Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Blood ; 140(23): 2477-2489, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930749

RESUMO

The MAPK-interacting kinase (Mnk) family includes Mnk1 and Mnk2, which are phosphorylated and activated in response to extracellular stimuli. Mnk1 contributes to cellular responses by regulating messenger RNA (mRNA) translation, and mRNA translation influences platelet production and function. However, the role of Mnk1 in megakaryocytes and platelets has not previously been studied. The present study investigated Mnk1 in megakaryocytes and platelets using both pharmacological and genetic approaches. We demonstrate that Mnk1, but not Mnk2, is expressed and active in human and murine megakaryocytes and platelets. Stimulating human and murine megakaryocytes and platelets induced Mnk1 activation and phosphorylation of eIF4E, a downstream target of activated Mnk1 that triggers mRNA translation. Mnk1 inhibition or deletion significantly diminished protein synthesis in megakaryocytes as measured by polysome profiling and [35S]-methionine incorporation assays. Depletion of Mnk1 also reduced megakaryocyte ploidy and proplatelet forming megakaryocytes in vitro and resulted in thrombocytopenia. However, Mnk1 deletion did not affect the half-life of circulating platelets. Platelets from Mnk1 knockout mice exhibited reduced platelet aggregation, α granule secretion, and integrin αIIbß3 activation. Ribosomal footprint sequencing indicated that Mnk1 regulates the translation of Pla2g4a mRNA (which encodes cPLA2) in megakaryocytes. Consistent with this, Mnk1 ablation reduced cPLA2 activity and thromboxane generation in platelets and megakaryocytes. In vivo, Mnk1 ablation protected against platelet-dependent thromboembolism. These results provide previously unrecognized evidence that Mnk1 regulates mRNA translation and cellular activation in platelets and megakaryocytes, endomitosis and thrombopoiesis, and thrombosis.


Assuntos
RNA Mensageiro , Humanos , Animais , Camundongos
2.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894281

RESUMO

Among the essential tools to address global environmental information requirements are the Earth-Observing (EO) satellites with free and open data access. This paper reviews those EO satellites from international space programs that already, or will in the next decade or so, provide essential data of importance to the environmental sciences that describe Earth's status. We summarize factors distinguishing those pioneering satellites placed in space over the past half century, and their links to modern ones, and the changing priorities for spaceborne instruments and platforms. We illustrate the broad sweep of instrument technologies useful for observing different aspects of the physio-biological aspects of the Earth's surface, spanning wavelengths from the UV-A at 380 nanometers to microwave and radar out to 1 m. We provide a background on the technical specifications of each mission and its primary instrument(s), the types of data collected, and examples of applications that illustrate these observations. We provide websites for additional mission details of each instrument, the history or context behind their measurements, and additional details about their instrument design, specifications, and measurements.

3.
Physiol Rev ; 96(4): 1211-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27489307

RESUMO

Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.


Assuntos
Plaquetas/imunologia , Inflamação/imunologia , Pneumopatias/imunologia , Pulmão/imunologia , Imunidade Adaptativa/fisiologia , Animais , Humanos , Imunidade Inata/fisiologia , Inflamação/sangue , Pneumopatias/sangue
4.
Blood ; 138(5): 401-416, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33895821

RESUMO

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased and have been associated with adverse clinical events, including increased platelet-T-cell interactions. Sepsis is associated with reduced CD8+ T-cell numbers and functional responses, but whether platelets regulate CD8+ T-cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen-specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (eg, interferon-γ and lipopolysaccharide). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage-specific MHC-I-deficient mouse strain (B2Mf/f-Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T-cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo, during sepsis. Loss of platelet MHC-I reduces sepsis-associated mortality in mice in an antigen-specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen-specific CD8+ T cells, and regulate CD8+ T-cell numbers, functional responses, and outcomes during sepsis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Tolerância Imunológica , Sepse/imunologia , Adulto , Animais , Proliferação de Células , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Estudos Prospectivos , Sepse/genética
5.
Respir Res ; 24(1): 162, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330506

RESUMO

Exposure to e-cigarette vapors alters important biologic processes including phagocytosis, lipid metabolism, and cytokine activity in the airways and alveolar spaces. Little is known about the biologic mechanisms underpinning the conversion to e-cigarette, or vaping, product use-associated lung injury (EVALI) from normal e-cigarette use in otherwise healthy individuals. We compared cell populations and inflammatory immune populations from bronchoalveolar lavage fluid in individuals with EVALI to e-cigarette users without respiratory disease and healthy controls and found that e-cigarette users with EVALI demonstrate a neutrophilic inflammation with alveolar macrophages skewed towards inflammatory (M1) phenotype and cytokine profile. Comparatively, e-cigarette users without EVALI demonstrate lower inflammatory cytokine production and express features associated with a reparative (M2) phenotype. These data indicate macrophage-specific changes are occurring in e-cigarette users who develop EVALI.


Assuntos
Produtos Biológicos , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Humanos , Macrófagos Alveolares , Fenótipo , Citocinas
6.
Blood ; 136(11): 1317-1329, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32573711

RESUMO

There is an urgent need to understand the pathogenesis of coronavirus disease 2019 (COVID-19). In particular, thrombotic complications in patients with COVID-19 are common and contribute to organ failure and mortality. Patients with severe COVID-19 present with hemostatic abnormalities that mimic disseminated intravascular coagulopathy associated with sepsis, with the major difference being increased risk of thrombosis rather than bleeding. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters platelet function to contribute to the pathophysiology of COVID-19 remains unknown. In this study, we report altered platelet gene expression and functional responses in patients infected with SARS-CoV-2. RNA sequencing demonstrated distinct changes in the gene-expression profile of circulating platelets of COVID-19 patients. Pathway analysis revealed differential gene-expression changes in pathways associated with protein ubiquitination, antigen presentation, and mitochondrial dysfunction. The receptor for SARS-CoV-2 binding, angiotensin-converting enzyme 2 (ACE2), was not detected by messenger RNA (mRNA) or protein in platelets. Surprisingly, mRNA from the SARS-CoV-2 N1 gene was detected in platelets from 2 of 25 COVID-19 patients, suggesting that platelets may take-up SARS-COV-2 mRNA independent of ACE2. Resting platelets from COVID-19 patients had increased P-selectin expression basally and upon activation. Circulating platelet-neutrophil, -monocyte, and -T-cell aggregates were all significantly elevated in COVID-19 patients compared with healthy donors. Furthermore, platelets from COVID-19 patients aggregated faster and showed increased spreading on both fibrinogen and collagen. The increase in platelet activation and aggregation could partially be attributed to increased MAPK pathway activation and thromboxane generation. These findings demonstrate that SARS-CoV-2 infection is associated with platelet hyperreactivity, which may contribute to COVID-19 pathophysiology.


Assuntos
Betacoronavirus/isolamento & purificação , Transtornos da Coagulação Sanguínea/patologia , Plaquetas/patologia , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Transcriptoma , Biomarcadores , Transtornos da Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/metabolismo , Transtornos da Coagulação Sanguínea/virologia , Plaquetas/metabolismo , Plaquetas/virologia , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Prognóstico , Estudos Prospectivos , SARS-CoV-2
7.
Blood ; 136(10): 1169-1179, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32597954

RESUMO

COVID-19 affects millions of patients worldwide, with clinical presentation ranging from isolated thrombosis to acute respiratory distress syndrome (ARDS) requiring ventilator support. Neutrophil extracellular traps (NETs) originate from decondensed chromatin released to immobilize pathogens, and they can trigger immunothrombosis. We studied the connection between NETs and COVID-19 severity and progression. We conducted a prospective cohort study of COVID-19 patients (n = 33) and age- and sex-matched controls (n = 17). We measured plasma myeloperoxidase (MPO)-DNA complexes (NETs), platelet factor 4, RANTES, and selected cytokines. Three COVID-19 lung autopsies were examined for NETs and platelet involvement. We assessed NET formation ex vivo in COVID-19 neutrophils and in healthy neutrophils incubated with COVID-19 plasma. We also tested the ability of neonatal NET-inhibitory factor (nNIF) to block NET formation induced by COVID-19 plasma. Plasma MPO-DNA complexes increased in COVID-19, with intubation (P < .0001) and death (P < .0005) as outcome. Illness severity correlated directly with plasma MPO-DNA complexes (P = .0360), whereas Pao2/fraction of inspired oxygen correlated inversely (P = .0340). Soluble and cellular factors triggering NETs were significantly increased in COVID-19, and pulmonary autopsies confirmed NET-containing microthrombi with neutrophil-platelet infiltration. Finally, COVID-19 neutrophils ex vivo displayed excessive NETs at baseline, and COVID-19 plasma triggered NET formation, which was blocked by nNIF. Thus, NETs triggering immunothrombosis may, in part, explain the prothrombotic clinical presentations in COVID-19, and NETs may represent targets for therapeutic intervention.


Assuntos
Infecções por Coronavirus/complicações , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Pneumonia Viral/complicações , Trombose/complicações , Adulto , Idoso , Betacoronavirus/imunologia , Plaquetas/imunologia , Plaquetas/patologia , Proteínas Sanguíneas/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infiltração de Neutrófilos , Neutrófilos/patologia , Pandemias , Peroxidase/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Estudos Prospectivos , SARS-CoV-2 , Trombose/imunologia , Trombose/patologia
8.
Blood ; 134(12): 911-923, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31366617

RESUMO

There is increasing recognition that platelets have a functional role in the pathophysiology of sepsis, though this role has not been precisely defined. Whether sepsis alters the human platelet transcriptome and translational landscape has never been established. We used parallel techniques of RNA sequencing and ribosome footprint profiling to interrogate the platelet transcriptome and translatome in septic patients and healthy donors. We identified 1806 significantly differentially expressed (false discovery rate <0.05) transcripts in platelets from septic patients. Platelet translational events during sepsis were also upregulated. To explore the relevance of a murine model of sepsis, cecal ligation and puncture (CLP), we compared sepsis-induced changes in platelet gene expression between septic patients and mice subjected to CLP. Platelet transcriptional (ρ = 0.42, P = 3.2 × 10-285) and translational (ρ = 0.65, P = 1.09 × 10-56) changes were significantly correlated between septic patients and mice. We focused on ITGA2B, tracking and validating the expression, regulation, and functional impact of changes in ITGA2B during sepsis. Increased ITGA2B was identified in bone marrow megakaryocytes within 24 hours of sepsis onset. Subsequent increases in ITGA2B were seen in circulating platelets, suggesting dynamic trafficking of the messenger RNA. Transcriptional changes in ITGA2B were accompanied by de novo protein synthesis of αIIb and integrin αIIbß3 activation. Increased αIIb was associated with mortality in humans and mice. These findings provide previously unrecognized evidence that human and murine sepsis similarly alters the platelet transcriptional and translational landscape. Moreover, ITGA2B is upregulated and functional in sepsis due to trafficking from megakaryocytes and de novo synthesis in platelets and is associated with increased mortality.


Assuntos
Plaquetas/metabolismo , Sepse/genética , Sepse/metabolismo , Animais , Plaquetas/patologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Biossíntese de Proteínas , Proteoma/análise , Proteômica , Sepse/sangue , Sepse/patologia , Índice de Gravidade de Doença , Transcrição Gênica , Transcriptoma
9.
Remote Sens Environ ; 2312019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33414568

RESUMO

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF - especially from space - is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using highly-resolved spectral sensors and state-of-the-art algorithms to distinguish the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatio-temporally explicit information about photosynthetic light responses and steady-state behaviour in vegetation. Progress in this field is accelerating with innovative sensor developments, retrieval methods, and modelling advances. This review distills the historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based systems, and applications of these capabilities in evaluation of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.

10.
Am J Respir Cell Mol Biol ; 59(1): 18-35, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29553813

RESUMO

Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Plaquetas/patologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Humanos , Megacariócitos/patologia , Fenótipo , Inibidores da Agregação Plaquetária/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico
12.
Glob Chang Biol ; 24(7): 2980-2996, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29460467

RESUMO

Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.


Assuntos
Clorofila/fisiologia , Florestas , Fotossíntese/fisiologia , Pinus taeda/fisiologia , Folhas de Planta/fisiologia , Fluorescência , North Carolina , Desenvolvimento Vegetal
13.
Arterioscler Thromb Vasc Biol ; 37(9): 1628-1639, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28663252

RESUMO

OBJECTIVE: On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets. APPROACH AND RESULTS: Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis. CONCLUSIONS: GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions.


Assuntos
Glicemia/metabolismo , Plaquetas/metabolismo , Degranulação Celular , Grânulos Citoplasmáticos/metabolismo , Transportador de Glucose Tipo 3/sangue , Ativação Plaquetária , Animais , Artrite Experimental/sangue , Artrite Experimental/genética , Artrite Experimental/prevenção & controle , Exocitose , Genótipo , Transportador de Glucose Tipo 3/deficiência , Transportador de Glucose Tipo 3/genética , Glicogenólise , Glicólise , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transporte Proteico , Embolia Pulmonar/sangue , Embolia Pulmonar/genética , Transdução de Sinais , Fatores de Tempo
14.
Remote Sens Environ ; 219: 339-352, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217640

RESUMO

Monitoring the effects of water availability on vegetation globally using satellites is important for applications such as drought early warning, precision agriculture, and food security as well as for more broadly understanding relationships between water and carbon cycles. In this global study, we examine how quickly several satellite-based indicators, assumed to have relationships with water availability, respond, on timescales of days to weeks, in comparison with variations in root-zone soil moisture (RZM) that extends to about 1 m depth. The satellite indicators considered are the normalized difference vegetation and infrared indices (NDVI and NDII, respectively) derived from reflectances obtained with moderately wide (20-40 nm) spectral bands in the visible and near-infrared (NIR) and evapotranspiration (ET) estimated from thermal infrared observations and normalized by a reference ET. NDVI is primarily sensitive to chlorophyll contributions and vegetation structure while NDII may contain additional information on water content in leaves and canopy. ET includes both the loss of root zone soil water through transpiration (modulated by stomatal conductance) as well as evaporation from bare soil. We find that variations of these satellite-based drought indicators on time scales of days to weeks have significant correlations with those of RZM in the same water-limited geographical locations that are dominated by grasslands, shrublands, and savannas whose root systems are generally contained within the 1 m RZM layer. Normalized ET interannual variations show generally a faster response to water deficits and enhancements as compared with those of NDVI and NDII, particularly in sparsely vegetated regions.

18.
Thromb Res ; 231: 170-181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058760

RESUMO

Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Megacariócitos/patologia , Trombopoese , Trombose/patologia , Autofagia , Biologia
19.
Thromb Res ; 231: 247-254, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37258336

RESUMO

Platelets and their parent cell, the megakaryocyte (MK), are increasingly recognized for their roles during infection and inflammation. The MK residing in the bone marrow or arising from precursors trafficked to other organs for development go on to form platelets through thrombopoiesis. Infection, by direct and indirect mechanisms, can alter the transcriptional profile of MKs. The altered environment, whether mediated by inflammatory cytokines or other signaling mechanisms results in an altered platelet transcriptome. Platelets released into the circulation, in turn, interact with each other, circulating leukocytes and endothelial cells and contribute to the clearance of pathogens or the potentiation of pathophysiology through such mechanisms as immunothrombosis. In this article we hope to identify key contributions that explore the impact of an altered transcriptomic landscape during severe, systemic response to infection broadly defined as sepsis, and viral infections, including SARS-CoV2. We include current publications that outline the role of MKs from bone-marrow and extra-medullary sites as well as the circulating platelet. The underlying diseases result in thrombotic complications that exacerbate organ dysfunction and mortality. Understanding the impact of platelets on the pathophysiology of disease may drive therapeutic advances to improve the morbidity and mortality of these deadly afflictions.


Assuntos
COVID-19 , Sepse , Humanos , Megacariócitos/fisiologia , Transcriptoma , Células Endoteliais , RNA Viral , COVID-19/genética , SARS-CoV-2 , Plaquetas , Trombopoese/genética , Sepse/complicações , Sepse/genética
20.
Biomedicines ; 11(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37626615

RESUMO

Through the ACE2, a main enzyme of the renin-angiotensin system (RAS), SARS-CoV-2 gains access into the cell, resulting in different complications which may extend beyond the RAS and impact the Arachidonic Acid (ArA) pathway. The contribution of the RAS through ArA pathways metabolites in the pathogenesis of COVID-19 is unknown. We investigated whether RAS components and ArA metabolites can be considered biomarkers of COVID-19. We measured the plasma levels of RAS and ArA metabolites using an LC-MS/MS. Results indicate that Ang 1-7 levels were significantly lower, whereas Ang II levels were higher in the COVID-19 patients than in healthy control individuals. The ratio of Ang 1-7/Ang II as an indicator of the RAS classical and protective arms balance was dramatically lower in COVID-19 patients. There was no significant increase in inflammatory 19-HETE and 20-HETE levels. The concentration of EETs was significantly increased in COVID-19 patients, whereas the DHETs concentration was repressed. Their plasma levels were correlated with Ang II concentration in COVID-19 patients. In conclusion, evaluating the RAS and ArA pathway biomarkers could provide helpful information for the early detection of high-risk groups, avoid delayed medical attention, facilitate resource allocation, and improve patient clinical outcomes to prevent long COVID incidence.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa