Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Tetrahedron ; 72(40): 6091-6098, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28190897

RESUMO

Recently, we reported a directed evolution method which enabled us to discover sequences of glycopeptides that bind with picomolar affinity to HIV antibody 2G12 and are of interest as HIV vaccine candidates. In this manuscript, we describe the syntheses of several of these large (~11-12 kDa) glycopeptides by a combination of fast flow peptide synthesis and click chemistry. We also discuss the optimization of their attachment to carrier protein CRM197, affording antigenic and immunogenic conjugates ready for animal vaccination.

2.
Acta Crystallogr C ; 69(Pt 2): 183-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23377688

RESUMO

The structure of the title compound, C(7)H(6)BNO(3), a new boron heterocycle, prepared by the condensation of (2-ethoxycarbonylphenyl)boronic acid and hydroxylamine, reveals the specific mode of intramolecular condensation between a phenylboronic acid and an ortho hydroxamic acid substituent. The crystal structure shows that dehydration occurs to form a planar oxazaborinine ring possessing both phenol-like B-O-H and lactam functional groups. In the extended structure, intermolecular hydrogen bonding generates a 14-membered ring. To our knowledge, this is the first crystal structure determination involving a six-membered ring that exhibits consecutive B-OH, O, NH, and C=O functional groups.

3.
Nat Commun ; 14(1): 6710, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872202

RESUMO

The HIV-1 entry inhibitor temsavir prevents the viral receptor CD4 (cluster of differentiation 4) from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this, temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveals that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad antiviral activity.


Assuntos
Fármacos Anti-HIV , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Fármacos Anti-HIV/uso terapêutico , Proteína gp120 do Envelope de HIV/genética
4.
Front Immunol ; 14: 1178355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334379

RESUMO

SARS-CoV-2, the virus behind the COVID-19 pandemic, has changed over time to the extent that the current virus is substantially different from what originally led to the pandemic in 2019-2020. Viral variants have modified the severity and transmissibility of the disease and continue do so. How much of this change is due to viral fitness versus a response to immune pressure is hard to define. One class of antibodies that continues to afford some level of protection from emerging variants are those that closely overlap the binding site for angiotensin-converting enzyme 2 (ACE2) on the receptor binding domain (RBD). Some members of this class that were identified early in the course of the pandemic arose from the VH 3-53 germline gene (IGHV3-53*01) and had short heavy chain complementarity-determining region 3s (CDR H3s). Here, we describe the molecular basis of the SARS-CoV-2 RBD recognition by the anti-RBD monoclonal antibody CoV11 isolated early in the COVID-19 pandemic and show how its unique mode of binding the RBD determines its neutralization breadth. CoV11 utilizes a heavy chain VH 3-53 and a light chain VK 3-20 germline sequence to bind to the RBD. Two of CoV11's four heavy chain changes from the VH 3-53 germline sequence, ThrFWR H128 to Ile and SerCDR H131 to Arg, and some unique features in its CDR H3 increase its affinity to the RBD, while the four light chain changes from the VK 3-20 germline sequence sit outside of the RBD binding site. Antibodies of this type can retain significant affinity and neutralization potency against variants of concern (VOCs) that have diverged significantly from original virus lineage such as the prevalent omicron variant. We also discuss the mechanism by which VH 3-53 encoded antibodies recognize spike antigen and show how minimal changes to their sequence, their choice of light chain, and their mode of binding influence their affinity and impact their neutralization breadth.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Família Multigênica , Anticorpos
5.
iScience ; 26(1): 105783, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36514310

RESUMO

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

6.
Cancer Epidemiol Biomarkers Prev ; 31(3): 543-553, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933959

RESUMO

BACKGROUND: It is unknown whether the risk of thyroid cancer differs among metabolically healthy/unhealthy, normal-weight, or obese women. We aimed to assess the association of metabolic health and obesity with thyroid cancer risk. METHODS: The Korean Genome and Epidemiology Study is a population-based prospective cohort study. Data were obtained from 173,343 participants (age ≥40 years) enrolled from 2004 to 2013. Obese participants were those with body mass index (BMI) ≥25 kg/m2. Participants with abnormalities in three of these indices were considered metabolically unhealthy: triglycerides, blood pressure, high-density lipoprotein cholesterol (HDL-cholesterol), waist circumference (WC), and fasting glucose levels. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for thyroid cancer risk associated with metabolic health and obesity. RESULTS: Compared with nonobese women without metabolic abnormalities, metabolically unhealthy women, either normal weight or obese, had an increased risk of thyroid cancer [HR (95% CI) = 1.57 (1.02-2.40) and 1.71 (1.21-2.41), respectively). Significant association was not observed in men. Thyroid cancer risk was higher among nonobese women with high WC [≥85 cm; HR (95% CI) = 1.62 (1.03-2.56)] than in nonobese women with low WC, and in obese women with low HDL-cholesterol [<50 mg/dL; HR (95% CI) = 1.75 (1.26-2.42)] compared with nonobese women with high HDL-cholesterol. CONCLUSIONS: Metabolically unhealthy women or women with central adiposity may be at an increased thyroid cancer risk despite normal BMI. IMPACT: This study suggests that women with central obesity and metabolic abnormality despite normal BMI may constitute a target group for thyroid cancer prevention and control programs.


Assuntos
Hipercolesterolemia , Síndrome Metabólica , Neoplasias da Glândula Tireoide , Adulto , Índice de Massa Corporal , Colesterol , Feminino , Humanos , Masculino , Síndrome Metabólica/complicações , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade Abdominal/complicações , Obesidade Abdominal/epidemiologia , Estudos Prospectivos , República da Coreia/epidemiologia , Fatores de Risco , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/etiologia
7.
Front Immunol ; 13: 960411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131913

RESUMO

Fc mediated effector functions of antibodies play important roles in immunotherapies and vaccine efficacy but assessing those functions in animal models can be challenging due to species differences. Rhesus macaques, Macaca mulatta (Mm) share approximately 93% sequence identity with humans but display important differences in their adaptive immune system that complicates their use in validating therapeutics and vaccines that rely on Fc effector functions. In contrast to humans, macaques only have one low affinity FcγRIII receptor, CD16, which shares a polymorphism at position 158 with human FcγRIIIa with Ile158 and Val158 variants. Here we describe structure-function relationships of the Ile/Val158 polymorphism in Mm FcγRIII. Our data indicate that the affinity of the allelic variants of Mm FcγRIII for the macaque IgG subclasses vary greatly with changes in glycan composition both on the Fc and the receptor. However, unlike the human Phe/Val158 polymorphism in FcγRIIIa, the higher affinity variant corresponds to the larger, more hydrophobic side chain, Ile, even though it is not directly involved in the binding interface. Instead, this side chain appears to modulate glycan-glycan interactions at the Fc/FcγRIII interface. Furthermore, changes in glycan composition on the receptor have a greater effect for the Val158 variant such that with oligomannose type glycans and with glycans only on Asn45 and Asn162, Val158 becomes the variant with higher affinity to Fc. These results have implications not only for the better interpretation of nonhuman primate studies but also for studies performed with human effector cells carrying different FcγRIIIa alleles.


Assuntos
Imunoglobulina G , Polissacarídeos , Animais , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Macaca mulatta , Polissacarídeos/metabolismo , Receptores de IgG/imunologia
8.
Sci Adv ; 8(28): eabn4188, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857504

RESUMO

Soluble angiotensin-converting enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses using ACE2 as their receptor. Using structure-guided approaches, we developed a series of bivalent ACE2-Fcs harboring functionally and structurally validated mutations that enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain recognition by up to ~12-fold and remove angiotensin enzymatic activity. The lead variant M81 potently cross-neutralized SARS-CoV-2 variants of concern (VOCs), including Omicron, at subnanomolar half-maximal inhibitory concentration and was capable of robust Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition. When tested in a stringent K18-hACE2 mouse model, Fc-enhanced ACE2-Fc delayed death by 3 to 5 days or effectively resolved lethal SARS-CoV-2 infection in both prophylactic and therapeutic settings via the combined effects of neutralization and Fc-effector functions. These data add to the demonstrated utility of soluble ACE2 as a valuable SARS-CoV-2 antiviral and indicate that Fc-effector functions may constitute an important component of ACE2-Fc therapeutic activity.

9.
mBio ; 12(4): e0127421, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281393

RESUMO

The first step in HIV-1 entry is the attachment of the envelope (Env) trimer to target cell CD4. As such, the CD4-binding site (CD4bs) remains one of the few universally accessible sites for antibodies (Abs). We recently described a method of isolating Abs directly from the circulating plasma and described a panel of broadly neutralizing Abs (bnAbs) from an HIV-1 "elite neutralizer" referred to as patient N49 (N49 Ab lineage [M. M. Sajadi, A. Dashti, Z. R. Tehrani, W. D. Tolbert, et al., Cell 173:1783-1795.e14, 2018, https://doi.org/10.1016/j.cell.2018.03.061]). Here, we describe the molecular details of antigen recognition by N49P6, an Ab of the N49 lineage that recapitulates most of the neutralization breadth and potency of the donor's plasma IgG. Our studies done in the context of monomeric and trimeric antigens indicate that N49P6 combines many characteristics of known CD4bs-specific bnAbs with features that are unique to the N49 Ab lineage to achieve its remarkable neutralization breadth. These include the omission of the CD4 Phe43 cavity and dependence instead on interactions with highly conserved gp120 inner domain layer 3. Interestingly, when bound to BG505 SOSIP, N49P6 closely mimics the initial contact of host receptor CD4 to the adjacent promoter of the HIV-1 Env trimer to lock the trimer in the closed conformation. Altogether, N49P6 defines a new class of near-pan-neutralizing, plasma deconvoluted CD4bs Abs that we refer to as the N49P series. The details of the mechanisms of action of this new Ab class pave the way for the next generation of HIV-1 bnAbs that can be used as vaccine components of therapeutics. IMPORTANCE Binding to target cell CD4 is the first crucial step required for HIV-1 infection. Thus, the CD4-binding site (CD4bs) is one of the most accessible sites for antibodies (Abs). However, due to steric constraints, only a few Abs are capable of targeting this site. Here, we show that the exceptional neutralization breadth and potency of N49P6, a near-pan-neutralizing Ab targeting the CD4bs isolated from the plasma of an HIV-1 "elite neutralizer," patient N49, are due to its signature combination of more typical CD4bs Ab-binding characteristics with unique interactions with the highly conserved gp120 inner domain. In addition, we also present a structural analysis of N49P6 in complex with the BG505 SOSIP trimer to show that N49P6 exhibits remarkable breadth in part by mimicking CD4's quaternary interaction with the neighboring gp120 protomer. In its mode of antigen interaction, N49P6 is unique and represents a new class of CD4bs-specific bnAbs.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Antígenos CD4/metabolismo , Epitopos/metabolismo , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Sítios de Ligação de Anticorpos , Antígenos CD4/imunologia , Cristalização , Epitopos/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Testes de Neutralização , Multimerização Proteica
10.
Cancers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066036

RESUMO

NKX3.1's downregulation is strongly associated with prostate cancer (PCa) initiation, progression, and CRPC development. Nevertheless, a clear disagreement exists between NKX3.1 protein and mRNA levels in PCa tissues, indicating that its regulation at a post-translational level plays a vital role. This study identified a strong negative relationship between NKX3.1 and LIMK2, which is critical in CRPC pathogenesis. We identified that NKX3.1 degradation by direct phosphorylation by LIMK2 is crucial for promoting oncogenicity in CRPC cells and in vivo. LIMK2 also downregulates NKX3.1 mRNA levels. In return, NKX3.1 promotes LIMK2's ubiquitylation. Thus, the negative crosstalk between LIMK2-NKX3.1 regulates AR, ARv7, and AKT signaling, promoting aggressive phenotypes. We also provide a new link between NKX3.1 and PTEN, both of which are downregulated by LIMK2. PTEN loss is strongly linked with NKX3.1 downregulation. As NKX3.1 is a prostate-specific tumor suppressor, preserving its levels by LIMK2 inhibition provides a tremendous opportunity for developing targeted therapy in CRPC. Further, as NKX3.1 downregulates AR transcription and inhibits AKT signaling, restoring its levels by inhibiting LIMK2 is expected to be especially beneficial by co-targeting two driver pathways in tandem, a highly desirable requisite for developing effective PCa therapeutics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa