Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 100: 103874, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416949

RESUMO

This study validated a simulated commercial baking processes for hard and soft cookies to control Salmonella, and determined D- and z-values of 7-serotype Salmonella (Newport, Senftenberg, Tennessee, Typhimurium, and three isolates from dry pet food) cocktail in cookie doughs. Cookie doughs were prepared using flour mist-inoculated with the Salmonella cocktail. Hard and soft cookies were baked at 185 °C for 16 min and 165.6 °C for 22 min, respectively, followed by 30 min of ambient air cooling. D-values of the cocktail in cookie doughs were determined using thermal-death-time disks. Studies were designed as randomized complete blocks with three replications as blocks (α = 0.05). Salmonella populations decreased by > 5 log CFU/g in hard and soft cookies at 11.5 and 20.5 min of baking, respectively. Salmonella was not detected in hard cookies at the end of baking (as determined by enrichment), whereas in soft cookies, 0.6 log CFU/g Salmonella was present at the end of baking and cooling. Salmonella D-values in hard cookie dough at 60, 65 and 70 °C were 59.6, 28.1 and 11.9 min, respectively; while in soft cookie dough they were 62.3, 28.6 and 14.4 min, respectively. The Salmonella z-values in hard and soft cookie doughs were 14.5 and 15.8 °C, respectively.


Assuntos
Farinha/microbiologia , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Culinária , Farinha/análise , Microbiologia de Alimentos , Temperatura Alta , Viabilidade Microbiana , Salmonella/química
2.
J Dairy Sci ; 103(8): 6894-6899, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32534919

RESUMO

This study aimed to compare the thermal resistance of Salmonella Senftenberg 775 W with other serovars of Salmonella in nonfat dry milk (NDM) and hydrated NDM. The scientific literature suggests that Salmonella Senftenberg 775 W is the most heat-resistant serovar in high-water-activity foods such as milk, but little is known about the heat resistance of Salmonella Senftenberg 775 W compared with other Salmonella serovars in low-water-activity foods such as NDM. The 5 serovars of Salmonella used in this study were Enteritidis, Montevideo, Newport, Senftenberg, and Typhimurium. The hydration of NDM was conducted at 13% (wt/vol) total solids. The NDM was inoculated with the 5 individual serovars of Salmonella and dried again to its original pre-inoculation water activity. Hydrated NDM was prepared from individually inoculated NDM. The surviving Salmonella population at predetermined time-temperature intervals were enumerated using injury-recovery medium, and the average log reductions for the individual serovars were calculated. As expected, Salmonella Senftenberg 775 W was the most heat-resistant serovar in hydrated NDM at 59°C and 65°C. However, the heat resistance of Salmonella Senftenberg 775 W was found to be lower than or comparable to that of other serovars in low-water-activity NDM at 80°C and 90°C.


Assuntos
Laticínios/microbiologia , Microbiologia de Alimentos , Temperatura Alta , Leite/microbiologia , Salmonella/isolamento & purificação , Animais , Pós , Sorogrupo
3.
Food Microbiol ; 82: 334-341, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027791

RESUMO

This study was conducted to validate a simulated commercial whole wheat multigrain bread baking process at 375 °F (190.6 °C) oven temperature for 35 min to inactivate Salmonella, and to determine the thermal inactivation parameters of a 7-serovar Salmonella cocktail in whole wheat multigrain bread dough. A ≥5-log CFU/g reduction in Salmonella population was achieved by 15 min, and no viable Salmonella was detected after enrichment plating by 16 min. The aw of the bread crumb (0.96) after baking and 60 min of cooling was similar to that of pre-baked bread dough, whereas the aw of bread crust decreased to 0.81 at the end of baking and cooling. The D-values of the Salmonella cocktail in bread dough were 59.6, 20.0 and 9.7 min at 50, 52 and 55 °C, respectively; and the z-value was 6.5 °C.


Assuntos
Pão/microbiologia , Culinária/normas , Microbiologia de Alimentos , Salmonella/crescimento & desenvolvimento , Triticum , Pão/análise , Contagem de Colônia Microbiana , Farinha/análise , Farinha/microbiologia , Manipulação de Alimentos , Microbiologia de Alimentos/métodos , Salmonella/genética , Sorogrupo , Temperatura , Fatores de Tempo , Água/análise
4.
Foodborne Pathog Dis ; 15(12): 763-769, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30407081

RESUMO

This study validated a typical commercial donut frying process as an effective kill-step against a 7-serovar Salmonella cocktail (Newport, Typhimurium, Senftenberg, Tennessee, and three dry food isolates) when contamination was introduced through inoculated flour. The bread and pastry flour mix (3:1) was inoculated with the Salmonella cocktail, and subsequently dried back to original preinoculation moisture content, achieving a Salmonella population of 7.6 log CFU/g. Inoculated flour was used to prepare a typical commercial donut batter, which was fried using 375°F (190.6°C) oil temperature. No viable Salmonella was detected using an enrichment plating protocol in the donuts after 2 min of frying, resulting in >7-log reduction in Salmonella population. The internal donut temperature increased from ∼30°C to ∼119°C at the end of 2 min of frying. The water activities of the donut crumb and crust after 2 min of frying, followed by 30 min of ambient air cooling, were 0.944 and 0.852, respectively. The donut pH after ambient-air cooling was 5.51. The D- and z-values of the Salmonella cocktail in donut dough were determined using thermal-death-time disks and temperature-controlled water baths. The D-values of the cocktail were 8.6, 2.9, and 2.1 min at 55°C, 58°C, and 61°C, respectively, whereas the z-value was 10°C. This study validated that >7-log reduction could be achieved if donuts are fried for at least 2 min in the oil at 190.6°C, and calculated D- and z-values present the heat resistance of Salmonella in donut dough at the start of the frying processes. However, results from this study should not be extrapolated when donut composition and frying parameters are changed significantly.


Assuntos
Culinária/normas , Farinha/microbiologia , Manipulação de Alimentos/métodos , Salmonella/crescimento & desenvolvimento , Temperatura , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Sorogrupo , Água
5.
Food Sci Nutr ; 12(1): 239-254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268868

RESUMO

This study evaluated the efficacy of hyperspectral imaging (HSI) for the rapid identification of pathogens in dairy products at the colony and cellular levels. The colony and cellular levels studies were designed as completely randomized with six replications. Three strains of Listeria monocytogenes, four strains of Escherichia coli O157: H7, Big Six Shiga toxin-producing E. coli, three strains of Staphylococcus aureus, and ten serovars of Salmonella were used in this study. Pure cultures were streaked for isolation on respective selective media, and hyperspectral data (400-1100 nm wavelength) at the colony and cellular levels were collected and stored as reference libraries. Whole milk and whole milk powder were artificially inoculated (<10 CFU/g or mL) with individual pathogenic strains/serovars. All milk and milk powder samples were enriched using brain heart infusion (BHI) broth at 37°C for 24 h, streaked for isolation on the respective selective media, and hyperspectral data for individual pathogenic strains/serovars at the colony and cellular levels were acquired and treated as test samples data. The acquired colony or cellular images were imported into ENVI software and three regions of interest were selected for each image to obtain hyperspectral data for reference libraries and test samples. Using the kNN classifier and cross-validation technique, overall classification accuracies of 90.38% and 34% were obtained for the colony- and cellular-level identification, respectively. The individual classification accuracies of pathogens in dairy products at the colony level varied between 77.5% to 100%, whereas the accuracy varied between 2.78% and 49.17% for the cellular level.

6.
Food Sci Nutr ; 10(4): 1175-1183, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432977

RESUMO

The objective of this foundational study was to develop and evaluate the efficacy of an affordable hyperspectral imaging (HSI) system to identify single and mixed strains of foodborne pathogens in dairy products. This study was designed as a completely randomized design with three replications. Three strains each of Escherichia coli O157:H7 and Listeria monocytogenes were evaluated either as single or mixed strains with the HSI system in growth media and selected dairy products (whole milk, and cottage and cheddar cheeses). Test samples from freshly prepared single or mixed strains of pathogens in growth media or inoculated dairy products were streaked onto selective media (PALCAM and/or Sorbitol MacConkey agar) for isolation. An isolated colony was selected and mixed with 1 ml of HPLC grade water, vortexed for 1 min, and spread over a microscope slide. Images were captured at 2000× magnification on the built HSI system at wavelengths ranging from 400 nm to 1100 nm with 5-nm band intervals. For each image, three cells were selected as regions of interest (ROIs) to obtain hyperspectral signatures of respective bacteria. Reference pathogen libraries were created using growth media, and then test pathogenic cells were classified by their hyperspectral signatures as either L. monocytogenes or E. coli O157:H7 using k-nearest neighbor (kNN) and cross-validation technique in R-software. With the implementation of kNN (k = 3), overall classification accuracies of 58.97% and 61.53% were obtained for E. coli O157:H7 and L. monocytogenes, respectively.

7.
Int J Food Microbiol ; 362: 109495, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34872756

RESUMO

Foodborne pathogens like Salmonella and Escherichia coli O121 can endure the harsh low water activity (aw) environment of wheat flour for elongated periods of time and can proliferate when hydrated for baking or other purposes. This study determined the survivability and thermal tolerance (D- and z-values) of Salmonella and Escherichia coli O121 in wheat flour and muffin batter (prepared from inoculated flour on the days of analyses) during the storage period of 360 days. The Salmonella and E. coli O121 studies were conducted as two independent experiments. Both studies were designed as randomized complete block with three replications as blocks. All experimental data were analyzed using one-way ANOVA and Tukey's test in Minitab® software, and P ≤ 0.05 was considered significant. The wheat flour was spray inoculated individually with 7-isolate Salmonella or 3-isolate E. coli O121 cocktail and then dried back to the original aw levels. On each analysis day, inoculated wheat flour (~5 g) or muffin batter (~2.5 g) was placed inside the TDT disks, heat treated at set temperatures in hot water baths, and sampled at predetermined time intervals for determining the survival microbial population. The population of E. coli O121 and Salmonella cocktails in wheat flour at day 1 were 7.6 ± 0.18 and 7.8 ± 0.07 log CFU/g, respectively, which decreased to 2.0 ± 0.40 and 2.8 ± 0.59 log CFU/g on day 360, respectively. The D-values of Salmonella and E. coli O121 cocktails in inoculated flour and muffin batter prepared from inoculated flour (on the day of analysis) were determined on days 1, 30, 90, 180, 270, and 360 [given enough surviving bacterial population (~3 to 4 log CFU/g) was present in the flour]. The population of Salmonella and E. coli O121 in wheat flour decreased by 5.0 and 5.6 log CFU/g, respectively, during the storage period of 360 days. The D70°C, D75°C, and D80°C values of Salmonella in wheat flour remained similar during the storage period. Whereas, for E. coli O157:H7 in wheat flour, the D70°C value decreased from 20.3 ± 2.82 to 7.1 ± 2.82 min, and D75°C decreased from 10.2 ± 2.14 to 2.7 ± 0.27 min, during the storage period of 180 days. The z-values of Salmonella or E. coli O157:H7 remained similar during the storage period. The D- and z-values from this research can be employed for validation of thermal process to ensure safety of wheat flour.


Assuntos
Escherichia coli O157 , Farinha , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Salmonella , Temperatura , Triticum
8.
Int J Food Microbiol ; 368: 109608, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35278796

RESUMO

Adequate surrogate identification is critical for validating in-plant thermal process controls for Salmonella inactivation in different food matrices. This study compared the thermal inactivation parameters (D- and z-values) and evaluated the heat resistance of Enterococcus faecium (8459) as a surrogate for a 5-serovar Salmonella cocktail in cornmeal. The cornmeal was spray inoculated with the respective bacteria to achieve ~9 log CFU/g population and set to the desired moisture contents (16, 22, and 28% w.b.). The inoculated cornmeal was then heat-treated at pre-determined temperatures (60, 64, and 68 °C) in sealed aluminum thermal-death-time disks in hot water baths for pre-determined time intervals. Injury-recovery media [brain heart infusion (BHI) agar overlaid with xylose lysine deoxycholate (XLD) agar for Salmonella or BHI agar overlaid m-enterococcus agar for E. faecium] were used for microbial enumeration to account for thermally injured bacterial cells. The D-values of Salmonella in cornmeal at 16, 22, and 28% moisture content were 37.5, 8.4, and 2.4 min at 60 °C, 19.9, 3.5, and 1.1 min at 64 °C, and 10.1, 1.4, and 0.5 min at 68 °C, respectively. The D-values of E. faecium in cornmeal at 16, 22, and 28% moisture content were 140.4, 18.9, and 3.3 min at 60 °C, 78.4, 7.1, and 1.6 min at 64 °C, and 37.3, 2.8, and 0.8 min at 68 °C, respectively. The z-values of E. faecium and Salmonella in cornmeal at 16, 22, and 28% moisture content were 13.9, 9.7, and 12.5 °C, and 14.0, 10.4, and 11.7 °C, respectively. These results indicated similar or higher thermal resistance (D-values) and equivalent thermal sensitivity (z-values) of E. faecium compared to Salmonella at different moisture contents and respective temperatures (P ≤ 0.05). Therefore, E. faecium could be used as a surrogate for Salmonella during thermal process validation of cornmeal processing.


Assuntos
Enterococcus faecium , Contagem de Colônia Microbiana , Enterococcus faecium/fisiologia , Microbiologia de Alimentos , Temperatura Alta , Salmonella/fisiologia
9.
Int J Food Microbiol ; 337: 108950, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33212341

RESUMO

Foodborne pathogens such as Salmonella can endure dry environments of milk powders for extended periods due to the increased adaptability at a low water activity (aw) and proliferate when powders are hydrated. This study compared the survivability and the thermal resistance of a 5-serovar Salmonella cocktail in dry and hydrated nonfat dry milk (NFDM) and whole milk powder (WMP) stored for 180 days at ambient temperature (~20 °C). This study was designed as two factorial (storage days and milk powder type) randomized complete block design with three replications as blocks. The milk powders were spray inoculated with 5-serovar Salmonella cocktail and dried back to the original pre-inoculation aw. The D-values of Salmonella in inoculated NFDM and WMP were determined periodically (every 30 days, starting from day one). The milk powders were also individually hydrated on each analysis day to determine D- and z-values of Salmonella in hydrated powders. The D-values were determined using thermal-death-time disks and hot-water baths at 80, 85 and 90 °C for milk powders, and 59, 62 and 65 °C for hydrated powders. The D- and z-values of Salmonella at specific temperatures within dry or hydrated powders during the storage period were compared at P ≤ 0.05 using two-way ANOVA and Tukey's Test. The D-values of Salmonella in WMP on day 1 were 18.9, 9.9 and 4.4 min at 80, 85 and 90 °C, respectively, which increased to 29.4, 13.6 and 6.5 min at 80, 85 and 90 °C, respectively, on day 180. Whereas, D-values of Salmonella in NFDM on day 1 were 17.9, 9.2 and 4.4 min at 80, 85 and 90 °C, respectively, and stayed similar during the storage. The D-values of Salmonella in milk powder remained similar throughout the storage once hydrated. The overall z-value of Salmonella in NFDM and WMP was 16.3 °C, whereas in hydrated NFDM and WMP, the overall z-value was 6.4 °C.


Assuntos
Armazenamento de Alimentos , Alimentos em Conserva/microbiologia , Leite/microbiologia , Salmonella/fisiologia , Água/análise , Animais , Microbiologia de Alimentos , Temperatura Alta , Viabilidade Microbiana , Leite/química , Pós , Água/metabolismo
10.
Food Sci Nutr ; 9(3): 1574-1583, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747470

RESUMO

Pathogens, such as Salmonella and Listeria monocytogenes, can survive under the dry environment of flour for extended periods of time and could multiply when flour is hydrated to prepare batter or dough. Therefore, inactivation of these pathogens during the cooking/baking step is vital to ensure the microbiological safety of bakery products such as brownies. The aim of this research was to validate a simulated commercial baking process as a kill-step for controlling Salmonella and L. monocytogenes in brownies and to determine thermal inactivation parameters of these pathogens in brownie batter. Independent studies were conducted in a completely randomized design for each pathogen. All-purpose flour was inoculated with a 5-serovar Salmonella and 3-strain L. monocytogenes cocktails. For baking validation, brownie batters were prepared from inoculated flour, and cooked in the oven set at 350°F (176.7°C) for 40 min followed by 15 min of ambient air cooling. For calculating D-values, brownie batter was transferred into thermal-death-time disks, sealed, and placed in hot-water baths. The samples were held for pre-determined time intervals in hot-water baths and immediately transferred to cold-water baths. Microbial populations were enumerated using injury-recovery media. At the end of baking, Salmonella and L. monocytogenes populations decreased by 6.3 and 5.9 log CFU/g, respectively. D-values of Salmonella and L. monocytogenes cocktails were 53.4 and 37.5 min at 64°C; 27.2 and 16.9 min at 68°C; 10.7 and 9.1 min at 72°C; and 4.6 and 7.3 min at 76°C; respectively. The z-values of Salmonella and L. monocytogenes cocktails were 11.1 and 16.4°C, respectively. This study can be used as a supporting document for the validation of similar brownie baking processes to control Salmonella and L. monocytogenes. The data from this study can also be employed for developing basic prediction models for the survival and thermal resistance of these pathogens during brownie baking step.

11.
Int J Food Microbiol ; 317: 108422, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31756646

RESUMO

This study was conducted to validate a simulated commercial baking process for plain muffins against E. coli O121 (isolated from the recent illness outbreak associated with flour), and compare the thermal inactivation parameters (D- and z-values) of cocktails of four isolates of E. coli O121 and three serovars of Salmonella (Newport, Typhimurium, and Senftenberg) in muffin batter. Flour samples were spray inoculated with the E. coli O121 or Salmonella cocktails, dried back to the pre-inoculation weight to achieve ~7 log10 CFU/g, and used to prepare muffin batter. For the muffin baking validation study using E. coli O121, muffin batter was baked at 375 °F (190.6 °C) oven temperature for 21 min followed by 30 min of ambient cooling. The E. coli O121 population decreased by >7 log10 CFU/g in muffins by 17 min of baking, and was completely eradicated after 21 min of baking and ambient cooling. The D-values of E. coli O121 and Salmonella cocktails in muffin batter at 60, 65 and 70 °C were 42.0 and 38.4, 7.5 and 7.2, and 0.4 and 0.5 min, respectively; whereas the z-values of E. coli O121 and Salmonella were 5.0 and 5.2 °C, respectively.


Assuntos
Pão/microbiologia , Escherichia coli O157/fisiologia , Farinha/microbiologia , Temperatura Alta , Salmonella typhimurium/fisiologia , Temperatura Baixa , Contagem de Colônia Microbiana , Culinária/métodos , Manipulação de Alimentos , Microbiologia de Alimentos
12.
Food Sci Nutr ; 7(8): 2716-2725, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31428359

RESUMO

Hyperspectral imaging (HSI) provides both spatial and spectral information of a sample by combining imaging with spectroscopy. The objective of this study was to generate hyperspectral graphs of common foodborne pathogens and to develop and validate prediction models for the classification of these pathogens. Four strains of Cronobacter sakazakii, five strains of Salmonella spp., eight strains of Escherichia coli, and one strain each of Listeria monocytogenes and Staphylococcus aureus were used in the study. Principal component analysis and kNN (k-nearest neighbor) classifier model were used for the classification of hyperspectra of various bacterial cells, which were then validated using the cross-validation technique. Classification accuracy of various strains within genera including C. sakazakii, Salmonella spp., and E. coli, respectively, was 100%; except within C. sakazakii, strain BAA-894, and E. coli, strains O26, O45, and O121 had 66.67% accuracy. When all strains were studied together (irrespective of their genus) for the classification, only C. sakazakii P1, E. coli O104, O111, and O145, S. Montevideo, and L. monocytogenes had 100% classification accuracy, whereas E. coli O45 and S. Tennessee were not classified (classification accuracy of 0%). Lauric arginate treatment of C. sakazakii BAA-894, E. coli O157, S. Senftenberg, L. monocytogenes, and S. aureus significantly affected their hyperspectral signatures, and treated cells could be differentiated from the healthy, nontreated cells.

13.
Int J Food Microbiol ; 294: 27-30, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30739832

RESUMO

This study was conducted to validate a commercial nut muffin baking process and to compare the survival of a 7-serovar Salmonella cocktail when contaminated via inoculated flour or walnuts. Enriched wheat flour or walnut pieces were mist inoculated with the Salmonella cocktail and dried back to the pre-inoculation weight, resulting in a Salmonella population level of 6.9 and 8.4 log CFU/g, respectively. Nut muffin batters were prepared separately using inoculated flour or walnuts, followed by baking at 375 °F (190.6 °C) oven temperature for 21 min and post-bake ambient air-cooling (B + C). During baking, >5-log CFU/g reductions in the Salmonella population in nut muffins was achieved in 17 min, and Salmonella was not detected by direct plating (<0.2 log CFU/g detection limit) but was recovered by enrichment at the end of 21 min of baking and B + C. In a separate baking study using an extended baking time (24 min) at 375 °F, Salmonella was detected after 24 and 22 min using enrichment plating of nut muffins prepared from inoculated flour and walnuts, respectively. The D-values of the Salmonella cocktail in nut muffin batters prepared from inoculated flour were 24.0, 4.0 and 0.6 min at 60, 65 and 70 °C; whereas, corresponding D-values in batters prepared from inoculated walnuts were 22.0, 3.6 and 1.7 min. The z-values of the Salmonella cocktail in nut muffin batters were 6.1 and 9.0 °C for inoculated flour and walnuts, respectively. This simulated commercial nut muffin baking study utilizing an oven temperature of 190.6 °C for at least 17 min validates that the process will eliminate Salmonella populations by ≥5 log CFU/g if pre-baking contamination occurs via flour or walnut ingredients.


Assuntos
Culinária/normas , Farinha/microbiologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Juglans/microbiologia , Salmonella/fisiologia , Temperatura , Contagem de Colônia Microbiana , Simulação por Computador , Reprodutibilidade dos Testes , Sorogrupo
15.
Int J Food Microbiol ; 250: 1-6, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28342405

RESUMO

This research investigates the potential risk of Salmonella in muffins when contamination is introduced via flour, the main ingredient. Flour was inoculated with a 3-strain cocktail of Salmonella serovars (Newport, Typhimurium, and Senftenberg) and re-dried to achieve a target concentration of ~8logCFU/g. The inoculated flour was then used to prepare muffin batter following a standard commercial recipe. The survival of Salmonella during and after baking at 190.6°C for 21min was analyzed by plating samples on selective and injury-recovery media at regular intervals. The thermal inactivation parameters (D and z values) of the 3-strain Salmonella cocktail were determined. A ≥5logCFU/g reduction in Salmonella population was demonstrated by 17min of baking, and a 6.1logCFU/g reduction in Salmonella population by 21min of baking. The D-values of Salmonella serovar cocktail in muffin batter were 62.2±3.0, 40.1±0.9 and 16.5±1.7min at 55, 58 and 61°C, respectively; and the z-value was 10.4±0.6°C. The water activity (aw) of the muffin crumb (0.928) after baking and 30min of cooling was similar to that of pre-baked muffin batter, whereas the aw of the muffin crust decreased to (0.700). This study validates a typical commercial muffin baking process utilizing an oven temperature of 190.6°C for at least 17min as an effective kill-step in reducing a Salmonella serovar population by ≥5logCFU/g.


Assuntos
Farinha/microbiologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Temperatura Alta , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Humanos , Água
16.
J Food Prot ; 79(4): 544-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27052857

RESUMO

This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.


Assuntos
Culinária/métodos , Enterococcus faecium/crescimento & desenvolvimento , Produtos da Carne/microbiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Cinética , Temperatura
17.
Food Sci Nutr ; 3(1): 48-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25650127

RESUMO

A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa