Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 603(7901): 439-444, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296845

RESUMO

The introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence1-3. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents4,5. Here we describe the discovery and construction of an enzymatic cascade to MK-1454, a highly potent stimulator of interferon genes (STING) activator under study as an immuno-oncology therapeutic6,7 (ClinicalTrials.gov study NCT04220866 ). From two non-natural nucleotide monothiophosphates, MK-1454 is assembled diastereoselectively in a one-pot cascade, in which two thiotriphosphate nucleotides are simultaneously generated biocatalytically, followed by coupling and cyclization catalysed by an engineered animal cyclic guanosine-adenosine synthase (cGAS). For the thiotriphosphate synthesis, three kinase enzymes were engineered to develop a non-natural cofactor recycling system in which one thiotriphosphate serves as a cofactor in its own synthesis. This study demonstrates the substantial capacity that currently exists to use biosynthetic approaches to discover and manufacture complex, non-natural molecules.


Assuntos
Guanosina , Nucleotidiltransferases , Adenosina , Animais , Interferons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais
2.
Anal Chem ; 96(3): 1138-1146, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165811

RESUMO

Fast-paced pharmaceutical process developments (e.g., high-throughput experimentation, directed evolution, and machine learning) involve the introduction of fast, sensitive, and accurate analytical assays using limited sample volumes. In recent years, acoustic droplet ejection (ADE) coupled with an open port interface has been invented as a sampling technology for mass spectrometry, providing high-throughput nanoliter analytical measurements directly from the standard microplates. Herein, we introduce an ADE-multiple reaction monitoring-mass spectrometry (ADE-MRM-MS) workflow to accelerate pharmaceutical process research and development (PR&D). This systematic workflow outlines the selection of MRM transitions and optimization of assay parameters in a data-driven manner using rapid measurements (1 sample/s). The synergy between ADE sampling and MRM analysis enables analytical assays with excellent sensitivity, selectivity, and speed for PR&D reaction screenings. This workflow was utilized to develop new ADE-MRM-MS assays guiding a variety of industrial processes, including (1) screening of Ni-based catalysts for C-N cross-coupling reaction at 1 Hz and (2) high-throughput regioisomer analysis-enabled enzyme library screening for peptide ligation reaction. ADE-MRM-MS assays were demonstrated to deliver accurate results that are comparable to conventional liquid chromatography (LC) experiments while providing >100-fold throughput enhancement.


Assuntos
Desenvolvimento de Medicamentos , Acústica , Espectrometria de Massas/métodos , Peptídeos , Fluxo de Trabalho
3.
Anal Chem ; 95(10): 4662-4670, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36862378

RESUMO

Droplet microfluidics enables high-throughput experimentation and screening by encapsulating chemical and biochemical samples in aqueous droplets segmented by an immiscible fluid. In such experiments, it is critical that each droplet remains chemically distinct. A common approach is to use fluorinated oils with surfactants to stabilize droplets. However, some small molecules have been observed to transport between droplets under these conditions. Attempts to study and mitigate this effect have relied on evaluating crosstalk using fluorescent molecules, which inherently limits the analyte scope and conclusions drawn about the mechanism of the effect. In this work, transport of low molecular weight compounds between droplets was investigated using electrospray ionization mass spectrometry (ESI-MS) for measurement. The use of ESI-MS significantly expands the scope of analytes that can be tested. We tested 36 structurally diverse analytes that were found to exhibit crosstalk ranging from negligible to complete transfer using HFE 7500 as the carrier fluid and 008-fluorosurfactant as a surfactant. Using this data set, we developed a predictive tool showing that high log P and log D values correlate with high crosstalk, and high polar surface area and log S correlate with low crosstalk. We then investigated several carrier fluids, surfactants, and flow conditions. It was discovered that transport is strongly dependent on all of these factors and that experimental design and surfactant tailoring can reduce carryover. We present evidence for mixed crosstalk mechanisms including both micellar and oil partitioning transfer. By understanding the driving mechanisms, surfactant and oil compositions can be designed to better reduce chemical transport for screening workflows.

4.
J Am Chem Soc ; 144(13): 5855-5863, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333525

RESUMO

As practitioners of organic chemistry strive to deliver efficient syntheses of the most complex natural products and drug candidates, further innovations in synthetic strategies are required to facilitate their efficient construction. These aspirational breakthroughs often go hand-in-hand with considerable reductions in cost and environmental impact. Enzyme-catalyzed reactions have become an impressive and necessary tool that offers benefits such as increased selectivity and waste limitation. These benefits are amplified when enzymatic processes are conducted in a cascade in combination with novel bond-forming strategies. In this article, we report a highly diastereoselective synthesis of MK-1454, a potent agonist of the stimulator of interferon gene (STING) signaling pathway. The synthesis begins with the asymmetric construction of two fluoride-bearing deoxynucleotides. The routes were designed for maximum convergency and selectivity, relying on the same benign electrophilic fluorinating reagent. From these complex subunits, four enzymes are used to construct the two bridging thiophosphates in a highly selective, high yielding cascade process. Critical to the success of this reaction was a thorough understanding of the role transition metals play in bond formation.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Catálise
5.
J Org Chem ; 87(4): 2120-2128, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34582192

RESUMO

Two scalable and efficient synthetic routes for the synthesis of a T-type calcium channel antagonist MK-8998 were developed from a simple pyridine building block. The key step to set the stereochemistry relied on either chiral rhodium catalyst-mediated asymmetric hydrogenation of an enamide or transamination of an arylketone that provided the corresponding product in high enantioselectivity and high yield.


Assuntos
Bloqueadores dos Canais de Cálcio , Ródio , Aminação , Bloqueadores dos Canais de Cálcio/farmacologia , Catálise , Hidrogenação , Estereoisomerismo
6.
Angew Chem Int Ed Engl ; 60(1): 88-119, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32558088

RESUMO

Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.


Assuntos
Biocatálise , Biotecnologia/métodos , Enzimas/metabolismo
7.
Angew Chem Int Ed Engl ; 59(11): 4470-4477, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31868984

RESUMO

Microfluidic droplet sorting enables the high-throughput screening and selection of water-in-oil microreactors at speeds and volumes unparalleled by traditional well-plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for high-throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESI-MS). Droplets are split, one portion is analyzed by ESI-MS, and the second portion is sorted based on the MS result. Throughput of 0.7 samples s-1 is achieved with 98 % accuracy using a self-correcting and adaptive sorting algorithm. We use the system to screen ≈15 000 samples in 6 h and demonstrate its utility by sorting 25 nL droplets containing transaminase expressed in vitro. Label-free ESI-MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.


Assuntos
Aminas/análise , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Microfluídica/métodos , Piridinas/análise , Transaminases/metabolismo , Algoritmos , Ativação Enzimática , Estudos de Viabilidade , Imidazóis/química , Técnicas Analíticas Microfluídicas , Piridinas/química , Espectrometria de Massas por Ionização por Electrospray
8.
J Food Prot ; 87(3): 100227, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246523

RESUMO

Food fraud prevention and detection remains a challenging problem, despite recent developments in regulatory and auditing requirements. In 2012, the United States Pharmacopeial Convention created a database of food ingredient fraud. The objective of this research was to report on updates made to the database structure and to provide an updated analysis of food fraud records. The restructured database was relational and included four tables: ingredients, adulterants, adulteration records, and references. Four adulteration record types were created to capture the variety of information that can be found in public food fraud reports. Information was searched and extracted from the peer-reviewed scientific literature, media publications, regulatory reports, judicial records, trade association reports, and other public sources covering 1980-present. Over an almost seven-year data entry period, a total of 15,575 records were entered, sourced primarily from the peer-reviewed literature and media reports. The percentage of records that included at least one potentially hazardous adulterant ranged from 34% to 60%, depending on the record type. The ingredients with the highest number of incident and inference records included fluid cow's milk, extra virgin olive oil, honey, beef, and chili powder. The ingredient groups with the highest number of incident and inference records included Dairy Ingredients, Seafood Products, Meat and Poultry Products, Herbs, Spices, and Seasonings, Milk and Cream, and Alcoholic Beverages. This database was created to serve as a standardized source of information about publicly documented occurrences of food fraud and other information relevant to fraud risk to support food fraud vulnerability assessments, mitigation plans, and food safety plans. These data support the contention that food fraud presents a public health risk that should continue to be addressed by food safety systems worldwide.


Assuntos
Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Bovinos , Contaminação de Alimentos/análise , Análise de Perigos e Pontos Críticos de Controle , Carne/análise , Fraude
9.
J Agric Food Chem ; 71(12): 4890-4900, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940448

RESUMO

Cinnamon (Cinnamomum verum J. Presl) bark and its extracts are popular ingredients added to food and supplement products. It has various health effects, including potentially reducing the risk of coronavirus disease-2019 (COVID-19). In our study, the bioactives in cinnamon water and ethanol extracts were chemically identified, and their potential in suppressing SARS-CoV-2 spike protein-angiotensin-converting enzyme 2 (ACE2) binding, reducing ACE2 availability, and scavenging free radicals was investigated. Twenty-seven and twenty-three compounds were tentatively identified in cinnamon water and ethanol extracts, respectively. Seven compounds, including saccharumoside C, two emodin-glucuronide isomers, two physcion-glucuronide isomers, and two type-A proanthocyanidin hexamers, were first reported in cinnamon. Cinnamon water and ethanol extracts suppressed the binding of SARS-CoV-2 spike protein to ACE2 and inhibited ACE2 activity in a dose-dependent manner. Cinnamon ethanol extract had total phenolic content of 36.67 mg gallic acid equivalents (GAE)/g and free radical scavenging activities against HO• and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) of 1688.85 and 882.88 µmol Trolox equivalents (TE)/g, which were significantly higher than those of the water extract at 24.12 mg GAE/g and 583.12 and 210.36 µmol TE/g. The free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) of cinnamon ethanol extract was lower than that of the water extract. The present study provides new evidence that cinnamon reduces the risk of SARS-CoV-2 infection and COVID-19 development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Cinnamomum zeylanicum , Enzima de Conversão de Angiotensina 2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucuronídeos , SARS-CoV-2 , Radicais Livres , Ácido Gálico , Etanol/química , Água/química , Ligação Proteica
10.
J Agric Food Chem ; 71(48): 18735-18745, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988686

RESUMO

This study evaluated the chemical composition of rosemary water extract (RWE) and its influence on mechanisms by which the SARS-CoV-2 virus enters into cells as a potential route for reducing the risk of COVID-19 disease. Compounds in RWE were identified using UHPLC-MS/MS. The inhibitory effect of RWE was then evaluated on binding between the SARS-CoV-2 spike protein (S-protein) and ACE2 and separately on ACE2 activity/availability. Additionally, total phenolic content (TPC) and free radical scavenging capacities of RWE against HO•, ABTS•+, and DPPH• were assessed. Twenty-one compounds were tentatively identified in RWE, of which tuberonic acid hexoside was identified for the first time in rosemary. RWE dose of 33.3 mg of rosemary equivalents (RE)/mL suppressed the interaction between S-protein and ACE2 by 72.9%, while rosmarinic and caffeic acids at 3.3 µmol/mL suppressed the interaction by 36 and 55%, respectively. RWE at 5.0, 2.5, and 0.5 mg of RE/mL inhibited ACE2 activity by 99.5, 94.5, and 68.6%, respectively, while rosmarinic acid at 0.05 and 0.01 µmol/mL reduced ACE2 activity by 31 and 8%, respectively. RWE had a TPC value of 72.5 mg GAE/g. The results provide a mechanistic basis on which rosemary may reduce the risk of SARS-CoV-2 infection and the development of COVID-19.


Assuntos
COVID-19 , Rosmarinus , Humanos , Glicoproteína da Espícula de Coronavírus , Rosmarinus/química , Enzima de Conversão de Angiotensina 2 , Espectrometria de Massas em Tandem , SARS-CoV-2 , Fenóis/farmacologia , Radicais Livres , Ligação Proteica
11.
Angew Chem Int Ed Engl ; 51(16): 3969-72, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22396126

RESUMO

A leucine dehydrogenase has been successfully altered through several rounds of protein engineering to an enantioselective amine dehydrogenase. Instead of the wild-type α-keto acid, the new amine dehydrogenase now accepts the analogous ketone, methyl isobutyl ketone (MIBK), which corresponds to exchange of the carboxy group by a methyl group to produce chiral (R)-1,3-dimethylbutylamine.


Assuntos
Aminas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Biocatálise , Domínio Catalítico , Cetoácidos/química , Cetoácidos/metabolismo , Cetonas/química , Cetonas/metabolismo , Engenharia de Proteínas , Estereoisomerismo , Especificidade por Substrato
12.
Foods ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140996

RESUMO

A collaborative study was undertaken in which five international laboratories participated to determine amino acid fingerprints in 39 authentic nonfat dry milk (NFDM)/skim milk powder (SMP) samples. A rapid method of amino acid analysis involving microwave-assisted hydrolysis followed by ultra-high performance liquid chromatography-ultraviolet detection (UHPLC-UV) was used for quantitation of amino acids and to calculate their distribution. The performance of this rapid method of analysis was evaluated and was used to determine the amino acid fingerprint of authentic milk powders. The distribution of different amino acids and their predictable upper and lower tolerance limits in authentic NFDM/SMP samples were established as a reference. Amino acid fingerprints of NFDM/SMP were compared with selected proteins and nitrogen rich compounds (proteins from pea, soy, rice, wheat, whey, and fish gelatin) which can be potential economically motivated adulterants (EMA). The amino acid fingerprints of NFDM/SMP were found to be affected by spiking with pea, soy, rice, whey, fish gelatin and arginine among the investigated adulterants but not by wheat protein and melamine. The study results establish an amino acid fingerprint of authentic NFDM/SMP and demonstrate the utility of this method as a tool in verifying the authenticity of milk powders and detecting their adulteration.

13.
Compr Rev Food Sci Food Saf ; 9(4): 330-357, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33467839

RESUMO

Kjeldahl and combustion (Dumas) methods are widely accepted for total protein determination but lack analytical selectivity for protein because they measure protein on the basis of sample nitrogen content. Adulteration incidents exploiting this analytical vulnerability (for example, melamine) demonstrate that these methods are no longer sufficient to protect the public health. This article explores the challenges and opportunities to move beyond total nitrogen based methods for total protein measurement. First, it explores the early history of protein measurement science, complexities of current global protein measurement activities, and ideal analytical performance characteristics for new methods. Second, it comprehensively reviews the pros and cons of current and emerging approaches for protein measurement, including their selectivity for protein, ability to detect adulteration, and practicality for routine use throughout the supply chain. It concludes that some existing highly selective methods for food protein measurement have potential for routine quality control. It also concludes that their successful implementation will require matrix-specific validation and the use of supporting reference materials. These methods may be suitable only for food ingredients that have a low degree of compositional variability and are not complex finished food products.

14.
J Pharm Biomed Anal ; 182: 113141, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32036298

RESUMO

The higher-order structure of a protein defines its function, and protein structural dynamics are often essential for protein binding and enzyme catalysis. Methods for protein characterization in solution are continuously being developed to understand and explore protein conformational changes with regards to function and activity. The goal of this study was to survey the use of combining HDX-MS global conformational screening with in silico modeling and continuous labeling peptide-level HDX-MS as an approach to highlight regions of interest within an enzyme required for biocatalytic processes. We surveyed in silico modeling correlated with peptide level HDX-MS experiments to characterize and localize transaminase enzyme structural dynamics at different conditions. This approach was orthogonally correlated with a global Size-Exclusion-HDX (SEC-HDX) screen for global conformational comparison and global alpha-helical content measurements by circular dichroism. Enzymatic activity and stereo-selectivity of transaminases were compared at different reaction-solution conditions that forced protein conformational changes by increasing acetonitrile concentration. The experimental peptide-level HDX-MS results demonstrated similar trends to the modeling data showing that certain regions remained folded in transaminases ATA-036 and ATA-303 with increasing acetonitrile concentration, which is also associated with shifting stereoselectivity. HDX modeling, SEC-HDX and CD experimental data showed that transaminase ATA-234 had the highest level of global unfolding with increasing acetonitrile concentration compared to the other two enzymes, which correlated with drastically reduced product conversion in transamination reaction. The combined HDX modeling/experimental workflow, based on enzymatic reactions studied at different conditions to induce changes in enzyme conformation, could be used as a tool to guide directed evolution efforts by identifying and focusing on the regions of an enzyme required for reaction product conversion and stereoselectivity.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Peptídeos/química , Proteínas/química , Solventes/química , Dicroísmo Circular , Simulação por Computador , Enzimas/química , Simulação de Dinâmica Molecular , Conformação Proteica , Desdobramento de Proteína , Estereoisomerismo
15.
Org Biomol Chem ; 7(2): 395-8, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19109687

RESUMO

A rapid, high-throughput screening methodology has been developed for the determination of transaminase activity. This pH based, colorimetric assay can also be used to scale reactions directly from 100 microL screening scale to 25 mL development scale. Additionally, three techniques have been developed to drive transamination reactions toward complete conversion. The first method uses lactate dehydrogenase to remove the inhibitory pyruvate keto acid by-product from the reaction and drive reaction equilibrium toward the desired amine. The second method is a single enzyme system, and uses a large excess of isopropylamine to drive the transamination. Method three requires only a catalytic amount of amine donor, as an amino acid dehydrogenase is employed to regenerate the amine donor in situ using ammonia. All three systems have been demonstrated for the production of optically pure methylbenzylamine from acetophenone. An enantiomeric excess of >99% was achieved for both the R- and S-methylbenzylamine products.


Assuntos
Transaminases/química , Transaminases/metabolismo , Acetofenonas/química , Acetofenonas/metabolismo , Catálise , Cinética , Estereoisomerismo , Transaminases/antagonistas & inibidores
16.
J Agric Food Chem ; 67(31): 8425-8430, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31322874

RESUMO

In recent years, non-targeted methods have been a popular "buzz" phrase in food fraud detection. Using analytical instrumentation techniques, non-targeted methods have been developed and applied in many food and agricultural situations. However, confusion and misstatements remain regarding how the methods are used. This perspective will discuss the definitions related to non-targeted testing, the procedure of developing and validating methods, the techniques and data analysis, and opportunities and challenges regarding the use of this class of analytical methods. The perspective seeks to provide readers with the latest information regarding recent advances in the use of non-targeted methods.


Assuntos
Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Análise de Alimentos/instrumentação , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos
17.
Science ; 366(6470): 1255-1259, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806816

RESUMO

Enzyme-catalyzed reactions have begun to transform pharmaceutical manufacturing, offering levels of selectivity and tunability that can dramatically improve chemical synthesis. Combining enzymatic reactions into multistep biocatalytic cascades brings additional benefits. Cascades avoid the waste generated by purification of intermediates. They also allow reactions to be linked together to overcome an unfavorable equilibrium or avoid the accumulation of unstable or inhibitory intermediates. We report an in vitro biocatalytic cascade synthesis of the investigational HIV treatment islatravir. Five enzymes were engineered through directed evolution to act on non-natural substrates. These were combined with four auxiliary enzymes to construct islatravir from simple building blocks in a three-step biocatalytic cascade. The overall synthesis requires fewer than half the number of steps of the previously reported routes.


Assuntos
Biocatálise , Desoxiadenosinas/química , Inibidores da Transcriptase Reversa/química , Biotecnologia/métodos , Preparações Farmacêuticas/síntese química , Estereoisomerismo
18.
J Agric Food Chem ; 66(32): 8478-8488, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29697263

RESUMO

Proton nuclear magnetic resonance spectra for 66 commercial powdered milk samples were analyzed by principal component analysis, soft independent modeling of class analogy, and pooled, crossed analysis of variance. It was found that the sample type (skim milk powder or non-fat dry milk), the supplier, the production site, the processing temperature (high, medium, or low temperature), and the day of analysis provided statistically significant sources of variation. Interestingly, inexact alignment (deviations of ±0.002 ppm) of the spectral reference peak was a significant source of variation, and fine alignment was necessary before the variation arising from the other experimental factors could be accurately evaluated. Using non-targeted analysis, the lowest detectable adulteration for dicyandiamide, melamine, and sucrose was 0.05%, the lowest detectable adulteration for maltodextrin and urea was 0.5%, the lowest detectable adulteration for ammonium sulfate and whey was 5%, and the lowest adulteration for soy protein isolate was undetectable using methods described herein. The measurement of variance and detection of adulteration were relatively unaffected by the resolution. Similar results were obtained with unbinned data (0.0003 ppm resolution) and binning of 333 data points (0.1 ppm resolution).


Assuntos
Contaminação de Alimentos/análise , Espectroscopia de Ressonância Magnética/métodos , Leite/química , Pós/análise , Animais , Guanidinas/análise , Leite/economia , Pós/química , Proteínas de Soja/análise , Triazinas/análise , Soro do Leite/química
19.
ACS Omega ; 3(2): 1498-1508, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30023807

RESUMO

Directed Evolution is a key technology driving the utility of biocatalysis in pharmaceutical synthesis. Conventional approaches to Directed Evolution are conducted using bacterial cells expressing enzymes in microplates, with catalyzed reactions measured by HPLC, high-performance liquid chromatography-mass spectrometry (HPLC-MS), or optical detectors, which require either long cycle times or tailor-made substrates. To better fit modern, fast-paced process chemistry development where solutions are rapidly needed for new substrates, droplet microfluidics interfaced with electrospray ionization (ESI)-MS provides a label-free high-throughput screening platform. To apply this method to industrial enzyme screening and to explore potential approaches that may further improve the overall throughput, we optimized the existing droplet-MS methods. Carryover between droplets, traditionally a significant issue, was reduced to undetectable level by replacing the stainless steel ESI needle with a Teflon needle within a capillary electrophoresis (CE)-MS source. Throughput was improved to 3 Hz with a wide range of droplet sizes (10-50 nL) by tuning the sheath flow within the CE-MS source. The optimized method was demonstrated by screening reactions using two different transaminase libraries. Good correlations (r2 ∼ 0.95) were found between the droplet-MS and LC-MS methods, with 100% match on hit variants. We further explored the capability of the system by performing in vitro transcription-translation inside the droplets and directly analyzing the intact reaction mixture droplets by MS. The synthesized protein attained comparable activity to the protein standard, and the complex samples appeared well tolerated by the MS. The success of the above applications indicates that the MS analysis of the microfluidic droplets is an available option for considerably accelerating the screening of enzyme evolution libraries.

20.
J Food Prot ; 81(1): 31-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29257723

RESUMO

Food fraud, the intentional misrepresentation of the true identity of a food product or ingredient for economic gain, is a threat to consumer confidence and public health and has received increased attention from both regulators and the food industry. Following updates to food safety certification standards and publication of new U.S. regulatory requirements, we undertook a project to (i) develop a scheme to classify food fraud-related adulterants based on their potential health hazard and (ii) apply this scheme to the adulterants in a database of 2,970 food fraud records. The classification scheme was developed by a panel of experts in food safety and toxicology from the food industry, academia, and the U.S. Food and Drug Administration. Categories and subcategories were created through an iterative process of proposal, review, and validation using a subset of substances known to be associated with the fraudulent adulteration of foods. Once developed, the scheme was applied to the adulterants in the database. The resulting scheme included three broad categories: 1, potentially hazardous adulterants; 2, adulterants that are unlikely to be hazardous; and 3, unclassifiable adulterants. Categories 1 and 2 consisted of seven subcategories intended to further define the range of hazard potential for adulterants. Application of the scheme to the 1,294 adulterants in the database resulted in 45% of adulterants classified in category 1 (potentially hazardous). Twenty-seven percent of the 1,294 adulterants had a history of causing consumer illness or death, were associated with safety-related regulatory action, or were classified as allergens. These results reinforce the importance of including a consideration of food fraud-related adulterants in food safety systems. This classification scheme supports food fraud mitigation efforts and hazard identification as required in the U.S. Food Safety Modernization Act Preventive Controls Rules.


Assuntos
Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Fraude , Análise de Perigos e Pontos Críticos de Controle , Humanos , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa