Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813596

RESUMO

Information regarding the role of low-frequency hotspot cancer-driver mutations (CDMs) in breast carcinogenesis and therapeutic response is limited. Using the sensitive and quantitative Allele-specific Competitor Blocker PCR (ACB-PCR) approach, mutant fractions (MFs) of six CDMs (PIK3CA H1047R and E545K, KRAS G12D and G12V, HRAS G12D, and BRAF V600E) were quantified in invasive ductal carcinomas (IDCs; including ~20 samples per subtype). Measurable levels (i.e., ≥ 1 × 10-5, the lowest ACB-PCR standard employed) of the PIK3CA H1047R, PIK3CA E545K, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E mutations were observed in 34/81 (42%), 29/81 (36%), 51/81 (63%), 9/81 (11%), 70/81 (86%), and 48/81 (59%) of IDCs, respectively. Correlation analysis using available clinicopathological information revealed that PIK3CA H1047R and BRAF V600E MFs correlate positively with maximum tumor dimension. Analysis of IDC subtypes revealed minor mutant subpopulations of critical genes in the MAP kinase pathway (KRAS, HRAS, and BRAF) were prevalent across IDC subtypes. Few triple-negative breast cancers (TNBCs) had appreciable levels of PIK3CA mutation, suggesting that individuals with TNBC may be less responsive to inhibitors of the PI3K/AKT/mTOR pathway. These results suggest that low-frequency hotspot CDMs contribute significantly to the intertumoral and intratumoral genetic heterogeneity of IDCs, which has the potential to impact precision oncology approaches.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Taxa de Mutação , Medicina de Precisão , Alelos , Feminino , Fluoresceína/metabolismo , Humanos , Pessoa de Meia-Idade , Mutação/genética , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas B-raf/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
2.
Mol Carcinog ; 53(2): 159-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22930660

RESUMO

The molecular pathogenesis of papillary thyroid carcinoma (PTC) is largely attributed to chromosomal rearrangements and point mutations in genes within the MAPK pathway (i.e., BRAF and RAS). Despite KRAS being the 6th most frequently mutated gene for all cancers, the reported frequency in thyroid cancer is only 2%. This may be due, in part, to the use of insensitive mutation detection methods such as DNA sequencing. Therefore, using the sensitive and quantitative ACB-PCR approach, we quantified KRAS codon 12 GGT → GAT and GGT → GTT mutant fraction (MF) in 20 normal thyroid tissues, 17 primary PTC, 2 metastatic PTC, and 1 anaplastic thyroid carcinoma. We observed measurable levels of KRAS codon 12 GAT or GTT mutation in all normal thyroid tissues. For PTCs, 29.4% and 35.3% had KRAS codon 12 GAT and GTT MF above the 95% upper confidence interval for the corresponding MFs in normal thyroid. The highest observed KRAS codon 12 GTT MFs were associated with tumors with follicular characteristics and relatively high levels of tumor necrosis. The results indicate KRAS mutant subpopulations are present in a large number of thyroid tumors, a fact previously unrecognized. The presence of KRAS mutation may indicate a tumor with an aggressive phenotype, thus directing the course of clinical treatment.


Assuntos
Carcinoma Papilar/genética , Carcinoma/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Neoplasias da Glândula Tireoide/genética , Proteínas ras/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma/metabolismo , Carcinoma Papilar/metabolismo , Códon , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas p21(ras) , Câncer Papilífero da Tireoide , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Adulto Jovem , Proteínas ras/biossíntese
3.
Toxicol Sci ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851877

RESUMO

Lorcaserin is a 5-hydroxytryptamine 2C (serotonin) receptor agonist and a non-genotoxic rat carcinogen, which induced mammary tumors in male and female rats in a two-year bioassay. Female Sprague Dawley rats were treated by gavage daily with 0, 30, or 100 mg/kg lorcaserin, replicating bioassay dosing but for shorter duration, 12 or 24 weeks. To characterize exposure and eliminate possible confounding by a potentially genotoxic degradation product, lorcaserin and N-nitroso-lorcaserin were quantified in dosing solutions, terminal plasma, mammary and liver samples using ultra high-performance liquid chromatography-electrospray tandem mass spectrometry. N-nitroso-lorcaserin was not detected, supporting lorcaserin classification as non-genotoxic carcinogen. Mammary DNA samples (n = 6/dose/timepoint) were used to synthesize PCR products from gene segments encompassing hotspot cancer driver mutations (CDMs), namely regions of Apc, Braf, Egfr, Hras, Kras, Nfe2l2, Pik3ca, Setbp1, Stk11, and Tp53. Mutant fractions (MFs) in the amplicons were quantified by CarcSeq, an error corrected next-generation sequencing approach. Considering all recovered mutants, no significant differences between lorcaserin dose groups were observed. However, significant dose-responsive increases in Pik3ca H1047R mutation were observed at both timepoints (ANOVA, p < 0.05), with greater numbers of mutants and mutants with greater MFs observed at 24 weeks as compared to 12 weeks. These observations suggest lorcaserin promotes outgrowth of spontaneously occurring Pik3ca H1047R mutant clones leading to mammary carcinogenesis. Importantly, this work reports approaches to analyze clonal expansion and demonstrates CarcSeq detection of the carcinogenic impact (selective Pik3ca H0147R mutant expansion) of a non-genotoxic carcinogen using a treatment duration as short as 3 months.

4.
Environ Mol Mutagen ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828778

RESUMO

Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.

5.
Mutat Res ; 754(1-2): 15-21, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23583686

RESUMO

Chronic exposure to high concentrations of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) in drinking water induces duodenal tumors in mice, but the mode of action (MOA) for these tumors has been a subject of scientific debate. To evaluate the tumor-site-specific genotoxicity and cytotoxicity of SDD in the mouse small intestine, tissue pathology and cytogenetic damage were evaluated in duodenal crypt and villus enterocytes from B6C3F1 mice exposed to 0.3-520mg/L SDD in drinking water for 7 and 90 days. Allele-competitive blocker PCR (ACB-PCR) was used to investigate the induction of a sensitive, tumor-relevant mutation, specifically in vivo K-Ras codon 12 GAT mutation, in scraped duodenal epithelium following 90 days of drinking water exposure. Cytotoxicity was evident in the villus as disruption of cellular arrangement, desquamation, nuclear atypia and blunting. Following 90 days of treatment, aberrant nuclei, occurring primarily at villi tips, were significantly increased at ≥60mg/L SDD. However, in the crypt compartment, there were no dose-related effects on mitotic and apoptotic indices or the formation of aberrant nuclei indicating that Cr(VI)-induced cytotoxicity was limited to the villi. Cr(VI) caused a dose-dependent proliferative response in the duodenal crypt as evidenced by an increase in crypt area and increased number of crypt enterocytes. Spontaneous K-Ras codon 12 GAT mutations in untreated mice were higher than expected, in the range of 10(-2) to 10(-3); however no treatment-related trend in the K-Ras codon 12 GAT mutation was observed. The high spontaneous background K-Ras mutant frequency and Cr(VI) dose-related increases in crypt enterocyte proliferation, without dose-related increase in K-Ras mutant frequency, micronuclei formation, or change in mitotic or apoptotic indices, are consistent with a lack of genotoxicity in the crypt compartment, and a MOA involving accumulation of mutations late in carcinogenesis as a consequence of sustained regenerative proliferation.


Assuntos
Cromo/toxicidade , Água Potável , Duodeno/efeitos dos fármacos , Genes ras , Testes para Micronúcleos , Mutação , Animais , Sequência de Bases , Códon , Primers do DNA , Duodeno/metabolismo , Feminino , Camundongos , Reação em Cadeia da Polimerase
6.
Methods Mol Biol ; 2621: 3-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041436

RESUMO

Polymerase chain reaction (PCR) has been a powerful molecular biology tool since the mid-1980s. Millions of copies of specific sequence regions of DNA can be generated to allow the study of these regions. Fields that use this technology range from forensics to the experimental study of human biology. Standards for performing PCR and information tools to help design PCR protocols aid in successful implementation of PCR.


Assuntos
DNA , Humanos , Taq Polimerase , Reação em Cadeia da Polimerase/métodos
7.
Mutat Res Rev Mutat Res ; 792: 108466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643677

RESUMO

Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutagênicos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes de Mutagenicidade , Mutação , Mutagênicos/toxicidade , Carcinógenos/toxicidade , Carcinogênese , Medição de Risco
8.
Mutat Res ; 721(2): 199-205, 2011 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-21324376

RESUMO

A 2-year rat tumor bioassay testing whole body exposure to naphthalene (NA) vapor found a significant increase in nasal respiratory epithelial adenomas in male rats and in olfactory epithelial neuroblastomas in female rats. To obtain mechanistic insight into NA-induced nasal carcinogenesis, NA dose-response was characterized in nasal epithelium using a tumor-relevant endpoint. Specifically, levels of p53 codon 271 CGT to CAT mutation were measured in nasal respiratory and olfactory epithelium of NA-exposed male and female rats by allele-specific competitive blocker-PCR (ACB-PCR). Male and female, 8-9 week-old F344 rats (5 rats/group) were exposed to 0, 0.1, 1.0, 10, and 30ppm NA vapor for 13 weeks (6h/day, 5 days/week). The geometric mean p53 mutant fraction (MF) levels in nasal epithelium of control treatment groups ranged between 2.05 × 10(-5) and 3.05 × 10(-5). No significant dose-related changes in p53 mutant fraction (MF) were observed in the olfactory or respiratory epithelia of female rats. However, statistically significant treatment-related differences were observed in male respiratory and olfactory epithelium, with the p53 MF in the respiratory epithelium of male rats exposed to 30ppm NA significantly lower than that in controls. Further, a significant trend of decreasing p53 MF with increasing dose was observed in the male respiratory epithelium. Of the tissue types analyzed, respiratory epithelium is the most sensitive to the cytotoxic effects of NA, suggesting cytotoxicity may be responsible for the loss of p53 mutation. Because ACB-PCR has been used successfully to detect the effects of known mutagenic carcinogens, the absence of any significant increases in p53 MF associated with NA exposure adds to the weight of evidence that NA does not operate through a directly mutagenic mode of action.


Assuntos
Carcinógenos/toxicidade , Códon , Genes p53 , Mutação , Naftalenos/toxicidade , Mucosa Nasal/efeitos dos fármacos , Mucosa Olfatória/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Exposição por Inalação , Masculino , Ratos , Ratos Endogâmicos F344 , Caracteres Sexuais
9.
Toxicol Sci ; 182(1): 142-158, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822199

RESUMO

The ability to deduce carcinogenic potential from subchronic, repeat dose rodent studies would constitute a major advance in chemical safety assessment and drug development. This study investigated an error-corrected NGS method (CarcSeq) for quantifying cancer driver mutations (CDMs) and deriving a metric of clonal expansion predictive of future neoplastic potential. CarcSeq was designed to interrogate subsets of amplicons encompassing hotspot CDMs applicable to a variety of cancers. Previously, normal human breast DNA was analyzed by CarcSeq and metrics based on mammary-specific CDMs were correlated with tissue donor age, a surrogate of breast cancer risk. Here we report development of parallel methodologies for rat. The utility of the rat CarcSeq method for predicting neoplastic potential was investigated by analyzing mammary tissue of 16-week-old untreated rats with known differences in spontaneous mammary neoplasia (Fischer 344, Wistar Han, and Sprague Dawley). Hundreds of mutants with mutant fractions ≥ 10-4 were quantified in each strain, most were recurrent mutations, and 42.5% of the nonsynonymous mutations have human homologs. Mutants in the mammary-specific target of the most tumor-sensitive strain (Sprague Dawley) showed the greatest nonsynonymous/synonymous mutation ratio, indicative of positive selection consistent with clonal expansion. For the mammary-specific target (Hras, Pik3ca, and Tp53 amplicons), median absolute deviation correlated with percentages of rats that develop spontaneous mammary neoplasia at 104 weeks (Pearson r = 1.0000, 1-tailed p = .0010). Therefore, this study produced evidence CarcSeq analysis of spontaneously occurring CDMs can be used to derive an early metric of clonal expansion relatable to long-term neoplastic outcome.


Assuntos
Neoplasias da Mama , Animais , Mama , Feminino , Humanos , Mutação , Ratos , Ratos Sprague-Dawley , Ratos Wistar
10.
Toxicol Sci ; 184(1): 1-14, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34373914

RESUMO

Quantification of variation in levels of spontaneously occurring cancer driver mutations (CDMs) was developed to assess clonal expansion and predict future risk of neoplasm development. Specifically, an error-corrected next-generation sequencing method, CarcSeq, and a mouse CarcSeq panel (analogous to human and rat panels) were developed and used to quantify low-frequency mutations in a panel of amplicons enriched in hotspot CDMs. Mutations in a subset of panel amplicons, Braf, Egfr, Kras, Stk11, and Tp53, were related to incidence of lung neoplasms at 2 years. This was achieved by correlating median absolute deviation (MAD) from the overall median mutant fraction (MF) measured in the lung DNA of 16-week-old male and female, B6C3F1 and CD-1 mice (10 mice/sex/strain) with percentages of spontaneous alveolar/bronchioloalveolar adenomas and carcinomas reported in bioassay control groups. A total of 1586 mouse lung mutants with MFs >1 × 10-4 were recovered. The ratio of nonsynonymous to synonymous mutations was used to assess the proportion of recovered mutations conferring a positive selective advantage. The greatest ratio was observed in what is considered the most lung tumor-sensitive model examined, male B6C3F1 mice. Of the recurrent, nonsynonymous mouse mutations recovered, 55.5% have been reported in human tumors, with many located in or around the mouse equivalent of human cancer hotspot codons. MAD for the same subset of amplicons measured in normal human lung DNA samples showed a correlation of moderate strength and borderline significance with age (a cancer risk factor), as well as age-related cumulative lung cancer risk, suggesting MAD may inform species extrapolation.


Assuntos
Neoplasias Pulmonares , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Incidência , Pulmão/patologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Mutação
11.
PLoS One ; 15(9): e0238862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32898185

RESUMO

A model that recapitulates development of acquired therapeutic resistance is needed to improve oncology drug development and patient outcomes. To achieve this end, we established methods for the preparation and growth of spheroids from primary human lung adenocarcinomas, including methods to culture, passage, monitor growth, and evaluate changes in mutational profile over time. Primary lung tumor spheroids were cultured in Matrigel® with varying concentrations of erlotinib, a small molecule kinase inhibitor of epidermal growth factor receptor (EGFR) that is ineffective against KRAS mutant cells. Subtle changes in spheroid size and number were observed within the first two weeks of culture. Spheroids were cultured for up to 24 weeks, during which time interactions between different cell types, movement, and assembly into heterogeneous organoid structures were documented. Allele-specific competitive blocker PCR (ACB-PCR) was used to quantify low frequency BRAF V600E, KRAS G12D, KRAS G12V, and PIK3CA H1047R mutant subpopulations in tumor tissue residue (TR) samples and cultured spheroids. Mutant subpopulations, including multiple mutant subpopulations, were quite prevalent. Twelve examples of mutant enrichment were found in eight of the 14 tumors analyzed, based on the criteria that a statistically-significant increase in mutant fraction was observed relative to both the TR and the no-erlotinib control. Of the mutants quantified in erlotinib-treated cultures, PIK3CA H1047 mutant subpopulations increased most often (5/14 tumors), which is consistent with clinical observations. Thus, this ex vivo lung tumor spheroid model replicates the cellular and mutational tumor heterogeneity of human lung adenocarcinomas and can be used to assess the outgrowth of mutant subpopulations. Spheroid cultures with characterized mutant subpopulations could be used to investigate the efficacy of lung cancer combination therapies.


Assuntos
Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/patologia , Mutação , Organoides/patologia , Esferoides Celulares/patologia , Idoso , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Organoides/efeitos dos fármacos , Organoides/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
12.
Methods Mol Biol ; 2102: 395-417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31989569

RESUMO

Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer having a non-extendable 3'-end and a 3'-penultimate mismatch relative to the wild-type DNA sequence, but a double 3'-terminal mismatch relative to the mutant DNA sequence is included in ACB-PCR to selectively repress amplification from abundant wild-type molecules. Consequently, ACB-PCR can quantify the level of a single base pair substitution mutation in a DNA population when present at a mutant:wild-type ratio of 1 × 10-5 or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications in evaluating the carcinogenic potential of chemical exposures in rodent models. Further, the measurement of cancer-driver mutant subpopulations is important for precision cancer treatment (selecting the most appropriate targeted therapy and predicting the development of therapeutic resistance). This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human PIK3CA codon 1047, CAT→CGT (H1047R) mutation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Análise Mutacional de DNA/métodos , Neoplasias/genética , Oncogenes/genética , Reação em Cadeia da Polimerase/métodos , Alelos , DNA/genética , DNA/isolamento & purificação , Primers do DNA , Humanos , Mutação Puntual , Fluxo de Trabalho
13.
Environ Mol Mutagen ; 61(9): 872-889, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940377

RESUMO

There is a need for scientifically-sound, practical approaches to improve carcinogenicity testing. Advances in DNA sequencing technology and knowledge of events underlying cancer development have created an opportunity for progress in this area. The long-term goal of this work is to develop variation in cancer driver mutation (CDM) levels as a metric of clonal expansion of cells carrying CDMs because these important early events could inform carcinogenicity testing. The first step toward this goal was to develop and validate an error-corrected next-generation sequencing method to analyze panels of hotspot cancer driver mutations (hCDMs). The "CarcSeq" method that was developed uses unique molecular identifier sequences to construct single-strand consensus sequences for error correction. CarcSeq was used for mutational analysis of 13 amplicons encompassing >20 hotspot CDMs in normal breast, normal lung, ductal carcinomas, and lung adenocarcinomas. The approach was validated by detecting expected differences related to tissue type (normal vs. tumor and breast vs. lung) and mutation spectra. CarcSeq mutant fractions (MFs) correlated strongly with previously obtained ACB-PCR mutant fraction (MF) measurements from the same samples. A reconstruction experiment, in conjunction with other analyses, showed CarcSeq accurately quantifies MFs ≥10-4 . CarcSeq MF measurements were correlated with tissue donor age and breast cancer risk. CarcSeq MF measurements were correlated with deviation from median MFs analyzed to assess clonal expansion. Thus, CarcSeq is a promising approach to advance cancer risk assessment and carcinogenicity testing practices. Paradigms that should be investigated to advance this strategy for carcinogenicity testing are proposed.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Análise Mutacional de DNA , Neoplasias Pulmonares/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Carcinogênese/patologia , Análise Mutacional de DNA/métodos , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/métodos , Adulto Jovem
14.
Environ Mol Mutagen ; 61(1): 152-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469467

RESUMO

Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Carcinogênese/genética , Mutação , Neoplasias/genética , Animais , Biomarcadores Tumorais/genética , Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/efeitos dos fármacos , Neoplasias/induzido quimicamente , Medição de Risco/métodos
16.
Cell Stem Cell ; 22(6): 909-918.e8, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29779891

RESUMO

We investigated the means and timing by which mutations become fixed in the human colonic epithelium by visualizing somatic clones and mathematical inference. Fixation requires two sequential steps. First, one of approximately seven active stem cells residing within each colonic crypt has to be mutated. Second, the mutated stem cell has to replace neighbors to populate the entire crypt in a process that takes several years. Subsequent clonal expansion due to crypt fission is infrequent for neutral mutations (around 0.7% of all crypts undergo fission in a single year). Pro-oncogenic mutations subvert both stem cell replacement to accelerate fixation and clonal expansion by crypt fission to achieve high mutant allele frequencies with age. The benchmarking of these behaviors allows the advantage associated with different gene-specific mutations to be compared irrespective of the cellular mechanisms by which they are conferred.


Assuntos
Antígenos Nucleares/genética , Colo/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Monoaminoxidase/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Alelos , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Criança , Humanos , Pessoa de Meia-Idade , Modelos Estatísticos , Monoaminoxidase/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adulto Jovem
17.
Environ Mol Mutagen ; 58(7): 466-476, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28755461

RESUMO

Large-scale sequencing efforts have described the mutational complexity of individual cancers and identified mutations prevalent in different cancers. As a complementary approach, allele-specific competitive blocker PCR (ACB-PCR) is being used to quantify levels of hotspot cancer driver mutations (CDMs) with high sensitivity, to elucidate the tissue-specific properties of CDMs, their occurrence as tumor cell subpopulations, and their occurrence in normal tissues. Here we report measurements of PIK3CA H1047R mutant fraction (MF) in normal colonic mucosa, normal lung, colonic adenomas, colonic adenocarcinomas, and lung adenocarcinomas. We report PIK3CA E545K MF measurements in those tissues, as well as in normal breast, normal thyroid, mammary ductal carcinomas, and papillary thyroid carcinomas. We report KRAS G12D and G12V MF measurements in normal colon. These MF measurements were integrated with previously published ACB-PCR data on KRAS G12D, KRAS G12V, and PIK3CA H1047R. Analysis of these data revealed a correlation between the degree of interindividual variability in these mutations (as log10 MF standard deviation) in normal tissues and the frequencies with which the mutations are detected in carcinomas of the corresponding organs in the COSMIC database. This novel observation has important implications. It suggests that interindividual variability in mutation levels of normal tissues may be used as a metric to identify mutations with critical early roles in tissue-specific carcinogenesis. Additionally, it raises the possibility that personalized cancer therapeutics, developed to target specifically activated oncogenic products, might be repurposed as prophylactic therapies to reduce the accumulation of cells carrying CDMs and, thereby, reduce future cancer risk. Environ. Mol. Mutagen. 58:466-476, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Biomarcadores Tumorais/genética , Predisposição Genética para Doença , Variação Genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética , Classe I de Fosfatidilinositol 3-Quinases , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Neoplasias/genética , Especificidade de Órgãos , Prevalência
18.
Reprod Toxicol ; 69: 187-195, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28279692

RESUMO

Females deficient in the glutamate cysteine ligase modifier subunit (Gclm) of the rate-limiting enzyme in glutathione synthesis are more sensitive to ovarian follicle depletion and tumorigenesisby prenatal benzo[a]pyrene (BaP) exposure than Gclm+/+ mice. We investigated effects of prenatal exposure to BaP on reproductive development and ovarian mutations in Kras, a commonly mutated gene in epithelial ovarian tumors. Pregnantmice were dosed from gestational day 6.5 through 15.5 with 2mg/kg/day BaP or vehicle. Puberty onset occurred 5 days earlier in F1 daughters of all Gclm genotypes exposed to BaP compared to controls. Gclm+/- F1 daughters of Gclm+/- mothers and wildtype F1 daughters of wildtype mothers had similar depletion of ovarian follicles following prenatal exposure to BaP, suggesting that maternal Gclm genotype does not modify ovarian effects of prenatal BaP. We observed no BaP treatment or Gclm genotype related differences in ovarian Kras codon 12 mutations in F1 offspring.


Assuntos
Benzo(a)pireno/toxicidade , Glutamato-Cisteína Ligase/genética , Ovário/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Genes ras , Glutationa/metabolismo , Troca Materno-Fetal , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Ovário/patologia , Gravidez , Maturidade Sexual/efeitos dos fármacos
19.
Environ Mol Mutagen ; 58(3): 122-134, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28326610

RESUMO

Ethylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO). Lung DNA samples were analyzed for cII mutant frequency (MF) at 4, 8 and 12 weeks of exposure; the mutation spectrum was analyzed for mutants from control and 200 ppm EO treatments. Although EO-induced cII MFs were 1.5- to 2.7-fold higher than the concurrent controls at 4 weeks, statistically significant increases in the cII MF were found only after 8 and 12 weeks of exposure and only at 200 ppm EO (P ≤ 0.05), which is twice the highest concentration used in the cancer bioassay. Consistent with the positive response, DNA sequencing of cII mutants showed a significant shift in the mutational spectra between control and 200 ppm EO following 8 and 12 week exposures (P ≤ 0.035), but not at 4 weeks. Thus, EO mutagenic activity in vivo was relatively weak and required higher than tumorigenic concentrations and longer than 4 weeks exposure durations. These data do not follow the classical patterns for a MOA mediated by point mutations. Environ. Mol. Mutagen. 58:122-134, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Carcinógenos/toxicidade , Óxido de Etileno/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação Puntual , Animais , Relação Dose-Resposta a Droga , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Masculino , Camundongos Endogâmicos , Fatores de Tempo
20.
Pharmgenomics Pers Med ; 9: 7-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858530

RESUMO

Breast cancer is a multifaceted disease exhibiting both intertumoral and intratumoral heterogeneity as well as variable disease course. Over 2 decades of research has advanced the understanding of the molecular substructure of breast cancer, directing the development of new therapeutic strategies against these actionable targets. In vitro diagnostics, and specifically companion diagnostics, have been integral in the successful development and implementation of these targeted therapies, such as those directed against the human epidermal growth factor receptor 2. Lately, there has been a surge in the development, commercialization, and marketing of diagnostic assays to assist in breast cancer patient care. More recently, multigene signature assays, such as Oncotype DX, MammaPrint, and Prosigna, have been integrated in the clinical setting in order to tailor decisions on adjuvant endocrine and chemotherapy treatment. This review provides an overview of the current state of breast cancer management and the use of companion diagnostics to direct personalized approaches in the treatment of breast cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa