Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Genes Cells ; 29(6): 503-511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531660

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory cancers with the worst prognosis. Although several molecules are known to be associated with the progression of PDAC, the molecular mechanisms underlying the progression of PDAC remain largely elusive. The Ror-family receptors, Ror1 and Ror2, which act as a receptor(s) for Wnt-family ligands, particularly Wnt5a, are involved in the progression of various types of cancers. Here, we show that higher expression of Ror1 and Wnt5b, but not Ror2, are associated with poorer prognosis of PDAC patients, and that Ror1 and Wnt5b are expressed highly in a type of PDAC cell lines, PANC-1 cells. Knockdown of either Ror1 or Wnt5b in PANC-1 cells inhibited their proliferation significantly in vitro, and knockout of Ror1 in PANC-1 cells resulted in a significant inhibition of tumor growth in vivo. Furthermore, we show that Wnt5b-Ror1 signaling in PANC-1 cells promotes their proliferation in a cell-autonomous manner by modulating our experimental setting in vitro. Collectively, these findings indicate that Wnt5b-Ror1 signaling might play an important role in the progression of some if not all of PDAC by promoting proliferation.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Neoplasias Pancreáticas , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteína Wnt-5a , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética
2.
J Biol Chem ; 299(10): 105248, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703992

RESUMO

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.

3.
Glia ; 72(2): 411-432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904612

RESUMO

Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.


Assuntos
Lesões Encefálicas , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Astrócitos/metabolismo , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Citocinas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Proteína Wnt-5a/metabolismo
4.
Genes Cells ; 28(4): 307-318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811220

RESUMO

Ror1 signaling regulates cell polarity, migration, proliferation, and differentiation during developmental morphogenesis, and plays an important role in regulating neurogenesis in the embryonic neocortices. However, the role of Ror1 signaling in the brains after birth remains largely unknown. Here, we found that expression levels of Ror1 in the mouse neocortices increase during the postnatal period, when astrocytes mature and start expressing GFAP. Indeed, Ror1 is highly expressed in cultured postmitotic mature astrocytes. RNA-Seq analysis revealed that Ror1 expressed in cultured astrocytes mediates upregulated expression of genes related to fatty acid (FA) metabolism, including the gene encoding carnitine palmitoyl-transferase 1a (Cpt1a), the rate-limiting enzyme of mitochondrial fatty acid ß-oxidation (FAO). We also found that Ror1 promotes the degradation of lipid droplets (LDs) accumulated in the cytoplasm of cultured astrocytes after oleic acid loading, and that suppressed expression of Ror1 decreases the amount of FAs localized at mitochondria, intracellular ATP levels, and expression levels of peroxisome proliferator-activated receptor α (PPARα) target genes, including Cpt1a. Collectively, these findings indicate that Ror1 signaling promotes PPARα-mediated transcription of FA metabolism-related genes, thereby facilitating the availability of FAs derived from LDs for mitochondrial FAO in the mature astrocytes.


Assuntos
Astrócitos , PPAR alfa , Animais , Camundongos , Astrócitos/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
5.
Genes Cells ; 28(4): 249-257, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36846946

RESUMO

Wnt2022 was held on November 15th-19th, 2022, in Awaji Yumebutai International Conference Center, Hyogo Prefecture, Japan, as an in-person meeting for the first time in last 3 years. Wnt signaling is a highly conserved pathway among various species. Since Wnt1 was discovered in 1982, a number of studies using many model animals and human samples have revealed that Wnt signaling plays crucial roles in embryonic development, tissue morphogenesis, and regeneration, as well as many other physiological and pathological processes. Since the year 2022 marks the 40th anniversary of Wnt research, we aimed to look back at our research progress and discuss the future direction of this field. The scientific program consisted of plenary lectures, invited talks, short talks selected from abstracts, and poster sessions. Whereas several different Wnt meetings have been held almost every year in Europe and the United States, this was the first Wnt meeting convened in Asia. Therefore, Wnt2022 was highly anticipated to bring together leaders and young scientists from Europe, the United States, and especially Asia and Oceania. In fact, 148 researchers from 21 countries attended this meeting. Although there were travel and administrative restrictions due to COVID-19, the meeting was highly successful in enabling face-to-face discussions.


Assuntos
COVID-19 , Animais , Humanos , Ásia , Japão , Via de Sinalização Wnt
6.
J Biol Chem ; 298(7): 102090, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654143

RESUMO

Invadopodia on cancer cells play crucial roles in tumor invasion and metastasis by degrading and remodeling the surrounding extracellular matrices and driving cell migration in complex 3D environments. Previous studies have indicated that microtubules (MTs) play a crucial role in elongation of invadopodia, but not their formation, probably by regulating delivery of membrane and secretory proteins within invadopodia. However, the identity of the responsible MT-based molecular motors and their regulation has been elusive. Here, we show that KIF1C, a member of kinesin-3 family, is localized to the tips of invadopodia and is required for their elongation and the invasion of cancer cells. We also found that c-Src phosphorylates tyrosine residues within the stalk domain of KIF1C, thereby enhancing its association with tyrosine phosphatase PTPD1, that in turn activates MT-binding ability of KIF1C, probably by relieving the autoinhibitory interaction between its motor and stalk domains. These findings shed new insights into how c-Src signaling is coupled to the MT-dependent dynamic nature of invadopodia and also advance our understanding of the mechanism of KIF1C activation through release of its autoinhibition.


Assuntos
Genes src , Cinesinas , Invasividade Neoplásica , Podossomos , Linhagem Celular Tumoral , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Fosforilação , Podossomos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , Tirosina/metabolismo
7.
Cancer Sci ; 114(2): 561-573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36314076

RESUMO

Ror1 plays a crucial role in cancer progression by regulating cell proliferation and migration. Ror1 is expressed abundantly in various types of cancer cells and cancer stem-like cells. However, the molecular mechanisms regulating expression of Ror1 in these cells remain largely unknown. Ror1 and its putative ligand Wnt5a are expressed highly in malignant gliomas, especially in glioblastomas, and the extents of Ror1 expression are correlated positively with poorer prognosis in patients with gliomas. We show that Ror1 expression can be upregulated in glioblastoma cells under spheroid culture, but not adherent culture conditions. Notch and hypoxia signaling pathways have been shown to be activated in spheroid-forming glioblastoma stem-like cells (GSCs), and Ror1 expression in glioblastoma cells is indeed suppressed by inhibiting either Notch or hypoxia signaling. Meanwhile, either forced expression of the Notch intracellular domain (NICD) in or hypoxic culture of glioblastoma cells result in enhanced expression of Ror1 in the cells. Consistently, we show that both NICD and hypoxia-inducible factor 1 alpha bind to upstream regions within the Ror1 gene more efficiently in GSCs under spheroid culture conditions. Furthermore, we provide evidence indicating that binding of Wnt5a to Ror1, upregulated by Notch and hypoxia signaling pathways in GSCs, might promote their spheroid-forming ability. Collectively, these findings indicate for the first time that Notch and hypoxia signaling pathways can elicit a Wnt5a-Ror1 axis through transcriptional activation of Ror1 in glioblastoma cells, thereby promoting their stem cell-like property.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Glioma/patologia , Transdução de Sinais , Hipóxia/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
8.
Genes Cells ; 27(5): 368-375, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35261108

RESUMO

Accumulating evidence demonstrates that bone marrow (BM)-derived mesenchymal stem cells (MSCs) play critical roles in regulating progression of various types of cancer. We have previously shown that Wnt5a-Ror2 signaling in MSCs induces expression of CXCL16, and that CXCL16 secreted from MSCs then binds to its cognate receptor CXCR6 on the surface of an undifferentiated gastric cancer cell line MKN45 cells, eventually leading to proliferation and migration of MKN45 cells. However, it remains unclear about a possible involvement of another (other) cytokine(s) in regulating progression of gastric cancer. Here, we show that CXCL16-CXCR6 signaling is also activated in MSCs through cell-autonomous machinery, leading to upregulated expression of CCL5. We further show that CCR1 and CCR3, receptors of CCL5, are expressed on the surface of MKN45 cells, and that CCL5 secreted from MSCs promotes migration of MKN45 cells presumably via its binding to CCR1/CCR3. These data indicate that cell-autonomous CXCL16-CXCR6 signaling activated in MSCs upregulates expression of CCL5, and that subsequent activation of CCL5-CCR1/3 signaling in MKN45 cells through intercellular machinery can promote migration of MKN45 cells. Collectively, these findings postulate the presence of orchestrated chemokine signaling emanated from MSCs to regulate progression of undifferentiated gastric cancer cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Linhagem Celular Tumoral , Quimiocina CXCL16/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo
9.
Dev Dyn ; 250(1): 27-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31925877

RESUMO

The Ror-family receptor tyrosine kinases (RTKs), consisting of Ror1 and Ror2, play crucial roles in morphogenesis and formation of various tissues/organs, including the bones and skeletal muscles, the so-called musculoskeletal system, during embryonic development, by acting as receptors or coreceptors for a noncanonical Wnt protein Wnt5a. Furthermore, several lines of evidence have indicated that Ror1 and/or Ror2 play critical roles in the regeneration and maintenance of the musculoskeletal system in adults. Considering the anatomical and functional relationship between the skeleton and skeletal muscles, their structural and functional association might be tightly regulated during their embryonic development, development after birth, and their regeneration after injury in adults. Importantly, in addition to their congenital anomalies, much attention has been paid onto the age-related disorders of the musculoskeletal system, including osteopenia and sarcopenia, which affect severely the quality of life. In this article, we overview recent advances in our understanding of the roles of Ror1- and/or Ror2-mediated signaling in the embryonic development, regeneration in adults, and congenital and age-related disorders of the musculoskeletal system and discuss possible therapeutic approaches to locomotive syndromes by modulating Ror1- and/or Ror2-mediated signaling.


Assuntos
Desenvolvimento Musculoesquelético , Doenças Musculoesqueléticas/enzimologia , Sistema Musculoesquelético/enzimologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Wnt/metabolismo , Animais , Humanos , Ligantes , Via de Sinalização Wnt
10.
J Neurochem ; 156(6): 834-847, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460120

RESUMO

PRMT1, a major arginine methyltransferase, plays critical roles in transcription, DNA damage response, and cell proliferation. Although we have previously discovered the crucial roles of PRMT1 for oligodendrocyte lineage progression in the central nervous system of neural stem cell-specific PRMT1 conditional knockout (PRMT1-CKO) mice, the context of other glial cell states that may cause the hypomyelination phenotype in PRMT1-CKO mice has not been explored so far. Here, we performed RNA-seq of the neonatal cortices of PRMT1-CKO mice to reveal overall gene expression changes and show the up-regulation of inflammatory signaling which is generally mediated by astrocytes and microglia in advance of the myelination defects. In particular, qRT-PCR analyses revealed Interleukin-6 (Il-6), a major central nervous system cytokine, was dramatically increased in the PRMT1-CKO brains. The gene expression changes led to augmentation of glial fibrillary acidic protein and Vimentin protein levels in PRMT1-CKO mice, showing severe reactive astrogliosis after birth. We further show that IBA1-positive and CD68-positive activated microglia were increased in PRMT1-CKO mice, in spite of intact Prmt1 gene expression in purified microglia from the mutant mice. Our results indicate that PRMT1 loss in the neural stem cell lineage causes disruptive changes in all glial types perturbing postnatal brain development and myelination.


Assuntos
Astrócitos , Encéfalo/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Microglia , Proteína-Arginina N-Metiltransferases/genética , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Encefalite/fisiopatologia , Feminino , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação , Bainha de Mielina , Células-Tronco Neurais/metabolismo , Gravidez , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
11.
FASEB J ; 34(2): 3413-3428, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922321

RESUMO

Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.


Assuntos
Fator de Transcrição E2F1/metabolismo , Fase G1 , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Fase S , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fator de Transcrição E2F1/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteína Forkhead Box O3/metabolismo , Camundongos , Células NIH 3T3 , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Transdução de Sinais
12.
Cancer Sci ; 111(4): 1254-1265, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012403

RESUMO

Bone marrow-derived mesenchymal stem or stromal cells (MSC) have been shown to be recruited to various types of tumor tissues, where they interact with tumor cells to promote their proliferation, survival, invasion and metastasis, depending on the type of the tumor. We have previously shown that Ror2 receptor tyrosine kinase and its ligand, Wnt5a, are expressed in MSC, and Wnt5a-Ror2 signaling in MSC induces expression of CXCL16, which, in turn, promotes proliferation of co-cultured MKN45 gastric cancer cells via the CXCL16-CXCR6 axis. However, it remains unclear how CXCL16 regulates proliferation of MKN45 cells. Here, we show that knockdown of CXCL16 in MSC by siRNA suppresses not only proliferation but also migration of co-cultured MKN45 cells. We also show that MSC-derived CXCL16 or recombinant CXCL16 upregulates expression of Ror1 through activation of STAT3 in MKN45 cells, leading to promotion of proliferation and migration of MKN45 cells in vitro. Furthermore, co-injection of MSC with MKN45 cells in nude mice promoted tumor formation in a manner dependent on expression of Ror1 in MKN45 cells, and anti-CXCL16 neutralizing antibody suppressed tumor formation of MKN45 cells co-injected with MSC. These results suggest that CXCL16 produced through Ror2-mediated signaling in MSC within the tumor microenvironment acts on MKN45 cells in a paracrine manner to activate the CXCR6-STAT3 pathway, which, in turn, induces expression of Ror1 in MKN45 cells, thereby promoting tumor progression.


Assuntos
Quimiocina CXCL16/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Fator de Transcrição STAT3/genética , Neoplasias Gástricas/genética , Animais , Anticorpos Neutralizantes/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CXCL16/antagonistas & inibidores , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Ligação Proteica/genética , Receptores CXCR6/genética , Transdução de Sinais/genética , Neoplasias Gástricas/patologia , Proteína Wnt-5a/genética
13.
Hum Mol Genet ; 27(7): 1174-1185, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360985

RESUMO

Congenital muscular dystrophies (CMDs) are characterized by progressive weakness and degeneration of skeletal muscle. In several forms of CMD, abnormal glycosylation of α-dystroglycan (α-DG) results in conditions collectively known as dystroglycanopathies, which are associated with central nervous system involvement. We recently demonstrated that fukutin, the gene responsible for Fukuyama congenital muscular dystrophy, encodes the ribitol-phosphate transferase essential for dystroglycan function. Brain pathology in patients with dystroglycanopathy typically includes cobblestone lissencephaly, mental retardation, and refractory epilepsy; however, some patients exhibit average intelligence, with few or almost no structural defects. Currently, there is no effective treatment for dystroglycanopathy, and the mechanisms underlying the generation of this broad clinical spectrum remain unknown. Here, we analysed four distinct mouse models of dystroglycanopathy: two brain-selective fukutin conditional knockout strains (neuronal stem cell-selective Nestin-fukutin-cKO and forebrain-selective Emx1-fukutin-cKO), a FukutinHp strain with the founder retrotransposal insertion in the fukutin gene, and a spontaneous Large-mutant Largemyd strain. These models exhibit variations in the severity of brain pathology, replicating the clinical heterogeneity of dystroglycanopathy. Immunofluorescence analysis of the developing cortex suggested that residual glycosylation of α-DG at embryonic day 13.5 (E13.5), when cortical dysplasia is not yet apparent, may contribute to subsequent phenotypic heterogeneity. Surprisingly, delivery of fukutin or Large into the brains of mice at E12.5 prevented severe brain malformation in Emx1-fukutin-cKO and Largemyd/myd mice, respectively. These findings indicate that spatiotemporal persistence of functionally glycosylated α-DG may be crucial for brain development and modulation of glycosylation during the fetal stage could be a potential therapeutic strategy for dystroglycanopathy.


Assuntos
Encéfalo/embriologia , Distroglicanas/metabolismo , Feto/embriologia , Técnicas de Transferência de Genes , Terapia Genética , Malformações do Desenvolvimento Cortical/terapia , Animais , Encéfalo/patologia , Distroglicanas/genética , Feminino , Feto/patologia , Glicosilação , Masculino , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Camundongos Transgênicos
14.
Genes Cells ; 24(4): 307-317, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30801848

RESUMO

Mutations in the human receptor tyrosine kinase ROR2 are associated with Robinow syndrome (RRS) and brachydactyly type B1. Amongst others, the shortened limb phenotype associated with RRS is recapitulated in Ror2-/- mutant mice. In contrast, Ror1-/- mutant mice are viable and show no limb phenotype. Ror1-/- ;Ror2-/- double mutants are embryonic lethal, whereas double mutants containing a hypomorphic Ror1 allele (Ror1hyp ) survive up to birth and display a more severe shortened limb phenotype. Both orphan receptors have been shown to act as possible Wnt coreceptors and to mediate the Wnt5a signal. Here, we analyzed genetic interactions between the Wnt ligand, Wnt9a, and Ror2 or Ror1, as Wnt9a has also been implicated in skeletal development. Wnt9a-/- single mutants display a mild shortening of the long bones, whereas these are severely shortened in Ror2-/- mutants. Ror2-/- ;Wnt9a-/- double mutants displayed even more severely shortened long bones, and intermediate phenotypes were observed in compound Ror2;Wnt9a mutants. Long bones were also shorter in Ror1hyp/hyp ;Wnt9a-/- double mutants. In addition, Ror1hyp/hyp ;Wnt9a-/- double mutants displayed a secondary palate cleft phenotype, which was not present in the respective single mutants. Interestingly, 50% of compound mutant pups heterozygous for Ror2 and homozygous mutant for Ror1 also developed a secondary palate cleft phenotype.


Assuntos
Fissura Palatina/genética , Epistasia Genética , Deformidades Congênitas dos Membros/genética , Mutação , Osteogênese/genética , Proteínas Wnt/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase
15.
Neurosurg Rev ; 43(4): 1211-1219, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31402410

RESUMO

Preoperative prediction of molecular information of lower-grade gliomas (LrGGs) helps to determine the overall treatment strategy as well as the initial surgical strategy. This study aimed to detect magnetic resonance imaging (MRI) texture parameters to predict the molecular signature of LrGGs using a commercially available software and routine MR images. Forty-three patients treated at Keio University Hospital who had World Health Organization grade II or III gliomas were included. All patients having preoperative T1- and T2-weighted, fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted (DW) images were also included. Texture analyses of T2, FLAIR, and apparent diffusion coefficient (ADC) histograms were performed using a commercially available software. Texture parameters including kurtosis, skewness, and entropy were investigated to determine any correlation with the presence or absence of isocitrate dehydrogenase (IDH) mutations, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. ADC skewness and T2 skewness were significantly associated with 1p/19q codeletion status. ADC skewness of ≥ 0.25 predicted 1p/19q codeletion with a sensitivity and specificity of 80% and 65.2%, respectively (AUC = 0.728). T2 skewness of ≥ - 0.11 predicted 1p/19q codeletion with a sensitivity and specificity of 80% and 91.3%, respectively, (AUC = 0.866). None of the texture parameters were associated with IDH mutation and MGMT promoter methylation. MRI texture analysis using a commercially available software demonstrated that T2 skewness could predict 1p/19q codeletion with high sensitivity and specificity, suggesting a clinical utility.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Imagem de Difusão por Ressonância Magnética , Feminino , Deleção de Genes , Humanos , Processamento de Imagem Assistida por Computador , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Período Pré-Operatório , Sensibilidade e Especificidade , Software , Tomografia Computadorizada por Raios X , Proteínas Supressoras de Tumor/genética
16.
Proc Natl Acad Sci U S A ; 114(12): 3121-3126, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270600

RESUMO

The mammary gland consists of an adipose tissue that, in a process called branching morphogenesis, is invaded by a ductal epithelial network comprising basal and luminal epithelial cells. Stem and progenitor cells drive mammary growth, and their proliferation is regulated by multiple extracellular cues. One of the key regulatory pathways for these cells is the ß-catenin-dependent, canonical wingless-type MMTV integration site family (WNT) signaling pathway; however, the role of noncanonical WNT signaling within the mammary stem/progenitor system remains elusive. Here, we focused on the noncanonical WNT receptors receptor tyrosine kinase-like orphan receptor 2 (ROR2) and receptor-like tyrosine kinase (RYK) and their activation by WNT5A, one of the hallmark noncanonical WNT ligands, during mammary epithelial growth and branching morphogenesis. We found that WNT5A inhibits mammary branching morphogenesis in vitro and in vivo through the receptor tyrosine kinase ROR2. Unexpectedly, WNT5A was able to enhance mammary epithelial growth, which is in contrast to its next closest relative WNT5B, which potently inhibits mammary stem/progenitor proliferation. We found that RYK, but not ROR2, is necessary for WNT5A-mediated promotion of mammary growth. These findings provide important insight into the biology of noncanonical WNT signaling in adult stem/progenitor cell regulation and development. Future research will determine how these interactions go awry in diseases such as breast cancer.


Assuntos
Epitélio/metabolismo , Glândulas Mamárias Animais/metabolismo , Morfogênese , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Morfogênese/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Wnt/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
17.
Cancer Sci ; 110(4): 1306-1316, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742741

RESUMO

Collective invasion is an important strategy of cancers of epithelial origin, including colorectal cancer (CRC), to infiltrate efficiently into local tissues as collective cell groups. Within the groups, cells at the invasive front, called leader cells, are highly polarized and motile, thereby providing the migratory traction that guides the follower cells. However, its underlying mechanisms remain unclear. We have previously shown that signaling emanating from the receptor tyrosine kinase Ror2 can promote invasion of human osteosarcoma cells and that intraflagellar transport 20 (IFT20) mediates its signaling to regulate Golgi structure and transport. Herein, we investigated the role of Ror2 and IFT20 in collective invasion of CRC cells, where Ror2 expression is either silenced or nonsilenced. We show by cell biological analyses that IFT20 promotes collective invasion of CRC cells, irrespective of expression and function of Ror2. Intraflagellar transport 20 is required for organization of Golgi-associated, stabilized microtubules, oriented toward the direction of invasion in leader cells. Our results also indicate that IFT20 promotes reorientation of the Golgi apparatus toward the front side of leader cells. Live cell imaging of the microtubule plus-end binding protein EB1 revealed that IFT20 is required for continuous polarized microtubule growth in leader cells. These results indicate that IFT20 plays an important role in collective invasion of CRC cells by regulating organization of Golgi-associated, stabilized microtubules and Golgi polarity in leader cells.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , RNA Interferente Pequeno/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
18.
Cancer Sci ; 110(10): 3340-3349, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342590

RESUMO

Aberrant activation of the MET/hepatocyte growth factor (HGF) receptor participates in the malignant behavior of cancer cells, such as invasion-metastasis and resistance to molecular targeted drugs. Many mutations in the MET extracellular region have been reported, but their significance is largely unknown. Here, we report the dysregulation of mutant MET originally found in a lung cancer patient with Val370 to Asp370 (V370D) replacement located in the extracellular SEMA domain. MET-knockout cells were prepared and reconstituted with WT-MET or V370D-MET. HGF stimulation induced MET dimerization and biological responses in cells reconstituted with WT-MET, but HGF did not induce MET dimerization and failed to induce biological responses in V370D-MET cells. The V370D mutation abrogated HGF-dependent drug resistance of lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI). Compared with WT-MET cells, V370D-MET cells showed different activation patterns in receptor tyrosine kinases upon exposure to survival/growth-stressed conditions. Surface plasmon resonance analysis indicated that affinity between the extracellular region of V370D-MET and HGF was reduced compared with that for WT-MET. Further analysis of the association between V370D-MET and the separate domains of HGF indicated that the SP domain of HGF was unchanged, but its association with the NK4 domain of HGF was mostly lost in V370D-MET. These results indicate that the V370D mutation in the MET receptor impairs the functional association with HGF and is therefore a loss-of-function mutation. This mutation may change the dependence of cancer cell growth/survival on signaling molecules, which may promote cancer cell characteristics under certain conditions.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/genética , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Resistencia a Medicamentos Antineoplásicos , Técnicas de Inativação de Genes , Humanos , Mutação com Perda de Função , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Proteínas Proto-Oncogênicas c-met/metabolismo , Ativação Transcricional
19.
Genes Cells ; 23(7): 606-613, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845703

RESUMO

Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis and closely related to exposure to asbestos. MPM is a heterogeneous tumor with three main histological subtypes, epithelioid, sarcomatoid, and biphasic types, among which sarcomatoid type shows the poorest prognosis. The Ror-family of receptor tyrosine kinases, Ror1 and Ror2, is expressed in various types of tumor cells at higher levels and affects their aggressiveness. However, it is currently unknown whether they are expressed in and involved in aggressiveness of MPM. Here, we show that Ror1 and Ror2 are expressed in clinical specimens and cell lines of MPM with different histological features. Studies using MPM cell lines indicate that expression of Ror2 is associated tightly with high invasiveness of MPM cells, whereas Ror1 can contribute to their invasion in the absence of Ror2. However, both Ror1 and Ror2 promote proliferation of MPM cells. We also show that promoted invasion and proliferation of MPM cells by Ror signaling can be mediated by the Rho-family of small GTPases, Rac1, and Cdc42. These findings elucidate the critical role of Ror signaling in promoting invasion and proliferation of MPM cells.


Assuntos
Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mesotelioma Maligno , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/fisiologia , Transdução de Sinais
20.
Neurosurg Rev ; 42(4): 867-876, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30673883

RESUMO

The promoter methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene has been described as the most important predictor of chemotherapeutic response and patients' survival in glioblastomas (GBs). Therefore, prediction of the MGMT promoter methylation status by imaging would help to preoperatively decide the overall treatment strategy as well as surgical strategy. This study aimed to detect imaging parameters to predict MGMT promoter methylation in GBs by using a commercially available software. We investigated three imaging features (ring enhancement, tumor location, and laterality) and apparent diffusion coefficient (ADC) parameters in 48 newly diagnosed GBs treated at Keio University Hospital in 2006 or later. For ADC, texture analyses were performed. Regions of interest (ROIs) were drawn manually with reference to contrast-enhanced areas, excluding necrotic and cystic regions. Mean ADC value and ADC histogram parameters, including kurtosis, skewness, and entropy, were compared with MGMT promoter methylation. Each parameter was evaluated to determine correlation with MGMT promoter methylation, and the parameters with significant associations with the methylation status were correlated with the MGMT-positive cell ratio determined by immunohistochemistry (IHC) analysis. The mean ADC value and ADC entropy were significantly associated with MGMT promoter methylation. The combination of mean ADC value and ADC entropy predicted MGMT promoter methylation, with a PPV of 81.2% and specificity of 88.9%. The mean ADC value and ADC entropy were negatively correlated with the MGMT-positive cell ratio in the IHC analysis. This study demonstrated that texture analyses of ADC histograms in GBs were predictive of MGMT promoter methylation.


Assuntos
Neoplasias Encefálicas/metabolismo , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Glioblastoma/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Imagem de Difusão por Ressonância Magnética , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Estudos Retrospectivos , Sensibilidade e Especificidade , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa