Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 152(4): 2082, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319263

RESUMO

Numerous studies have performed in vitro ultrasonic measurements of cancellous bone in water to develop techniques for ultrasonic bone assessment. Because cancellous bone is a highly porous medium, ultrasonic reflections at the water-bone interface may be frequency dependent. The goal of this study was to investigate the effect of porosity on the frequency dependence of the reflected power. Ultrasonic measurements were performed in a water tank at room temperature on 15 specimens of cancellous bone prepared from the proximal end of 9 human femurs using single element, broadband transducers with center frequencies of 3.5, 5, 7.5, and 10 MHz. Power spectra of pulses reflected from the water-specimen interface were corrected for the frequency response of the measurement system to obtain the reflected power in decibels RdB(f). To suppress random phase cancellation effects, RdB(f) was averaged over multiple sites on multiple specimens. A frequency dependence of RdB(f) was observed in the 2.6-10 MHz range. The frequency dependence was moderate, with a maximum change of less than 6 dB over the entire frequency range. RdB(f) was greatest for low porosity specimens. The frequency averaged intensity reflection coefficient ranged from 7.4 × 10-4 to 7.8 × 10-3 for high and low porosity specimen groups, respectively.


Assuntos
Osso Esponjoso , Ultrassom , Humanos , Ultrassom/métodos , Osso Esponjoso/diagnóstico por imagem , Água , Ultrassonografia/métodos , Espalhamento de Radiação
2.
Ultrasonics ; 124: 106742, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35381523

RESUMO

Brain is inhomogeneous due to its composition of different tissue types (gray and white matter), anatomical structures (e.g. thalamus and cerebellum), and cavities in the brain (ventricles). These inhomogeneities lead to spatial variations in the ultrasonic properties of the organ. The goal of this study is to characterize the spatial variation of the speed of ultrasound and frequency slope of attenuation in fixed sheep brain. 1-cm-thick slices of tissue from the coronal, sagittal and transverse cardinal planes were prepared from 12 brains. Ultrasonic measurements were performed using broadband transducers with center frequencies of 3.5, 5.0, 7.5 and 10 MHz. By mechanically scanning the transducers over the specimens, two-dimensional maps of the speed of sound (SOS) and frequency slope of attenuation (FSA) were produced. Measured values for the spatial mean and standard deviation of FSA ranged between 0.59 and 0.81 dB/cm·MHz and 0.29-0.60 dB/cm·MHz, respectively, depending on the specimen and transducer frequency. Measured values for the spatial mean and standard deviation of SOS ranged from 1532-1541 m/s and 10-14 m/s, respectively. Detailed, two-dimensional maps of FSA and SOS were produced, representing the first such characterization of the spatial variation of the ultrasonic properties of normal mammalian brain.


Assuntos
Som , Ultrassom , Animais , Encéfalo/diagnóstico por imagem , Mamíferos , Imagens de Fantasmas , Ovinos , Ultrassonografia
3.
Ultrasound Med Biol ; 48(6): 997-1009, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35282987

RESUMO

Ultrasonic techniques are being developed to detect changes in cancellous bone caused by osteoporosis. The goal of this study was to test the relative in vivo performance of eight backscatter parameters developed over the last several years for ultrasonic bone assessment: apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter (FIAB), normalized mean of the backscatter difference (nMBD), normalized slope of the backscatter difference (nSBD), normalized intercept of the backscatter difference (nIBD), normalized backscatter amplitude ratio (nBAR) and backscatter amplitude decay constant (BADC). Backscatter measurements were performed on the left and right femoral necks of 80 adult volunteers (age = 25 ± 11 y) using an imaging system equipped with a convex array transducer. For comparison, additional ultrasonic measurements were performed at the left and right heel using a commercially available heel-bone ultrasonometer that measured the stiffness index. Six of the eight backscatter parameters (all but nSBD and nIBD) exhibited similar and highly significant (p < 0.000001) left-right correlations (0.51 ≤ R ≤ 0.68), indicating sensitivity to naturally occurring variations in bone tissue. Left-right correlations for the stiffness index measured at the heel (R = 0.75) were not significantly better than those produced by AIB, FSAB and FIAB. The short-term precisions of AIB, nMBD, nBAR and BADC (7.8%-11.7%) were comparable to that of the stiffness index measured with the heel-bone ultrasonometer (7.5%).


Assuntos
Colo do Fêmur , Ultrassom , Adolescente , Adulto , Densidade Óssea , Colo do Fêmur/diagnóstico por imagem , Humanos , Espalhamento de Radiação , Ultrassom/métodos , Ultrassonografia/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa