Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Am Chem Soc ; 146(26): 17738-17746, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957137

RESUMO

Various Xanthomonas species cause well-known plant diseases. Among various pathogenic factors, the role of α-1,6-cyclized ß-1,2-glucohexadecaose (CßG16α) produced by Xanthomonas campestris pv. campestris was previously shown to be vital for infecting model organisms, Arabidopsis thaliana and Nicotiana benthamiana. However, enzymes responsible for biosynthesizing CßG16α are essentially unknown, which limits the generation of agrichemicals that inhibit CßG16α synthesis. In this study, we discovered that OpgD from X. campestris pv. campestris converts linear ß-1,2-glucan to CßG16α. Structural and functional analyses revealed OpgD from X. campestris pv. campestris possesses an anomer-inverting transglycosylation mechanism, which is unprecedented among glycoside hydrolase family enzymes.


Assuntos
Xanthomonas campestris , Xanthomonas campestris/enzimologia , Xanthomonas/enzimologia , Doenças das Plantas/microbiologia , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Modelos Moleculares
2.
Appl Microbiol Biotechnol ; 108(1): 187, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300345

RESUMO

Cyclic ß-1,2-glucan synthase (CGS) is a key enzyme in production of cyclic ß-1,2-glucans (CßGs) which are involved in bacterial infection or symbiosis to host organisms. Nevertheless, a mechanism of cyclization, the final step in the CGS reaction, has not been fully understood. Here we performed functional and structural analyses of the cyclization domain of CGS alone from Thermoanaerobacter italicus (TiCGSCy). We first found that ß-glucosidase-resistant compounds are produced by TiCGSCy with linear ß-1,2-glucans as substrates. The 1H-NMR analysis revealed that these products are CßGs. Next, action pattern analyses using ß-1,2-glucooligosaccharides revealed a unique reaction pattern: exclusive transglycosylation without hydrolysis and a hexasaccharide being the minimum length of the substrate. These analyses also showed that longer substrate ß-1,2-glucooligosaccharides are preferred, being consistent with the fact that CGSs generally produce CßGs with degrees of polymerization of around 20. Finally, the overall structure of the cyclization domain of TiCGSCy was found to be similar to those of ß-1,2-glucanases in phylogenetically different groups. Meanwhile, the identified catalytic residues indicated clear differences in the reaction pathways between these enzymes. Overall, we propose a novel reaction mechanism of TiCGSCy. Thus, the present group of CGSs defines a new glycoside hydrolase family, GH189. KEY POINTS: • It was clearly evidenced that cyclization domain alone produces cyclic ß-1,2-glucans. • The domain exclusively catalyzes transglycosylation without hydrolysis. • The present catalytic domain defines as a new glycoside hydrolase family 189.


Assuntos
Glucanos , Glicosídeo Hidrolases , beta-Glucanas , Ciclização , Catálise
3.
J Biol Chem ; 298(3): 101606, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065074

RESUMO

The IALB_1185 protein, which is encoded in the gene cluster for endo-ß-1,2-glucanase homologs in the genome of Ignavibacterium album, is a glycoside hydrolase family (GH) 35 protein. However, most known GH35 enzymes are ß-galactosidases, which is inconsistent with the components of this gene cluster. Thus, IALB_1185 is expected to possess novel enzymatic properties. Here, we showed using recombinant IALB_1185 that this protein has glycosyltransferase activity toward ß-1,2-glucooligosaccharides, and that the kinetic parameters for ß-1,2-glucooligosaccharides are not within the ranges for general GH enzymes. When various aryl- and alkyl-glucosides were used as acceptors, glycosyltransfer products derived from these acceptors were subsequently detected. Kinetic analysis further revealed that the enzyme has wide aglycone specificity regardless of the anomer, and that the ß-1,2-linked glucose dimer sophorose is an appropriate donor. In the complex of wild-type IALB_1185 with sophorose, the electron density of sophorose was clearly observed at subsites -1 and +1, whereas in the E343Q mutant-sophorose complex, the electron density of sophorose was clearly observed at subsites +1 and +2. This observation suggests that binding at subsites -1 and +2 competes through Glu102, which is consistent with the preference for sophorose as a donor and unsuitability of ß-1,2-glucooligosaccharides as acceptors. A pliable hydrophobic pocket that can accommodate various aglycone moieties was also observed in the complex structures with various glucosides. Overall, our biochemical and structural data are indicative of a novel enzymatic reaction. We propose that IALB_1185 be redefined ß-1,2-glucooligosaccharide:d-glucoside ß-d-glucosyltransferase as a systematic name and ß-1,2-glucosyltransferase as an accepted name.


Assuntos
Glucosídeos , Glicosiltransferases , Glucosídeos/química , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cinética , Especificidade por Substrato
4.
J Biol Chem ; 297(6): 101366, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34728215

RESUMO

Glycoside hydrolase family 65 (GH65) comprises glycoside hydrolases (GHs) and glycoside phosphorylases (GPs) that act on α-glucosidic linkages in oligosaccharides. All previously reported bacterial GH65 enzymes are GPs, whereas all eukaryotic GH65 enzymes known are GHs. In addition, to date, no crystal structure of a GH65 GH has yet been reported. In this study, we use biochemical experiments and X-ray crystallography to examine the function and structure of a GH65 enzyme from Flavobacterium johnsoniae (FjGH65A) that shows low amino acid sequence homology to reported GH65 enzymes. We found that FjGH65A does not exhibit phosphorolytic activity, but it does hydrolyze kojibiose (α-1,2-glucobiose) and oligosaccharides containing a kojibiosyl moiety without requiring inorganic phosphate. In addition, stereochemical analysis demonstrated that FjGH65A catalyzes this hydrolytic reaction via an anomer-inverting mechanism. The three-dimensional structures of FjGH65A in native form and in complex with glucose were determined at resolutions of 1.54 and 1.40 Å resolutions, respectively. The overall structure of FjGH65A resembled those of other GH65 GPs, and the general acid catalyst Glu472 was conserved. However, the amino acid sequence forming the phosphate-binding site typical of GH65 GPs was not conserved in FjGH65A. Moreover, FjGH65A had the general base catalyst Glu616 instead, which is required to activate a nucleophilic water molecule. These results indicate that FjGH65A is an α-1,2-glucosidase and is the first bacterial GH found in the GH65 family.


Assuntos
Flavobacterium/enzimologia , Glicosídeo Hidrolases/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Anal Biochem ; 632: 114366, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509443

RESUMO

ß-(1 â†’ 2)-Glucans can be synthesized by 1,2-ß-oligoglucan phosphorylase using ß-(1 â†’ 2)-glucooligosaccharides as acceptors and α-d-glucose 1-phosphate as a donor. Using phosphorolysis of sucrose as a source of α-d-glucose 1-phosphate, we generated ß-(1 â†’ 2)-glucans with degrees of polymerization (DPs) up to approximately 280. Average DPs up to approximately 1000 were obtained using ß-(1 â†’ 2)-glucan with average DP of 160 as an acceptor and pure α-d-glucose 1-phosphate as a donor. A colorimetric assay of the ß-glucosidase activity against the ß-(1 â†’ 2)-glucan products was used to determine their DPs.


Assuntos
Glucanos/metabolismo , beta-Glucosidase/metabolismo , Glucanos/química , Polimerização
6.
J Biol Chem ; 294(19): 7942-7965, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30926603

RESUMO

endo-ß-1,2-Glucanase (SGL) is an enzyme that hydrolyzes ß-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic ß-1,2-glucans to sophorose (Glc-ß-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified ß-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a ß-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of ß-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.


Assuntos
Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Microbiologia do Solo , Talaromyces/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 114(44): E9395-E9402, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078406

RESUMO

Rett syndrome (RTT) is a debilitating neurological disorder caused by mutations in the gene encoding the transcription factor Methyl CpG Binding Protein 2 (MECP2). A distinct disorder results from MECP2 gene duplication, suggesting that therapeutic approaches must restore close to normal levels of MECP2. Here, we apply the approach of site-directed RNA editing to repair, at the mRNA level, a disease-causing guanosine to adenosine (G > A) mutation in the mouse MeCP2 DNA binding domain. To mediate repair, we exploit the catalytic domain of Adenosine Deaminase Acting on RNA (ADAR2) that deaminates A to inosine (I) residues that are subsequently translated as G. We fuse the ADAR2 domain, tagged with a nuclear localization signal, to an RNA binding peptide from bacteriophage lambda. In cultured neurons from mice that harbor an RTT patient G > A mutation and express engineered ADAR2, along with an appropriate RNA guide to target the enzyme, 72% of Mecp2 mRNA is repaired. Levels of MeCP2 protein are also increased significantly. Importantly, as in wild-type neurons, the repaired MeCP2 protein is enriched in heterochromatic foci, reflecting restoration of normal MeCP2 binding to methylated DNA. This successful use of site-directed RNA editing to repair an endogenous mRNA and restore protein function opens the door to future in vivo applications to treat RTT and other diseases.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/fisiologia , RNA/genética , Adenosina Desaminase/genética , Animais , Células Cultivadas , Metilação de DNA/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mutação/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Síndrome de Rett/genética
8.
J Biol Chem ; 293(23): 8812-8828, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678880

RESUMO

ß-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several ß-1,2-glucan-associated enzymes have been characterized, little is known about how ß-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial ß-1,2-glucan metabolism and promote the discovery of unidentified ß-1,2-glucan-associated proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria/metabolismo , Polissacarídeos Bacterianos/metabolismo , beta-Glucanas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Listeria/química , Simulação de Dinâmica Molecular , Polissacarídeos Bacterianos/química , Ligação Proteica , Conformação Proteica , Termodinâmica , beta-Glucanas/química
9.
Biosci Biotechnol Biochem ; 83(10): 1867-1874, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31189457

RESUMO

A large amount of ß-1,2-glucan was produced enzymatically from quite a small amount of sophorose as an acceptor material through three synthesis steps using a sucrose phosphorylase and a 1,2-ß-oligoglucan phosphorylase. The first synthesis step was performed in a 200 µL of a reaction solution containing 5 mM sophorose and 1.0 M sucrose. ß-1,2-Glucan in a part of the resultant solution was hydrolyzed to ß-1,2-glucooligosaccharides by a ß-1,2-glucanase. The second synthesis was performed in 25 times the volume for the first synthesis. The hydrolysate solution (1% volume of the reaction solution) was used as an acceptor. After treatment with the ß-1,2-glucanase again, the third synthesis was performed 200 times the volume for the second synthesis (1 L). The reaction yield of ß-1,2-glucan at each synthesis was 93%, 76% and 91%. Finally, more than 140 g of ß-1,2-glucan was synthesized using approximately 20 µg of sophorose as the starting acceptor material. Abbreviations: DPs: degrees of polymerization; SOGP: 1,2-ß-oligoglucan phosphorylase; Sopns: ß-1,2-glucooligosaccharides with DP of n; Glc1P: α-glucose 1-phosphate; SucP: sucrose phosphorylase from Bifidobacterium longum subsp. longum; SGL: ß-1,2-glucanase; CaSGL: Chy400_4174 protein; TLC: thin layer chromatography; GOPOD: glucose oxidase/peroxidase; PGM: phosphoglucomutase; G6PDH: glucose 6-phosphate dehydrogenase.


Assuntos
Glucanos/química , beta-Glucanas/síntese química , Glucosiltransferases/química , Hidrólise , Cinética , Fosfatos/química , Especificidade por Substrato
10.
Biochemistry ; 57(26): 3849-3860, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29763309

RESUMO

ß-1,2-Glucan is a polysaccharide produced mainly by some Gram-negative bacteria as a symbiosis and infectious factor. We recently identified endo-ß-1,2-glucanase from Chitinophaga pinensis ( CpSGL) as an enzyme comprising a new family. Here, we report the characteristics and crystal structure of a CpSGL homologue from Parabacteroides distasonis, an intestinal bacterium (BDI_3064 protein), which exhibits distinctive properties of known ß-1,2-glucan-degrading enzymes. BDI_3064 hydrolyzed linear ß-1,2-glucan and ß-1,2-glucooligosaccharides with degrees of polymerization (DPs) of ≥4 to produce sophorose specifically but did not hydrolyze cyclic ß-1,2-glucan. This result indicates that BDI_3064 is a new exo-type enzyme. BDI_3064 also produced sophorose from ß-1,2-glucooligosaccharide analogues that have a modified reducing end, indicating that BDI_3064 acts on its substrates from the nonreducing end. The crystal structure showed that BDI_3064 possesses additional N-terminal domains 1 and 2, unlike CpSGL. Superimposition of BDI_3064 and CpSGL complexed with ligands showed that R93 in domain 1 overlapped subsite -3 in CpSGL. Docking analysis involving a ß-1,2-glucooligosaccharide with DP4 showed that R93 completely blocks the nonreducing end of the docked ß-1,2-glucooligosaccharide. This indicates that BDI_3064 employs a distinct mechanism of recognition at the nonreducing end of substrates to act as an exo-type enzyme. Thus, we propose 2-ß-d-glucooligosaccharide sophorohydrolase (nonreducing end) as a systematic name for BDI_3064.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Glucosidases/química , Simulação de Acoplamento Molecular , Oligossacarídeos/química , beta-Glucanas/química , Cristalografia por Raios X , Domínios Proteicos
11.
J Biol Chem ; 292(18): 7487-7506, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28270506

RESUMO

ß-1,2-Glucan is an extracellular cyclic or linear polysaccharide from Gram-negative bacteria, with important roles in infection and symbiosis. Despite ß-1,2-glucan's importance in bacterial persistence and pathogenesis, only a few reports exist on enzymes acting on both cyclic and linear ß-1,2-glucan. To this end, we purified an endo-ß-1,2-glucanase to homogeneity from cell extracts of the environmental species Chitinophaga arvensicola, and an endo-ß-1,2-glucanase candidate gene (Cpin_6279) was cloned from the related species Chitinophaga pinensis The Cpin_6279 protein specifically hydrolyzed linear ß-1,2-glucan with polymerization degrees of ≥5 and a cyclic counterpart, indicating that Cpin_6279 is an endo-ß-1,2-glucananase. Stereochemical analysis demonstrated that the Cpin_6279-catalyzed reaction proceeds via an inverting mechanism. Cpin_6279 exhibited no significant sequence similarity with known glycoside hydrolases (GHs), and thus the enzyme defines a novel GH family, GH144. The crystal structures of the ligand-free and complex forms of Cpin_6279 with glucose (Glc) and sophorotriose (Glc-ß-1,2-Glc-ß-1,2-Glc) determined up to 1.7 Å revealed that it has a large cavity appropriate for polysaccharide degradation and adopts an (α/α)6-fold slightly similar to that of GH family 15 and 8 enzymes. Mutational analysis indicated that some of the highly conserved acidic residues in the active site are important for catalysis, and the Cpin_6279 active-site architecture provided insights into the substrate recognition by the enzyme. The biochemical characterization and crystal structure of this novel GH may enable discovery of other ß-1,2-glucanases and represent a critical advance toward elucidating structure-function relationships of GH enzymes.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Celulase/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Domínio Catalítico , Celulase/isolamento & purificação , Cristalografia por Raios X
12.
Hum Mol Genet ; 25(20): 4484-4493, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28173123

RESUMO

Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of hereditary skin disorder characterized by an aberrant cornification of the epidermis. ARCI is classified into a total of 11 subtypes (ARCI1-ARCI11) based on their causative genes or loci. Of these, the causative gene for only ARCI7 has not been identified, while it was previously mapped on chromosome 12p11.2-q13.1. In this study, we performed genetic analyses for three Lebanese families with ARCI, and successfully determined the linkage interval to 9.47 Mb region on chromosome 12q13.13-q14.1, which was unexpectedly outside of the ARCI7 locus. Whole-exome sequencing and the subsequent Sanger sequencing led to the identification of missense mutations in short chain dehydrogenase/reductase family 9C, member 7 (SDR9C7) gene on chromosome 12q13.3, i.e. two families shared an identical homozygous mutation c.599T > C (p.Ile200Thr) and one family had another homozygous mutation c.214C > T (p.Arg72Trp). In cultured cells, expression of both the mutant SDR9C7 proteins was markedly reduced as compared to wild-type protein, suggesting that the mutations severely affected a stability of the protein. In normal human skin, the SDR9C7 was abundantly expressed in granular and cornified layers of the epidermis. By contrast, in a patient's skin, its expression in the cornified layer was significantly decreased. It has previously been reported that SDR9C7 is an enzyme to convert retinal into retinol. Therefore, our study not only adds a new gene responsible for ARCI, but also further suggests a potential role of vitamin A metabolism in terminal differentiation of the epidermis in humans.


Assuntos
Expressão Gênica , Ictiose/enzimologia , Mutação de Sentido Incorreto , Oxirredutases/genética , Pele/enzimologia , Adolescente , Criança , Análise Mutacional de DNA , Feminino , Humanos , Ictiose/genética , Líbano , Masculino , Oxirredutases/metabolismo , Linhagem , Vitamina A/metabolismo , Adulto Jovem
13.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852862

RESUMO

Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly. IMPORTANCE: Assembly-activating protein (AAP) is a recently discovered adeno-associated virus (AAV) protein that promotes capsid assembly and provides new opportunities for research in assembly. Previous studies on AAV serotype 2 (AAV2) showed that assembly takes place in the nucleolus and is dependent on AAP and that capsids colocalize with AAP in the nucleolus during the assembly process. However, through the investigation of 12 different AAV serotypes (AAV1 to -12), we find that AAP is not an essential requirement for capsid assembly of AAV4, -5, and -11, and AAP, assembled capsids, and the nucleolus do not colocalize for all the serotypes. In addition, we find that there are both serotype-restricted and serotype-promiscuous AAPs in their assembly roles. These findings challenge widely held beliefs about the importance of the nucleolus and AAP in AAV assembly and show the heterogeneous nature of the assembly process within the AAV family.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Dependovirus/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Dependovirus/classificação , Dependovirus/ultraestrutura , Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/genética , Humanos , Sorogrupo , Proteínas Virais/química , Proteínas Virais/genética , Vírion , Replicação Viral
14.
Anal Biochem ; 560: 1-6, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149026

RESUMO

A colorimetric determination method measuring the reducing ends of sugars is usually used for quantitative evaluation of polysaccharide-degrading activity of endo-type enzymes. However, no appropriate colorimetric method has been established for enzymatic assay of ß-1,2-glucanases, which produce ß-1,2-glucooligosaccharides from ß-1,2-glucans. The Anthon-MBTH method has been potentially the most adaptable for color development of ß-1,2-glucooligosaccharides among various known colorimetric methods for detecting the reducing power of oligosaccharides, since the difference between sophorose and other ß-1,2-glucooligosaccharides in absorbance is relatively small. Almost the same color development was obtained for ß-1,2-glucooligosaccharides when the heating time with the Anthon-MBTH method was changed. The kind of base and concentration of dithiothreitol did not markedly affect the color development. Most buffer components, salts and a chelating reagent used for usual enzymatic experiments did not inhibit color development. Furthermore, assay was performed successfully for a ß-1,2-glucanase using the modified MBTH method.


Assuntos
Proteínas de Bactérias/química , Ensaios Enzimáticos/métodos , Glicosídeo Hidrolases/química , beta-Glucanas/análise , Bactérias/enzimologia , Bactérias/metabolismo , Benzotiazóis/química , Chlorella/enzimologia , Chlorella/metabolismo , Colorimetria/métodos , Glucanos/química , Hidrazonas/química , Especificidade por Substrato
15.
J Biol Chem ; 290(30): 18281-92, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26041776

RESUMO

The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.


Assuntos
Celobiose/química , Dissacarídeos/química , Gammaproteobacteria/enzimologia , Fosforilases/química , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Celobiose/metabolismo , Celulose/química , Celulose/metabolismo , Cristalografia por Raios X , Análise Mutacional de DNA , Dissacarídeos/metabolismo , Gammaproteobacteria/química , Oxirredução , Fosforilases/genética , Fosforilases/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
16.
J Virol ; 89(6): 3038-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25552709

RESUMO

UNLABELLED: Assembly-activating protein (AAP) of adeno-associated virus serotype 2 (AAV2) is a nucleolar-localizing protein that plays a critical role in transporting the viral capsid VP3 protein to the nucleolus for assembly. Here, we identify and characterize AAV2 AAP (AAP2) nuclear (NLS) and nucleolar (NoLS) localization signals near the carboxy-terminal region of AAP2 (amino acid positions 144 to 184) (AAP2(144-184)). This region contains five basic-amino-acid-rich (BR) clusters, KSKRSRR (AAP2BR1), RRR (AAP2BR2), RFR (AAP2BR3), RSTSSR (AAP2BR4), and RRIK (AAP2BR5), from the amino terminus to the carboxy terminus. We created 30 AAP2BR mutants by arginine/lysine-to-alanine mutagenesis or deletion of AAP2BRs and 8 and 1 green fluorescent protein (GFP)-AAP2BR and ß-galactosidase-AAP2BR fusion proteins, respectively, and analyzed their intracellular localization in HeLa cells by immunofluorescence microscopy. The results showed that AAP2(144-184) has redundant multipartite NLSs and that any combinations of 4 AAP2BRs, but not 3 or less, can constitute a functional NLS-NoLS; AAP2BR1 and AAP2BR2 play the most influential role for nuclear localization, but either one of the two AAP2BRs is dispensable if all 4 of the other AAP2BRs are present, resulting in 3 different, overlapping NLS motifs; and the NoLS is shared redundantly among the five AAP2BRs and functions in a context-dependent manner. AAP2BR mutations not only resulted in aberrant intracellular localization, but also attenuated AAP2 protein expression to various degrees, and both of these abnormalities have a significant negative impact on capsid production. Thus, this study reveals the organization of the intermingling NLSs and NoLSs in AAP2 and provides insights into their functional roles in capsid assembly. IMPORTANCE: Adeno-associated virus (AAV) has become a popular and successful vector for in vivo gene therapy; however, its biology has yet to be fully understood. In this regard, the recent discovery of the assembly-activating protein (AAP), a nonstructural, nucleolar-localizing AAV protein essential for viral capsid assembly, has provided us a new opportunity to better understand the fundamental processes required for virion formation. Here, we identify clusters of basic amino acids in the carboxy terminus of AAP from AAV serotype 2 (AAV2) that act as nuclear and nucleolar localization signals. We also demonstrate their importance in maintaining AAP expression levels and efficient production of viral capsids. Insights into the functions of AAP can elucidate the requirements and process for AAV capsid assembly, which may lead to improved vector production for use in gene therapy. This study also contributes to the growing body of work on nuclear and nucleolar localization signals.


Assuntos
Nucléolo Celular/virologia , Núcleo Celular/virologia , Dependovirus/fisiologia , Sinais de Localização Nuclear , Infecções por Parvoviridae/virologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/química , Dependovirus/genética , Humanos , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Montagem de Vírus
17.
Appl Microbiol Biotechnol ; 100(14): 6265-6277, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26946172

RESUMO

An α-L-arabinofuranosidase of GH62 from Aspergillus nidulans FGSC A4 (AnAbf62A-m2,3) has an unusually high activity towards wheat arabinoxylan (WAX) (67 U/mg; k cat = 178/s, K m = 4.90 mg/ml) and arabinoxylooligosaccharides (AXOS) with degrees of polymerisation (DP) 3-5 (37-80 U/mg), but about 50 times lower activity for sugar beet arabinan and 4-nitrophenyl-α-L-arabinofuranoside. α-1,2- and α-1,3-linked arabinofuranoses are released from monosubstituted, but not from disubstituted, xylose in WAX and different AXOS as demonstrated by NMR and polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Mutants of the predicted general acid (Glu(188)) and base (Asp(28)) catalysts, and the general acid pK a modulator (Asp(136)) lost 1700-, 165- and 130-fold activities for WAX. WAX, oat spelt xylan, birchwood xylan and barley ß-glucan retarded migration of AnAbf62A-m2,3 in affinity electrophoresis (AE) although the latter two are neither substrates nor inhibitors. Trp(23) and Tyr(44), situated about 30 Å from the catalytic site as seen in an AnAbf62A-m2,3 homology model generated using Streptomyces thermoviolaceus SthAbf62A as template, participate in carbohydrate binding. Compared to wild-type, W23A and W23A/Y44A mutants are less retarded in AE, maintain about 70 % activity towards WAX with K i of WAX substrate inhibition increasing 4-7-folds, but lost 77-96 % activity for the AXOS. The Y44A single mutant had less effect, suggesting Trp(23) is a key determinant. AnAbf62A-m2,3 seems to apply different polysaccharide-dependent binding modes, and Trp(23) and Tyr(44) belong to a putative surface binding site which is situated at a distance of the active site and has to be occupied to achieve full activity.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Xilanos/química , Arabinose/análogos & derivados , Arabinose/química , Aspergillus nidulans/genética , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Filogenia , Pichia/genética , Pichia/metabolismo , Polissacarídeos/química , Conformação Proteica , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato , Triticum/química , Xilose/química , beta-Glucanas/química
18.
Biosci Biotechnol Biochem ; 80(3): 479-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26645800

RESUMO

Marine glycoside hydrolases hold enormous potential due to their habitat-related characteristics such as salt tolerance, barophilicity, and cold tolerance. We purified an α-glucosidase (PYG) from the midgut gland of the Japanese scallop (Patinopecten yessoensis) and found that this enzyme has unique characteristics. The use of acarbose affinity chromatography during the purification was particularly effective, increasing the specific activity 570-fold. PYG is an interesting chloride ion-dependent enzyme. Chloride ion causes distinctive changes in its enzymatic properties, increasing its hydrolysis rate, changing the pH profile of its enzyme activity, shifting the range of its pH stability to the alkaline region, and raising its optimal temperature from 37 to 55 °C. Furthermore, chloride ion altered PYG's substrate specificity. PYG exhibited the highest Vmax/Km value toward maltooctaose in the absence of chloride ion and toward maltotriose in the presence of chloride ion.


Assuntos
Cloretos/metabolismo , alfa-Glucosidases/isolamento & purificação , Animais , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Pectinidae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Temperatura , alfa-Glucosidases/metabolismo
19.
J Biol Chem ; 289(26): 18067-75, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828502

RESUMO

2-O-α-Glucosylglycerol phosphorylase (GGP) from Bacillus selenitireducens catalyzes both the reversible phosphorolysis of 2-O-α-glucosylglycerol (GG) and the hydrolysis of ß-d-glucose 1-phosphate (ßGlc1P). GGP belongs to the glycoside hydrolase (GH) family 65 and can efficiently and specifically produce GG. However, its structural basis has remained unclear. In this study, the crystal structures of GGP complexed with glucose and the glucose analog isofagomine and glycerol were determined. Subsite -1 of GGP is similar to those of other GH65 enzymes, maltose phosphorylase and kojibiose phosphorylase, whereas subsite +1 is largely different and is well designed for GG recognition. An automated docking analysis was performed to complement these crystal structures, ßGlc1P being docked at an appropriate position. To investigate the importance of residues at subsite +1 in the bifunctionality of GGP, we constructed mutants at these residues. Y327F and K587A did not show detectable activities for either reverse phosphorolysis or ßGlc1P hydrolysis. Y572F also showed significantly reduced activities for both of these reactions. In contrast, W381F showed significantly reduced reverse phosphorolytic activity but retained ßGlc1P hydrolysis. The mode of substrate recognition and the reaction mechanisms of GGP were proposed based on these analyses. Specifically, an extensive hydrogen bond network formed by Tyr-327, Tyr-572, Lys-587, and water molecules contributes to fixing the acceptor molecule in both reverse phosphorolysis (glycerol) and ßGlc1P hydrolysis (water) for a glycosyl transfer reaction. This study will contribute to the development of a large scale production system of GG by facilitating the rational engineering of GGP.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Fosforilases/química , Sequência de Aminoácidos , Bacillus/química , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Glucosídeos/metabolismo , Ligação de Hidrogênio , Hidrólise , Cinética , Dados de Sequência Molecular , Fosforilases/genética , Fosforilases/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
20.
J Biol Chem ; 288(38): 27366-27374, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23943617

RESUMO

A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, ß-N-acetylhexosaminidase, exo-α-sialidase, and endo-ß-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of ß-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where ß-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where ß-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of ß-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-ß-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and ß-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Glucanos/metabolismo , Fosforilases/metabolismo , Acetilglucosamina/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Bacteroides/genética , Transporte Biológico Ativo/fisiologia , Glucanos/genética , Família Multigênica/fisiologia , Fosforilases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa