Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(7): 3932-3977, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535831

RESUMO

Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Humanos , Proteínas/química , Comunicação Celular , Fenômenos Biofísicos
2.
Proteins ; 92(7): 797-807, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38314653

RESUMO

Antibody light chain amyloidosis is a disorder in which protein aggregates, mainly composed of immunoglobulin light chains, deposit in diverse tissues impairing the correct functioning of organs. Interestingly, due to the high susceptibility of antibodies to mutations, AL amyloidosis appears to be strongly patient-specific. Indeed, every patient will display their own mutations that will make the proteins involved prone to aggregation thus hindering the study of this disease on a wide scale. In this framework, determining the molecular mechanisms that drive the aggregation could pave the way to the development of patient-specific therapeutics. Here, we focus on a particular patient-derived light chain, which has been experimentally characterized. We investigated the early phases of the aggregation pathway through extensive full-atom molecular dynamics simulations, highlighting a structural rearrangement and the exposure of two hydrophobic regions in the aggregation-prone species. Next, we moved to consider the pathological dimerization process through docking and molecular dynamics simulations, proposing a dimeric structure as a candidate pathological first assembly. Overall, our results shed light on the first phases of the aggregation pathway for a light chain at an atomic level detail, offering new structural insights into the corresponding aggregation process.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Multimerização Proteica , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Cadeias Leves de Imunoglobulina/genética , Interações Hidrofóbicas e Hidrofílicas , Agregação Patológica de Proteínas/metabolismo , Agregados Proteicos , Mutação , Simulação de Acoplamento Molecular , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas
3.
Proteins ; 91(8): 1116-1129, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37078559

RESUMO

The prolonged circulation of the SARS-CoV-2 virus resulted in the emergence of several viral variants, with different spreading features. Moreover, the increased number of recovered and/or vaccinated people introduced a selective pressure toward variants able to evade the immune system, developed against the former viral versions. This process results in reinfections. Aiming to study the latter process, we first collected a large structural dataset of antibodies in complex with the original version of SARS-CoV-2 Spike protein. We characterized the peculiarities of such antibodies population with respect to a control dataset of antibody-protein complexes, highlighting some statistically significant differences between these two sets of antibodies. Thus, moving our attention to the Spike side of the complexes, we identify the Spike region most prone to interaction with antibodies, describing in detail also the energetic mechanisms used by antibodies to recognize different epitopes. In this framework, fast protocols able to assess the effect of novel mutations on the cohort of developed antibodies would help establish the impact of the variants on the population. Performing a molecular dynamics simulation of the trimeric form of the SARS-CoV-2 Spike protein for the wild type and two variants of concern, that is, the Delta and Omicron variants, we described the physicochemical features and the conformational changes experienced locally by the variants with respect to the original version. Hence, combining the dynamical information with the structural study on the antibody-spike dataset, we quantitatively explain why the Omicron variant has a higher capability of escaping the immune system than the Delta variant, due to the higher conformational variability of the most immunogenic regions. Overall, our results shed light on the molecular mechanism behind the different responses the SARS-CoV-2 variants display against the immune response induced by either vaccines or previous infections. Moreover, our analysis proposes an approach that can be easily extended to both other SARS-CoV-2 variants or different molecular systems.


Assuntos
Anticorpos Antivirais , COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes
4.
Bioinformatics ; 38(7): 2060-2061, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35020787

RESUMO

MOTIVATION: Thermal properties of proteins are of great importance for a number of theoretical and practical implications. Predicting the thermal stability of a protein is a difficult and still scarcely addressed task. RESULTS: Here, we introduce Thermometer, a webserver to assess the thermal stability of a protein using structural information. Thermometer is implemented as a publicly available, user-friendly interface. AVAILABILITY AND IMPLEMENTATION: Our server can be found at the following link (all major browser supported): http://service.tartaglialab.com/new_submission/thermometer_file. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Termômetros , Estabilidade Proteica , Proteínas , Computadores
5.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628247

RESUMO

The present investigation focuses on the analysis of the interactions among human lactoferrin (LF), SARS-CoV-2 receptor-binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) receptor in order to assess possible mutual interactions that could provide a molecular basis of the reported preventative effect of lactoferrin against CoV-2 infection. In particular, kinetic and thermodynamic parameters for the pairwise interactions among the three proteins were measured via two independent techniques, biolayer interferometry and latex nanoparticle-enhanced turbidimetry. The results obtained clearly indicate that LF is able to bind the ACE2 receptor ectodomain with significantly high affinity, whereas no binding to the RBD was observed up to the maximum "physiological" lactoferrin concentration range. Lactoferrin, above 1 µM concentration, thus appears to directly interfere with RBD-ACE2 binding, bringing about a measurable, up to 300-fold increase of the KD value relative to RBD-ACE2 complex formation.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Lactoferrina , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Humanos , Lactoferrina/metabolismo , Peptidil Dipeptidase A/metabolismo , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Entropy (Basel) ; 23(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573763

RESUMO

We present ToloMEo (TOpoLogical netwOrk Maximum Entropy Optimization), a program implemented in C and Python that exploits a maximum entropy algorithm to evaluate network topological information. ToloMEo can study any system defined on a connected network where nodes can assume N discrete values by approximating the system probability distribution with a Pottz Hamiltonian on a graph. The software computes entropy through a thermodynamic integration from the mean-field solution to the final distribution. The nature of the algorithm guarantees that the evaluated entropy is variational (i.e., it always provides an upper bound to the exact entropy). The program also performs machine learning, inferring the system's behavior providing the probability of unknown states of the network. These features make our method very general and applicable to a broad class of problems. Here, we focus on three different cases of study: (i) an agent-based model of a minimal ecosystem defined on a square lattice, where we show how topological entropy captures a crossover between hunting behaviors; (ii) an example of image processing, where starting from discretized pictures of cell populations we extract information about the ordering and interactions between cell types and reconstruct the most likely positions of cells when data are missing; and (iii) an application to recurrent neural networks, in which we measure the information stored in different realizations of the Hopfield model, extending our method to describe dynamical out-of-equilibrium processes.

7.
Bioinformatics ; 35(15): 2569-2577, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535291

RESUMO

MOTIVATION: Understanding the molecular mechanisms of thermal stability is a challenge in protein biology. Indeed, knowing the temperature at which proteins are stable has important theoretical implications, which are intimately linked with properties of the native fold, and a wide range of potential applications from drug design to the optimization of enzyme activity. RESULTS: Here, we present a novel graph-theoretical framework to assess thermal stability based on the structure without any a priori information. In this approach we describe proteins as energy-weighted graphs and compare them using ensembles of interaction networks. Investigating the position of specific interactions within the 3D native structure, we developed a parameter-free network descriptor that permits to distinguish thermostable and mesostable proteins with an accuracy of 76% and area under the receiver operating characteristic curve of 78%. AVAILABILITY AND IMPLEMENTATION: Code is available upon request to edoardo.milanetti@uniroma1.it. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas/metabolismo , Algoritmos , Biologia Computacional , Estabilidade Proteica
8.
PLoS Comput Biol ; 15(11): e1007474, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31675359

RESUMO

microRNAs (miRNAs) regulate gene expression at post-transcriptional level by repressing target RNA molecules. Competition to bind miRNAs tends in turn to correlate their targets, establishing effective RNA-RNA interactions that can influence expression levels, buffer fluctuations and promote signal propagation. Such a potential has been characterized mathematically for small motifs both at steady state and away from stationarity. Experimental evidence, on the other hand, suggests that competing endogenous RNA (ceRNA) crosstalk is rather weak. Extended miRNA-RNA networks could however favour the integration of many crosstalk interactions, leading to significant large-scale effects in spite of the weakness of individual links. To clarify the extent to which crosstalk is sustained by the miRNA interactome, we have studied its emergent systemic features in silico in large-scale miRNA-RNA network reconstructions. We show that, although generically weak, system-level crosstalk patterns (i) are enhanced by transcriptional heterogeneities, (ii) can achieve high-intensity even for RNAs that are not co-regulated, (iii) are robust to variability in transcription rates, and (iv) are significantly non-local, i.e. correlate weakly with miRNA-RNA interaction parameters. Furthermore, RNA levels are generically more stable when crosstalk is strongest. As some of these features appear to be encoded in the network's topology, crosstalk may functionally be favoured by natural selection. These results suggest that, besides their repressive role, miRNAs mediate a weak but resilient and context-independent network of cross-regulatory interactions that interconnect the transcriptome, stabilize expression levels and support system-level responses.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Modelos Teóricos , RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma/genética
9.
J Chem Inf Model ; 60(3): 1884-1891, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32011881

RESUMO

The outcome of an epidemic is closely related to the network of interactions between individuals. Likewise, protein functions depend on the 3D arrangement of their residues and the underlying energetic interaction network. Borrowing ideas from the theoretical framework that has been developed to address the spreading of real diseases, we study for the first time the diffusion of a fictitious epidemic inside the protein nonbonded interaction network, aiming to study network features and properties. Our approach allows us to probe the overall stability and the capability of propagating information in complex 3D structures, proving to be very efficient in addressing different problems, from the assessment of thermal stability to the identification of functional sites.


Assuntos
Epidemias , Humanos , Modelos Teóricos
10.
J Phys Chem Lett ; 15(13): 3478-3485, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38513124

RESUMO

We propose a novel approach for detecting the binding between proteins making use of the anomalous diffraction of natively present heavy elements, e.g., sulfurs, inside molecular three-dimensional structures. In particular, we analytically and numerically show that the diffraction patterns produced by the anomalous scattering of the sulfur atoms in a given direction depend additively on the relative distances between all couples of sulfur atoms. Thus, the differences in the patterns produced by bound proteins with respect to their nonbonded states can be exploited to rapidly assess protein complex formation. On the basis of our results, we suggest a possible experimental procedure for detecting protein-protein binding. Overall, the completely label-free and rapid method we propose may be readily extended to probe interactions on a large scale, thus paving the way for the development of a novel field of research based on a synchrotron light source.


Assuntos
Proteínas , Síncrotrons , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Enxofre/química
11.
J Phys Chem B ; 128(2): 451-464, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38190651

RESUMO

It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other ß-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Ligação Proteica , Sítios de Ligação
12.
Comput Struct Biotechnol J ; 21: 3002-3009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249971

RESUMO

Organisms have developed effective mechanisms to sense the external environment. Human-designed biosensors exploit this natural optimization, where different biological machinery have been adapted to detect the presence of user-defined molecules. Specifically, the pheromone pathway in the model organism Saccharomyces cerevisiae represents a suitable candidate as a synthetic signaling system. Indeed, it expresses just one G-Protein Coupled Receptor (GPCR), Ste2, able to recognize pheromone and initiate the expression of pheromone-dependent genes. To date, the standard procedure to engineer this system relies on the substitution of the yeast GPCR with another one and on the modification of the yeast G-protein to bind the inserted receptor. Here, we propose an innovative computational procedure, based on geometrical and chemical optimization of protein binding pockets, to select the amino acid substitutions required to make the native yeast GPCR able to recognize a user-defined ligand. This procedure would allow the yeast to recognize a wide range of ligands, without a-priori knowledge about a GPCR recognizing them or the corresponding G protein. We used Monte Carlo simulations to design on Ste2 a binding pocket able to recognize epinephrine, selected as a test ligand. We validated Ste2 mutants via molecular docking and molecular dynamics. We verified that the amino acid substitutions we identified make Ste2 able to accommodate and remain firmly bound to epinephrine. Our results indicate that we sampled efficiently the huge space of possible mutants, proposing such a strategy as a promising starting point for the development of a new kind of S.cerevisiae-based biosensors.

13.
Chem Biol Interact ; 374: 110380, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822303

RESUMO

The SARS-CoV-2 pandemic still poses a threat to the global health as the virus continues spreading in most countries. Therefore, the identification of molecules capable of inhibiting the binding between the ACE2 receptor and the SARS-CoV-2 spike protein is of paramount importance. Recently, two DNA aptamers were designed with the aim to inhibit the interaction between the ACE2 receptor and the spike protein of SARS-CoV-2. Indeed, the two molecules interact with the ACE2 receptor in the region around the K353 residue, preventing its binding of the spike protein. If on the one hand this inhibition process hinders the entry of the virus into the host cell, it could lead to a series of side effects, both in physiological and pathological conditions, preventing the correct functioning of the ACE2 receptor. Here, we discuss through a computational study the possible effect of these two very promising DNA aptamers, investigating all possible interactions between ACE2 and its experimentally known molecular partners. Our in silico predictions show that some of the 10 known molecular partners of ACE2 could interact, physiologically or pathologically, in a region adjacent to the K353 residue. Thus, the curative action of the proposed DNA aptamers could recruit ACE2 from its biological functions.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/metabolismo , Ligação Proteica , Peptidil Dipeptidase A/química
14.
Sci Rep ; 13(1): 10207, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353566

RESUMO

Understanding the mechanisms driving bio-molecules binding and determining the resulting complexes' stability is fundamental for the prediction of binding regions, which is the starting point for drug-ability and design. Characteristics like the preferentially hydrophobic composition of the binding interfaces, the role of van der Waals interactions, and the consequent shape complementarity between the interacting molecular surfaces are well established. However, no consensus has yet been reached on the role of electrostatic. Here, we perform extensive analyses on a large dataset of protein complexes for which both experimental binding affinity and pH data were available. Probing the amino acid composition, the disposition of the charges, and the electrostatic potential they generated on the protein molecular surfaces, we found that (i) although different classes of dimers do not present marked differences in the amino acid composition and charges disposition in the binding region, (ii) homodimers with identical binding region show higher electrostatic compatibility with respect to both homodimers with non-identical binding region and heterodimers. Interestingly, (iii) shape and electrostatic complementarity, for patches defined on short-range interactions, behave oppositely when one stratifies the complexes by their binding affinity: complexes with higher binding affinity present high values of shape complementarity (the role of the Lennard-Jones potential predominates) while electrostatic tends to be randomly distributed. Conversely, complexes with low values of binding affinity exploit Coulombic complementarity to acquire specificity, suggesting that electrostatic complementarity may play a greater role in transient (or less stable) complexes. In light of these results, (iv) we provide a novel, fast, and efficient method, based on the 2D Zernike polynomial formalism, to measure electrostatic complementarity without the need of knowing the complex structure. Expanding the electrostatic potential on a basis of 2D orthogonal polynomials, we can discriminate between transient and permanent protein complexes with an AUC of the ROC of [Formula: see text] 0.8. Ultimately, our work helps shedding light on the non-trivial relationship between the hydrophobic and electrostatic contributions in the binding interfaces, thus favoring the development of new predictive methods for binding affinity characterization.


Assuntos
Aminoácidos , Proteínas , Proteínas/metabolismo , Ligação Proteica , Eletricidade Estática , Modelos Moleculares , Aminoácidos/metabolismo
15.
Front Cell Dev Biol ; 11: 1134091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635866

RESUMO

Neural rosettes develop from the self-organization of differentiating human pluripotent stem cells. This process mimics the emergence of the embryonic central nervous system primordium, i.e., the neural tube, whose formation is under close investigation as errors during such process result in severe diseases like spina bifida and anencephaly. While neural tube formation is recognized as an example of self-organization, we still do not understand the fundamental mechanisms guiding the process. Here, we discuss the different theoretical frameworks that have been proposed to explain self-organization in morphogenesis. We show that an explanation based exclusively on stem cell differentiation cannot describe the emergence of spatial organization, and an explanation based on patterning models cannot explain how different groups of cells can collectively migrate and produce the mechanical transformations required to generate the neural tube. We conclude that neural rosette development is a relevant experimental 2D in-vitro model of morphogenesis because it is a multi-scale self-organization process that involves both cell differentiation and tissue development. Ultimately, to understand rosette formation, we first need to fully understand the complex interplay between growth, migration, cytoarchitecture organization, and cell type evolution.

16.
PNAS Nexus ; 2(3): pgad044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909827

RESUMO

Dopamine neurotransmission in the striatum is central to many normal and disease functions. Ventral midbrain dopamine neurons exhibit ongoing tonic firing that produces low extrasynaptic levels of dopamine below the detection of conventional extrasynaptic cyclic voltammetry (∼10-20 nanomolar), with superimposed bursts that can saturate the dopamine uptake transporter and produce transient micromolar concentrations. The bursts are known to lead to marked presynaptic plasticity via multiple mechanisms, but analysis methods for these kinetic parameters are limited. To provide a deeper understanding of the mechanics of the modulation of dopamine neurotransmission by physiological, genetic, and pharmacological means, we present three computational models of dopamine release with different levels of spatiotemporal complexity to analyze in vivo fast-scan cyclic voltammetry recordings from the dorsal striatum of mice. The models accurately fit to cyclic voltammetry data and provide estimates of presynaptic dopamine facilitation/depression kinetics and dopamine transporter reuptake kinetics, and we used the models to analyze the role of synuclein proteins in neurotransmission. The models' results support recent findings linking the presynaptic protein α-synuclein to the short-term facilitation and long-term depression of dopamine release, as well as reveal a new role for ß-synuclein and/or γ-synuclein in the long-term regulation of dopamine reuptake.

17.
Front Mol Biosci ; 10: 1205919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441163

RESUMO

The continuous emergence of novel variants represents one of the major problems in dealing with the SARS-CoV-2 virus. Indeed, also due to its prolonged circulation, more than ten variants of concern emerged, each time rapidly overgrowing the current viral version due to improved spreading features. As, up to now, all variants carry at least one mutation on the spike Receptor Binding Domain, the stability of the binding between the SARS-CoV-2 spike protein and the human ACE2 receptor seems one of the molecular determinants behind the viral spreading potential. In this framework, a better understanding of the interplay between spike mutations and complex stability can help to assess the impact of novel variants. Here, we characterize the peculiarities of the most representative variants of concern in terms of the molecular interactions taking place between the residues of the spike RBD and those of the ACE2 receptor. To do so, we performed molecular dynamics simulations of the RBD-ACE2 complexes of the seven variants of concern in comparison with a large set of complexes with different single mutations taking place on the RBD solvent-exposed residues and for which the experimental binding affinity was available. Analyzing the strength and spatial organization of the intermolecular interactions of the binding region residues, we found that (i) mutations producing an increase of the complex stability mainly rely on instaurating more favorable van der Waals optimization at the cost of Coulombic ones. In particular, (ii) an anti-correlation is observed between the shape and electrostatic complementarities of the binding regions. Finally, (iii) we showed that combining a set of dynamical descriptors is possible to estimate the outcome of point mutations on the complex binding region with a performance of 0.7. Overall, our results introduce a set of dynamical observables that can be rapidly evaluated to probe the effects of novel isolated variants or different molecular systems.

18.
Front Mol Biosci ; 10: 1332359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250735

RESUMO

The development of methods able to modulate the binding affinity between proteins and peptides is of paramount biotechnological interest in view of a vast range of applications that imply designed polypeptides capable to impair or favour Protein-Protein Interactions. Here, we applied a peptide design algorithm based on shape complementarity optimization and electrostatic compatibility and provided the first experimental in vitro proof of the efficacy of the design algorithm. Focusing on the interaction between the SARS-CoV-2 Spike Receptor-Binding Domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) receptor, we extracted a 23-residues long peptide that structurally mimics the major interacting portion of the ACE2 receptor and designed in silico five mutants of such a peptide with a modulated affinity. Remarkably, experimental KD measurements, conducted using biolayer interferometry, matched the in silico predictions. Moreover, we investigated the molecular determinants that govern the variation in binding affinity through molecular dynamics simulation, by identifying the mechanisms driving the different values of binding affinity at a single residue level. Finally, the peptide sequence with the highest affinity, in comparison with the wild type peptide, was expressed as a fusion protein with human H ferritin (HFt) 24-mer. Solution measurements performed on the latter constructs confirmed that peptides still exhibited the expected trend, thereby enhancing their efficacy in RBD binding. Altogether, these results indicate the high potentiality of this general method in developing potent high-affinity vectors for hindering/enhancing protein-protein associations.

19.
Comput Struct Biotechnol J ; 21: 5296-5308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954145

RESUMO

Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.

20.
Sci Rep ; 12(1): 12087, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840609

RESUMO

What are the molecular determinants of protein-protein binding affinity and whether they are similar to those regulating fold stability are two major questions of molecular biology, whose answers bring important implications both from a theoretical and applicative point of view. Here, we analyze chemical and physical features on a large dataset of protein-protein complexes with reliable experimental binding affinity data and compare them with a set of monomeric proteins for which melting temperature data was available. In particular, we probed the spatial organization of protein (1) intramolecular and intermolecular interaction energies among residues, (2) amino acidic composition, and (3) their hydropathy features. Analyzing the interaction energies, we found that strong Coulombic interactions are preferentially associated with a high protein thermal stability, while strong intermolecular van der Waals energies correlate with stronger protein-protein binding affinity. Statistical analysis of amino acids abundances, exposed to the molecular surface and/or in interaction with the molecular partner, confirmed that hydrophobic residues present on the protein surfaces are preferentially located in the binding regions, while charged residues behave oppositely. Leveraging on the important role of van der Waals interface interactions in binding affinity, we focused on the molecular surfaces in the binding regions and evaluated their shape complementarity, decomposing the molecular patches in the 2D Zernike basis. For the first time, we quantified the correlation between local shape complementarity and binding affinity via the Zernike formalism. In addition, considering the solvent interactions via the residue hydropathy, we found that the hydrophobicity of the binding regions dictates their shape complementary as much as the correlation between van der Waals energy and binding affinity. In turn, these relationships pave the way to the fast and accurate prediction and design of optimal binding regions as the 2D Zernike formalism allows a rapid and superposition-free comparison between possible binding surfaces.


Assuntos
Aminoácidos , Proteínas de Membrana , Aminoácidos/química , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Estabilidade Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa