

The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.


Assuntos
Recombinação Homóloga/genética , Poli(ADP-Ribose) Polimerases/genética , Saccharomyces cerevisiae/genética , Transgenes/genética , Western Blotting , Núcleo Celular/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Genoma Fúngico/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Histonas/metabolismo , Recombinação Homóloga/efeitos da radiação , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mutação , Poro Nuclear/genética , Poro Nuclear/metabolismo , Fenantrenos/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa