Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785359

RESUMO

The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.


Assuntos
Membrana Celular/metabolismo , Plantas/metabolismo , Esfingolipídeos/metabolismo , Biofísica , Polissacarídeos/metabolismo , Especificidade da Espécie , Esfingolipídeos/química
2.
Langmuir ; 36(6): 1474-1483, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31904979

RESUMO

The deposition of cellulose nanocrystals (CNCs) on a supported lipid bilayer (SLB) was investigated at different length scales. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to probe the bilayer formation and to show for the first time the CNC deposition onto the SLB. Specifically, classical QCM-D measurements gave estimation of the adsorbed hydrated mass and the corresponding film thickness, whereas complementary experiments using D2O as the solvent allowed the quantitative determination of the hydration of the CNC layer, showing a high hydration value. Scanning force microscopy (SFM) and total internal reflection fluorescence microscopy (TIRF) were used to probe the homogeneity of the deposited layers, revealing the structural details at the particle and film length scales, respectively, thus giving information on the effect of CNC concentration on the surface coverage. The results showed that the adsorption of CNCs on the supported lipid membrane depended on lipid composition, CNC concentration, and pH conditions, and that the binding process was governed by electrostatic interactions. Under suitable conditions, a uniform film was formed, with thickness corresponding to a CNC monolayer, which provides the basis for a relevant 2D model of a primary plant cell wall.


Assuntos
Celulose , Nanopartículas , Adsorção , Bicamadas Lipídicas , Técnicas de Microbalança de Cristal de Quartzo
3.
Mol Microbiol ; 107(4): 542-557, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29243866

RESUMO

Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biomineralização , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/enzimologia , Alelos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Difusão Dinâmica da Luz , Óxido Ferroso-Férrico/química , Magnetossomos/química , Magnetospirillum/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos , Difração de Raios X
4.
Biomacromolecules ; 18(9): 2918-2927, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28799758

RESUMO

The interaction of 1,2 dioleolyl-sn-glycero-3-phosphatidylcholine (DOPC) vesicles with cellulose nanocrystals (CNCs) using several complementary techniques. Dynamic light scattering, zeta-potential, cryo-transmission electron microscopy and isothermal titration calorimetry (ITC) analyses confirmed the formation of pH-dependent CNC-liposome complexes. ITC was used to characterize the thermodynamic properties of this interaction. Positive values of enthalpy were found at pH lower than 5 where the charge sign of the constituents was opposite. The association was more pronounced at lower pH, as indicated by the higher values of association constant. We suggest that the positive enthalpy is derived from the release of counterions from the particle hydration shell during the association and that the charge of the vesicles plays a significant role in this interaction.


Assuntos
Celulose/química , Lipossomos/química , Nanopartículas/química , Fosfatidilcolinas/química , Concentração de Íons de Hidrogênio
5.
Biomacromolecules ; 17(1): 262-70, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26667190

RESUMO

Elastin-like peptides (ELPs) have been used widely to confer thermoresponsive characteristics onto various materials, but to this point mostly linear ELPs have been studied. A class of linear and dendritic (branched) ELPs based on the GLPGL pentamer repeat unit was synthesized using an on-resin divergent strategy. The effect of peptide topology on the transition temperature (Tt) was examined using circular dichroism to study the peptide secondary structure transition and turbidity to measure the macroscopic phase transition (coacervation). Secondary structure transitions showed no dependence on topology, but a higher Tt was observed for dendritic peptides than for linear peptides with the same number of GLPGL repeats. The data support a phase transition model that consists of two neighboring processes: a secondary structure transition, related to intramolecular interactions, followed by coacervation, associated with intermolecular interactions.


Assuntos
Peptídeos/química , Peptídeos/síntese química , Transição de Fase , Temperatura de Transição , Sequência de Aminoácidos , Dicroísmo Circular , Elastina/química , Conformação Proteica , Estrutura Secundária de Proteína
6.
Beilstein J Org Chem ; 11: 1469-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425203

RESUMO

Differential scanning calorimetry (DSC) analysis of ring opening methatesis polymerization (ROMP) derived polydicyclopentadiene (PDCPD) revealed an unexpected thermal behavior. A recurring exothermic signal can be observed in the DSC analysis after an elapsed time period. This exothermic signal was found to be proportional to the resting period and was accompanied by a constant increase in the glass-transition temperature. We hypothesize that a relaxation mechanism within the cross-linked scaffold, together with a long-lived stable ruthenium alkylidene species are responsible for the observed phenomenon.

7.
ACS Synth Biol ; 11(10): 3516-3528, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194500

RESUMO

The cell wall constitutes a fundamental structural component of plant cells, providing them with mechanical resistance and flexibility. Mimicking this wall is a critical step in the conception of an experimental model of the plant cell. The assembly of cellulose/hemicellulose in the form of cellulose nanocrystals and xyloglucans as a representative model of the plant cell wall has already been mastered; however, these models lacked the pectin component. In this work, we used an engineered chimeric protein designed for bridging pectin to the cellulose/hemicellulose network, therefore achieving the assembly of complete cell wall mimics. We first engineered a carbohydrate-binding module from Ruminococcus flavefaciens able to bind oligogalacturonan, resulting in high-affinity polygalacturonan receptors with Kd in the micromolar range. A Janus protein, with cell wall gluing property, was then designed by assembling this carbohydrate-binding module with a Ralstonia solanacearum lectin specific for fucosylated xyloglucans. The resulting supramolecular architecture is able to bind fucose-containing xyloglucans and homogalacturonan, ensuring high affinity for both. A two-dimensional assembly of an artificial plant cell wall was then built first on synthetic polymer and then on the supported lipid bilayer. Such an artificial cell wall can serve as a basis for the development of plant cell mechanical models and thus deepen the understanding of the principles underlying various aspects of plant cells and tissues.


Assuntos
Bicamadas Lipídicas , Células Vegetais , Células Vegetais/metabolismo , Bicamadas Lipídicas/metabolismo , Fucose/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Pectinas/análise , Pectinas/química , Pectinas/metabolismo , Celulose/metabolismo , Lectinas/análise , Lectinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
8.
Sci Rep ; 6: 31933, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550551

RESUMO

Cation diffusion facilitators (CDF) are highly conserved, metal ion efflux transporters that maintain divalent transition metal cation homeostasis. Most CDF proteins contain two domains, the cation transporting transmembrane domain and the regulatory cytoplasmic C-terminal domain (CTD). MamM is a magnetosome-associated CDF protein essential for the biomineralization of magnetic iron-oxide particles in magnetotactic bacteria. To investigate the structure-function relationship of CDF cytoplasmic domains, we characterized a MamM M250P mutation that is synonymous with the disease-related mutation L349P of the human CDF protein ZnT-10. Our results show that the M250P exchange in MamM causes severe structural changes in its CTD resulting in abnormal reduced function. Our in vivo, in vitro and in silico studies indicate that the CTD fold is critical for CDF proteins' proper function and support the previously suggested role of the CDF cytoplasmic domain as a CDF regulatory element. Based on our results, we also suggest a mechanism for the effects of the ZnT-10 L349P mutation in human.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mutação , Transportador 8 de Zinco/química , Transportador 8 de Zinco/genética , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Clonagem Molecular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Transportador 8 de Zinco/metabolismo
9.
ACS Macro Lett ; 4(1): 43-47, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596398

RESUMO

Dynamic control over supramolecular interactions using various stimuli continues to drive the development of smart materials. We describe here the extension of dynamic self-assembly to a self-assembled hierarchical structure. A peptide amphiphile (PA) was designed with a photocleavable nitrobenzyl ester component such that it would undergo a sphere-to-cylinder transition upon irradiation, as confirmed by cryogenic transmission electron microscopy and small-angle X-ray scattering (SAXS). The photocleavable PA was then tested in the formation of a macroscopic sac made through a complex hierarchical self-assembly process between PA and hyaluronic acid. The microstructure of the resulting sac has previously been noted to depend dramatically on the geometry of the PA nanostructure. Photolysis of the PA solution during sac formation led to a sac microstructure that displayed characteristics of sacs made with both cylinder-forming PAs and sphere-forming PAs, as measured by scanning electron microscopy and SAXS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa