Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell Mol Life Sci ; 80(5): 133, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185787

RESUMO

The pharmacological activation of the GPR39 receptor has been proposed as a novel strategy for treating seizures; however, this hypothesis has not been verified experimentally. TC-G 1008 is a small molecule agonist increasingly used to study GPR39 receptor function but has not been validated using gene knockout. Our aim was to assess whether TC-G 1008 produces anti-seizure/anti-epileptogenic effects in vivo and whether the effects are mediated by GPR39. To obtain this goal we utilized various animal models of seizures/epileptogenesis and GPR39 knockout mice model. Generally, TC-G 1008 exacerbated behavioral seizures. Furthermore, it increased the mean duration of local field potential recordings in response to pentylenetetrazole (PTZ) in zebrafish larvae. It facilitated the development of epileptogenesis in the PTZ-induced kindling model of epilepsy in mice. We demonstrated that TC-G 1008 aggravated PTZ-epileptogenesis by selectively acting at GPR39. However, a concomitant analysis of the downstream effects on the cyclic-AMP-response element binding protein in the hippocampus of GPR39 knockout mice suggested that the molecule also acts via other targets. Our data argue against GPR39 activation being a viable therapeutic strategy for treating epilepsy and suggest investigating whether TC-G 1008 is a selective agonist of the GPR39 receptor.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Epilepsia/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Pentilenotetrazol/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629132

RESUMO

The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of Schisandra chinensis extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous pentylenetetrazole test in mice. Schisandrin B crosses the blood-brain barrier, which we confirmed in our in silico and in vivo analyses; however, the low level of its unbound fraction in the mouse brain tissue may explain the observed lack of anticonvulsant activity. Molecular docking revealed that the anticonvulsant activity of the compound in larval zebrafish might have been due to its binding to a benzodiazepine site within the GABAA receptor and/or the inhibition of the glutamate NMDA receptor. Although schisandrin B showed a beneficial anticonvulsant effect, toxicological studies revealed that it caused serious developmental impairment in zebrafish larvae, underscoring its teratogenic properties. Further detailed studies are needed to precisely identify the properties, pharmacological effects, and safety of schisandrin B.


Assuntos
Anticonvulsivantes , Peixe-Zebra , Animais , Camundongos , Anticonvulsivantes/toxicidade , Simulação de Acoplamento Molecular , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Ácido Glutâmico , Larva , Receptores de GABA-A
3.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175220

RESUMO

In contrast to the other components of the medium-chain triglycerides ketogenic diet (MCT KD), i.e., caprylic acid (CA8), a comprehensive evaluation of caproic (CA6) and lauric acids' (CA12) properties in standard chemical and electrical seizure tests in mice has not yet been performed. We investigated their effects in maximal electroshock seizure threshold (MEST), 6 Hz seizure threshold and intravenous (i.v.) pentylenetetrazole (PTZ) seizure tests. Since ketone body production can be regulated by the activation of 5'AMP-activated protein kinase (AMPK), we hypothesized that metformin (an AMPK activator) enhance ketogenesis and would act synergistically with the fatty acids to inhibit convulsions. We assessed the effects of acute and chronic co-treatment with metformin and CA6/CA8 on seizures. CA6 and CA12 (p.o.) increased seizure threshold in the 6 Hz seizure test. CA6 at the highest tested dose (30 mmol/kg) developed toxicity in several mice, impaired motor performance and induced ketoacidosis. Acute and chronic co-treatment with metformin and CA6/CA8 did not affect seizure thresholds. Moreover, we observed the pro-convulsive effect of the acute co-administration of CA8 (5 mmol/kg) and metformin (100 mg/kg). Since this co-treatment was pro-convulsive, the safety profile and risk/benefit ratio of MCT KD and metformin concomitant therapy in epileptic patients should be further evaluated.


Assuntos
Epilepsia , Metformina , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP , Convulsões/induzido quimicamente , Epilepsia/tratamento farmacológico , Pentilenotetrazol/efeitos adversos , Eletrochoque/efeitos adversos , Relação Dose-Resposta a Droga , Modelos Animais de Doenças
4.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299361

RESUMO

Zingiber officinale is one of the most frequently used medicinal herbs in Asia. Using rodent seizure models, it was previously shown that Zingiber officinale hydroethanolic extract exerts antiseizure activity, but the active constituents responsible for this effect have not been determined. In this paper, we demonstrated that Zingiber officinale methanolic extract exerts anticonvulsant activity in the pentylenetetrazole (PTZ)-induced hyperlocomotion assay in larval zebrafish. Next, we isolated 6-gingerol (6-GIN)-a major constituent of Zingiber officinale rhizoma. We observed that 6-GIN exerted potent dose-dependent anticonvulsant activity in the PTZ-induced hyperlocomotion seizure assay in zebrafish, which was confirmed electroencephalographically. To obtain further insight into the molecular mechanisms of 6-GIN antiseizure activity, we assessed the concentration of two neurotransmitters in zebrafish, i.e., inhibitory γ-aminobutyric acid (GABA) and excitatory glutamic acid (GLU), and their ratio after exposure to acute PTZ dose. Here, 6-GIN decreased GLU level and reduced the GLU/GABA ratio in PTZ-treated fish compared with only PTZ-bathed fish. This activity was associated with the decrease in grin2b, but not gabra1a, grin1a, gria1a, gria2a, and gria3b expression in PTZ-treated fish. Molecular docking to the human NR2B-containing N-methyl-D-aspartate (NMDA) receptor suggests that 6-GIN might act as an inhibitor and interact with the amino terminal domain, the glutamate-binding site, as well as within the ion channel of the NR2B-containing NMDA receptor. In summary, our study reveals, for the first time, the anticonvulsant activity of 6-GIN. We suggest that this effect might at least be partially mediated by restoring the balance between GABA and GLU in the epileptic brain; however, more studies are needed to prove our hypothesis.


Assuntos
Anticonvulsivantes/farmacologia , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Pentilenotetrazol/farmacologia , Extratos Vegetais/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Zingiber officinale/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/metabolismo , Peixe-Zebra , Ácido gama-Aminobutírico/metabolismo
5.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884898

RESUMO

We report herein a series of water-soluble analogues of previously described anticonvulsants and their detailed in vivo and in vitro characterization. The majority of these compounds demonstrated broad-spectrum anticonvulsant properties in animal seizure models, including the maximal electroshock (MES) test, the pentylenetetrazole-induced seizure model (scPTZ), and the psychomotor 6 Hz (32 mA) seizure model in mice. Compound 14 showed the most robust anticonvulsant activity (ED50 MES = 49.6 mg/kg, ED50 6 Hz (32 mA) = 31.3 mg/kg, ED50scPTZ = 67.4 mg/kg). Notably, it was also effective in the 6 Hz (44 mA) model of drug-resistant epilepsy (ED50 = 63.2 mg/kg). Apart from favorable anticonvulsant properties, compound 14 revealed a high efficacy against pain responses in the formalin-induced tonic pain, the capsaicin-induced neurogenic pain, as well as in the oxaliplatin-induced neuropathic pain in mice. Moreover, compound 14 showed distinct anti-inflammatory activity in the model of carrageenan-induced aseptic inflammation. The mechanism of action of compound 14 is likely complex and may result from the inhibition of peripheral and central sodium and calcium currents, as well as the TRPV1 receptor antagonism as observed in the in vitro studies. This lead compound also revealed beneficial in vitro ADME-Tox properties and an in vivo pharmacokinetic profile, making it a potential candidate for future preclinical development. Interestingly, the in vitro studies also showed a favorable induction effect of compound 14 on the viability of neuroblastoma SH-SY5Y cells.


Assuntos
Acetamidas/administração & dosagem , Analgésicos/administração & dosagem , Anticonvulsivantes/administração & dosagem , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Dor/tratamento farmacológico , Convulsões/tratamento farmacológico , Acetamidas/farmacologia , Administração Intravenosa , Analgésicos/química , Analgésicos/farmacologia , Animais , Anticonvulsivantes/farmacologia , Canais de Cálcio/metabolismo , Capsaicina/efeitos adversos , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/metabolismo , Eletrochoque/efeitos adversos , Formaldeído/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Oxaliplatina/efeitos adversos , Dor/induzido quimicamente , Dor/metabolismo , Pentilenotetrazol/efeitos adversos , Convulsões/etiologia , Convulsões/metabolismo , Canais de Sódio/metabolismo , Canais de Cátion TRPV/metabolismo
6.
Neurochem Res ; 44(5): 1043-1055, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30689162

RESUMO

Pterostilbene (PTE), a natural dimethylated analog of resveratrol, possesses numerous health-beneficial properties. The ability of PTE to cross the blood-brain barrier raised the possibility that this compound may modulate central nervous system functions, including seizure activity. The aim of our study was to investigate the activity of PTE in the larval zebrafish pentylenetetrazole (PTZ) seizure assay and three acute seizure tests in mice, i.e., in the maximal electroshock seizure threshold (MEST), 6 Hz-induced psychomotor seizure threshold and intravenous (iv) PTZ tests. Additionally, potential antidepressant activity of PTE was estimated in the forced swim test in mice. The chimney test was used to determine the influence of PTE on motor coordination in mice, while its influence on neuromuscular strength was assessed in the grip strength test in mice. Locomotor activity was determined to verify the results from the forced swim test. PTE revealed an evident anticonvulsant effect both in zebrafish larvae (10 µM; 2 h-incubation) and mice (at doses of 100 and 200 mg/kg, intraperitoneally) but it did not exhibit antidepressant potential in the forced swim test. Furthermore, it did not cause any statistically significant changes in motor coordination, neuromuscular strength and locomotor activity in mice. In conclusion, our present findings demonstrate for the first time the anticonvulsant potential of PTE. The aforementioned results suggest that it might be employed in epilepsy treatment, however, further precise studies are required to verify its activity in other experimental seizure and epilepsy models and its precise mechanism of action should be determined.


Assuntos
Anticonvulsivantes/uso terapêutico , Força Muscular/efeitos dos fármacos , Convulsões/tratamento farmacológico , Estilbenos/farmacologia , Animais , Antidepressivos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Camundongos , Pentilenotetrazol/farmacologia , Convulsões/induzido quimicamente , Peixe-Zebra
7.
Neurochem Res ; 43(5): 995-1002, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29541930

RESUMO

Ursolic acid (UA) is a plant derived compound which is also a component of the standard human diet. It possesses a wide range of pharmacological properties, i.e., antioxidant, anti-inflammatory, antimicrobial and antitumor, which have been used in folk medicine for centuries. Moreover, influence of UA on central nervous system-related processes, i.e., pain, anxiety and depression, was proved in experimental studies. UA also revealed anticonvulsant properties in animal models of epilepsy and seizures. The aim of the present study was to investigate the influence of UA on seizure thresholds in three acute seizure models in mice, i.e., the 6 Hz-induced psychomotor seizure threshold test, the maximal electroshock threshold (MEST) test and the timed intravenous pentylenetetrazole (iv PTZ) infusion test. We also examined its effect on the muscular strength (assessed in the grip strength test) and motor coordination (estimated in the chimney test) in mice. UA at doses of 50 and 100 mg/kg significantly increased the seizure thresholds in the 6 Hz and MEST tests. The studied compound did not influence the seizure thresholds in the iv PTZ test. Moreover, UA did not affect the motor coordination and muscular strength in mice. UA displays only a weak anticonvulsant potential which is dependent on the used seizure model.


Assuntos
Anticonvulsivantes/farmacologia , Convulsões/prevenção & controle , Convulsões/fisiopatologia , Triterpenos/farmacologia , Animais , Convulsivantes , Relação Dose-Resposta a Droga , Eletrochoque , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Mioclonia/induzido quimicamente , Mioclonia/fisiopatologia , Pentilenotetrazol , Convulsões/induzido quimicamente , Ácido Ursólico
8.
Toxicol Appl Pharmacol ; 326: 43-53, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412310

RESUMO

Activation of Nrf2 with sulforaphane has recently gained attention as a new therapeutic approach in the treatment of many diseases, including epilepsy. As a plant-derived compound, sulforaphane is considered to be safe and well-tolerated. It is widely consumed, also by patients suffering from seizure and taking antiepileptic drugs, but no toxicity profile of sulforaphane exists. Since many natural remedies and dietary supplements may increase seizure risk and potentially interact with antiepileptic drugs, the aim of our study was to investigate the acute effects of sulforaphane on seizure thresholds and activity of some first- and second-generation antiepileptic drugs in mice. In addition, some preliminary toxicity profile of sulforaphane in mice after intraperitoneal injection was evaluated. The LD50 value of sulforaphane in mice was estimated at 212.67mg/kg, while the TD50 value - at 191.58mg/kg. In seizure tests, sulforaphane at the highest dose tested (200mg/kg) significantly decreased the thresholds for the onset of the first myoclonic twitch and generalized clonic seizure in the iv PTZ test as well as the threshold for the 6Hz-induced psychomotor seizure. At doses of 10-200mg/kg, sulforaphane did not affect the threshold for the iv PTZ-induced forelimb tonus or the threshold for maximal electroshock-induced hindlimb tonus. Interestingly, sulforaphane (at 100mg/kg) potentiated the anticonvulsant efficacy of carbamazepine in the maximal electroshock seizure test. This interaction could have been pharmacokinetic in nature, as sulforaphane increased concentrations of carbamazepine in both serum and brain tissue. The toxicity study showed that high doses of sulforaphane produced marked sedation (at 150-300mg/kg), hypothermia (at 150-300mg/kg), impairment of motor coordination (at 200-300mg/kg), decrease in skeletal muscle strength (at 250-300mg/kg), and deaths (at 200-300mg/kg). Moreover, blood analysis showed leucopenia in mice injected with sulforaphane at 200mg/kg. In conclusion, since sulforaphane was proconvulsant at a toxic dose, the safety profile and the risk-to-benefit ratio of sulforaphane usage in epileptic patients should be further evaluated.


Assuntos
Anticonvulsivantes/toxicidade , Encéfalo/efeitos dos fármacos , Isotiocianatos/toxicidade , Convulsões/induzido quimicamente , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletrochoque , Dose Letal Mediana , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Pentilenotetrazol , Desempenho Psicomotor/efeitos dos fármacos , Medição de Risco , Convulsões/sangue , Convulsões/fisiopatologia , Convulsões/prevenção & controle , Sulfóxidos , Fatores de Tempo
9.
Neurochem Res ; 42(11): 3114-3124, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28702712

RESUMO

Epilepsy is one of the most common neurological disorders which is diagnosed in around 65 million people worldwide. Clinically available antiepileptic drugs fail to control epileptic activity in about 30% of patients and they are merely symptomatic treatments and cannot cure or prevent epilepsy. There remains a need for searching new therapeutic strategies for epileptic disorders. The P2X7 receptor has been recently investigated as a new target in epilepsy treatment. Preclinical studies revealed that P2X7 receptor antagonists have anticonvulsant properties in some models of epilepsy. We aimed to investigate whether P2X7 receptor antagonist-brilliant blue G (BBG)-is able to change seizure threshold in three acute seizure models in mice, i.e., in the intravenous pentylenetetrazole seizure threshold, maximal electroshock seizure threshold and 6 Hz psychomotor seizure threshold tests. BBG was administered acutely (50-200 mg/kg, 30 min before the tests) and sub-chronically (25-100 mg/kg, once daily for seven consecutive days). Moreover, the chimney and grip strength tests were used to estimate the influence of BBG on the motor coordination and muscular strength in mice, respectively. Our results revealed only a week anticonvulsant potential of the studied P2X7 receptor antagonist because it showed anticonvulsant action only in the 6 Hz seizure test, both after acute and sub-chronic administration. BBG did not significantly influence seizure thresholds in the remaining tests. Motor coordination and muscular strength were not affected by the studied P2X7 receptor antagonist. In summary, BBG does not possess any remarkable anticonvulsant potential in acute seizure models in mice.


Assuntos
Anticonvulsivantes/uso terapêutico , Benzenossulfonatos/uso terapêutico , Eletrochoque/efeitos adversos , Pentilenotetrazol/toxicidade , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Infusões Intravenosas , Masculino , Camundongos , Pentilenotetrazol/administração & dosagem , Convulsões/etiologia , Convulsões/fisiopatologia , Resultado do Tratamento
10.
Metab Brain Dis ; 31(5): 1095-104, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283174

RESUMO

Sildenafil is a highly effective oral agent for the treatment of erectile dysfunction of multiple etiologies. Although in clinical practice sildenafil is often used in depressed patients, its influence on the pathophysiology of depression remains unclear. The aim of the present study was to evaluate the antidepressant-like activity following acute and subchronic treatment with sildenafil in naïve mice as well as in mice with reserpine- and restraint stress-induced depressive-like behavior. Since corticosterone is released in response to acute stress, we also aimed to assess the influence of sildenafil on serum corticosterone level in non-stressed and stressed animals. The antidepressant activity of sildenafil was assessed in the forced swim test. Corticosterone serum level was determined by using ELISA method, while brain and serum sildenafil level via HPLC method. Sildenafil administered acutely exerted an antidepressant-like effect. Subchronic (14 days) administration of sildenafil resulted only in a weak antidepressant-like effect when evaluated 24 h after the last dose. Acute but not subchronic sildenafil administration reversed the reserpine- and stress-induced immobility in the forced swim test. The lack of effects of sildenafil after subchronic treatment could have been related to its complete elimination from the brain within 24 h from the last injection. Interestingly, acute administration of sildenafil produced a marked increase in serum corticosterone level in both non-stressed and stressed animals. Sildenafil exerts differential effects in the forced swim test after acute and subchronic administration. Further studies on the antidepressant activity of sildenafil are required.


Assuntos
Antidepressivos/administração & dosagem , Monoaminas Biogênicas/metabolismo , Depressão/metabolismo , Atividade Motora/fisiologia , Citrato de Sildenafila/administração & dosagem , Estresse Psicológico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/psicologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Natação/psicologia , Resultado do Tratamento
11.
Metab Brain Dis ; 31(3): 631-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26821073

RESUMO

This study evaluates the neuropharmacological effects of the aqueous extract of the Mexican plant Calea zacatechichi Schltdl., which is commonly used in folk medicine to treat cough, asthma, and gastrointestinal disorders. Moreover, it has been used for centuries in traditional rituals based on divination and is thought to possess hallucinogenic activity. To test the neuropharmacological effects of the aqueous extract of C. zacatechichi we used mouse models of convulsions, an elevated plus-maze test and measured locomotor activity. We also evaluated the effect of the extract on antidepressant-like behavior in forced swim test, as well as on muscular strength in a grip test. Moreover the antinociceptive action of the extract was evaluated in the hot-plate and writhing tests. The chemical composition of the extract was evaluated using LC-MS techniques. The aqueous extract of C. zacatechichi did not affect any of the parameters measured in seizure models. It had also no influence on anxiety, exploratory behavior and muscular strength in the applied doses. On the other hand, the extract exhibited antinociceptive effect in the mouse model of abdominal pain. Chemical characterization of the extract showed the presence of chlorogenic acid, acacetin, and germacranolides. Based on this report we suggest that aqueous extract of C. zacatechichi has insignificant neuropharmacological effects in vivo and reduces abdominal pain perception. Our results, together with previous studies showing beneficial effects of the extracts obtained from C. zacatechichi suggest that these preparations may be used to treat medical conditions.


Assuntos
Asteraceae , Comportamento Animal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Masculino , Camundongos , Força Muscular/efeitos dos fármacos , Dor/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Convulsões/tratamento farmacológico
12.
J Neural Transm (Vienna) ; 122(9): 1239-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25764210

RESUMO

α-Spinasterol is a plant-derived compound which was reported to act as a selective antagonist for the transient receptor potential vanilloid 1 (TRPV1) receptor. Several studies revealed that the TRPV1 receptors might modulate seizure activity in animal models of seizures and epilepsy. The aim of the present study was to investigate the effect of α-spinasterol on the seizure threshold in three acute models of seizures, i.e., in the intravenous (i.v.) pentylenetetrazole (PTZ) seizure test, in the maximal electroshock seizure threshold (MEST) test and in the model of psychomotor seizures induced by 6 Hz stimulation in mice. Our results revealed significant anticonvulsant effect of α-spinasterol in all the used seizure tests. In the i.v. PTZ test, statistically significant elevation was noted in case of the threshold for myoclonic twitches (doses of 0.1-1 mg/kg) and generalized clonus seizures (doses of 0.5 and 1 mg/kg) but not for tonic seizures. The studied TRPV1 antagonist also increased the threshold for tonic hindlimb extension in the MEST (doses of 0.5 and 1 mg/kg) and 6 Hz psychomotor seizure (doses of 0.1 and 0.5 mg/kg) tests in mice. Furthermore, α-spinasterol did not produce any significant impairment of motor coordination (assessed in the chimney test) and muscular strength (investigated in the grip-strength test) and it did not provoke significant changes in body temperature in mice. Based on the results of our study and the fact that α-spinasterol is characterized by good blood-brain permeability, we postulate further investigation of this compound to precisely evaluate mechanism of its anticonvulsant action and opportunity of its usage in clinical practice.


Assuntos
Anticonvulsivantes/farmacologia , Convulsões/tratamento farmacológico , Estigmasterol/análogos & derivados , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Temperatura Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Pentilenotetrazol , Distribuição Aleatória , Convulsões/metabolismo , Estigmasterol/farmacologia , Canais de Cátion TRPV/metabolismo , Resultado do Tratamento
13.
Biomed Pharmacother ; 172: 116234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325264

RESUMO

Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.


Assuntos
Anticonvulsivantes , Alcaloides de Berberina , Epilepsia , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Peixe-Zebra , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Pentilenotetrazol/farmacologia
14.
ACS Chem Neurosci ; 15(11): 2198-2222, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38741575

RESUMO

In the present study, a series of original alaninamide derivatives have been designed applying a combinatorial chemistry approach, synthesized, and characterized in the in vivo and in vitro assays. The obtained molecules showed potent and broad-spectrum activity in basic seizure models, namely, the maximal electroshock (MES) test, the 6 Hz (32 mA) seizure model, and notably, the 6 Hz (44 mA) model of pharmacoresistant seizures. Most potent compounds 26 and 28 displayed the following pharmacological values: ED50 = 64.3 mg/kg (MES), ED50 = 15.6 mg/kg (6 Hz, 32 mA), ED50 = 29.9 mg/kg (6 Hz, 44 mA), and ED50 = 34.9 mg/kg (MES), ED50 = 12.1 mg/kg (6 Hz, 32 mA), ED50 = 29.5 mg/kg (6 Hz, 44 mA), respectively. Additionally, 26 and 28 were effective in the ivPTZ seizure threshold test and had no influence on the grip strength. Moreover, lead compound 28 was tested in the PTZ-induced kindling model, and then, its influence on glutamate and GABA levels in the hippocampus and cortex was evaluated by the high-performance liquid chromatography (HPLC) method. In addition, 28 revealed potent efficacy in formalin-induced tonic pain, capsaicin-induced pain, and oxaliplatin- and streptozotocin-induced peripheral neuropathy. Pharmacokinetic studies and in vitro ADME-Tox data proved favorable drug-like properties of 28. The patch-clamp recordings in rat cortical neurons showed that 28 at a concentration of 10 µM significantly inhibited fast sodium currents. Therefore, 28 seems to be an interesting candidate for future preclinical development in epilepsy and pain indications.


Assuntos
Analgésicos , Anticonvulsivantes , Convulsões , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/síntese química , Analgésicos/farmacologia , Convulsões/tratamento farmacológico , Masculino , Ratos , Camundongos , Modelos Animais de Doenças , Ratos Wistar , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Eletrochoque , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
15.
Cells ; 12(2)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672199

RESUMO

The G-protein coupled receptor 39 (GPR39) is gaining increasing attention as a target for future drugs, yet there are gaps in the understanding of its pharmacology. Zinc is an endogenous agonist or an allosteric modulator, while TC-G 1008 is a synthetic, small molecule agonist. Zinc is also a positive allosteric modulator for the activity of TC-G 1008 at GPR39. Activation of GPR39 by TC-G 1008 facilitated the development of epileptogenesis in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy. Congruently, TC-G 1008 decreased the seizure threshold in the maximal electroshock seizure threshold (MEST) test. Here, we investigated the effects of TC-G 1008 under the condition of zinc deficiency. Mice were fed a zinc-adequate diet (ZnA, 50 mg Zn/kg) or a zinc-deficient diet (ZnD, 3 mg Zn/kg) for 4 weeks. Following 4 weeks of dietary zinc restriction, TC-G 1008 was administered as a single dose and the MEST test was performed. Additional groups of mice began the PTZ-kindling model during which TC-G 1008 was administered repeatedly and the diet was continued. TC-G 1008 administered acutely decreased the seizure threshold in the MEST test in mice fed the ZnD diet but not in mice fed the ZnA diet. TC-G 1008 administered chronically increased the maximal seizure severity and the percentage of fully kindled mice in those fed the ZnA diet, but not in mice fed the ZnD diet. Our data showed that the amount of zinc in a diet is a factor contributing to the effects of TC-G 1008 in vivo.


Assuntos
Epilepsia , Pentilenotetrazol , Camundongos , Animais , Eletrochoque/efeitos adversos , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Zinco
16.
Front Mol Neurosci ; 16: 1221665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701853

RESUMO

Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").

17.
J Neural Transm (Vienna) ; 119(1): 1-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21638029

RESUMO

Clavulanic acid (CLAV) inhibits bacterial ß-lactamases and is commonly used to aid antibiotic therapy. Prompted by the initial evidence suggestive of the potential anticonvulsant and neuroprotective properties of CLAV, the present study was undertaken to systematically evaluate its acute effects on seizure thresholds in seizure tests typically used in primary screening of potential antiepileptic drugs (AEDs). In the present study, 6-Hz seizure threshold, maximal electroshock seizure threshold (MEST) test, and intravenous pentylenetetrazole (i.v. PTZ) seizure tests were used to determine anticonvulsant effects of intraperitoneally (i.p.) administered CLAV in mice. Acute effects on motor coordination and muscle strength were assessed in the chimney and grip-strength tests, respectively. Doses of CLAV studied in the present study were either comparable or extended the doses reported in the literature to be effective against kainic acid-induced convulsions in mice or behaviorally active in rodents and monkeys. CLAV had no effect on seizure thresholds in the 6-Hz (64 ng/kg to 1 mg/kg) and MEST (64 ng/kg to 5 mg/kg) seizure tests. Similarly, CLAV had no effect on seizure thresholds for i.v. PTZ-induced myoclonic twitch, clonic convulsions, and tonic convulsions (64 ng/kg to 5 mg/kg). Finally, CLAV (64 ng/kg to 5 mg/kg) had no effect on the motor performance and muscle strength in the chimney and grip-strength tests, respectively. In summary, CLAV failed to affect seizure thresholds in three seizure tests in mice. Although the results of the present study do not support further development of CLAV as an AED, its beneficial effects in chronic epilepsy models warrant further evaluation owing to its, for example, potential neuroprotective properties.


Assuntos
Ácido Clavulânico/uso terapêutico , Convulsões/tratamento farmacológico , Análise de Variância , Animais , Convulsivantes/toxicidade , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Inibidores Enzimáticos , Força da Mão , Masculino , Camundongos , Força Muscular/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Desempenho Psicomotor/efeitos dos fármacos , Convulsões/etiologia
18.
J Neural Transm (Vienna) ; 119(6): 645-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22215207

RESUMO

The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25-20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity.


Assuntos
Amitriptilina/farmacologia , Antidepressivos Tricíclicos/farmacologia , Desipramina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacologia , Sulfonas/farmacologia , Natação/psicologia , Amitriptilina/farmacocinética , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Depressão/tratamento farmacológico , Depressão/psicologia , Desipramina/farmacocinética , Interações Medicamentosas , Sinergismo Farmacológico , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Purinas/farmacologia , Escopolamina/farmacologia , Citrato de Sildenafila , Espectrofotometria Ultravioleta
19.
J Neural Transm (Vienna) ; 119(8): 923-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22315091

RESUMO

The aim of the present study was to investigate the effect of sildenafil, a selective phosphodiesterase 5 (PDE5) inhibitor, on threshold for clonic seizures in mice. In addition, the effects of sildenafil on the anticonvulsant activity of selected antiepileptic drugs (AEDs), i.e., clonazepam (CZP), valproate (VPA), phenobarbital (PB), ethosuximide (ETS) and tiagabine (TGB), were also evaluated. The subcutaneous pentylenetetrazole (PTZ) test was used to determine the effects of sildenafil on convulsive susceptibility and the anticonvulsant activity of the studied AEDs in mice, while the acute side effects of sildenafil and its combinations with the studied AEDs were evaluated in the chimney test, step-through passive-avoidance task and grip-strength test in mice. Total brain concentrations of AEDs were also determined. Sildenafil (5­40 mg/kg) did not influence the threshold for PTZ-induced clonic seizures in mice, but increased the anticonvulsant activity of ETS in this test without any significant changes in the total brain concentration. The activity of the remaining AEDs was not significantly changed by sildenafil. Neither sildenafil alone nor its combinations with the studied AEDs produced any changes in the motor coordination, long-term memory and muscular strength in mice. Co-administration of sildenafil with ETS in male epileptic patients with co-existing erectile dysfunctions might lead to the pharmacodynamic interactions that may be beneficial for the patients. Combinations of sildenafil with CZP, VPA, PB and TGB appear to be neutral in terms of their influence on seizures.


Assuntos
Anticonvulsivantes/administração & dosagem , Inibidores da Fosfodiesterase 5/administração & dosagem , Piperazinas/administração & dosagem , Convulsões/tratamento farmacológico , Sulfonas/administração & dosagem , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/farmacocinética , Convulsivantes/toxicidade , Interações Medicamentosas , Quimioterapia Combinada , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Inibidores da Fosfodiesterase 5/efeitos adversos , Inibidores da Fosfodiesterase 5/farmacocinética , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Purinas/administração & dosagem , Purinas/efeitos adversos , Purinas/farmacocinética , Convulsões/induzido quimicamente , Citrato de Sildenafila , Sulfonas/efeitos adversos , Sulfonas/farmacocinética
20.
Cells ; 11(12)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740990

RESUMO

In the present study, a focused combinatorial chemistry approach was applied to merge structural fragments of well-known TRPV1 antagonists with a potent anticonvulsant lead compound, KA-104, that was previously discovered by our group. Consequently, a series of 22 original compounds has been designed, synthesized, and characterized in the in vivo and in vitro assays. The obtained compounds showed robust in vivo antiseizure activity in the maximal electroshock (MES) test and in the 6 Hz seizure model (using both 32 and 44 mA current intensities). The most potent compounds 53 and 60 displayed the following pharmacological profile: ED50 = 89.7 mg/kg (MES), ED50 = 29.9 mg/kg (6 Hz, 32 mA), ED50 = 68.0 mg/kg (6 Hz, 44 mA), and ED50 = 73.6 mg/kg (MES), ED50 = 24.6 mg/kg (6 Hz, 32 mA), and ED50 = 56.3 mg/kg (6 Hz, 44 mA), respectively. Additionally, 53 and 60 were effective in the ivPTZ seizure threshold and had no influence on the grip strength and body temperature in mice. The in vitro binding and functional assays indicated a multimodal mechanism of action for 53 and 60. These molecules, beyond TRPV1 antagonism, inhibited calcium currents and fast sodium currents in patch-clamp assays. Further studies proved beneficial in vitro ADME-Tox properties for 53 and 60 (i.e., high metabolic stability, weak influence on CYPs, no neurotoxicity, etc.). Overall, 53 and 60 seem to be interesting candidates for future preclinical development in epilepsy and pain indications due to their interaction with the TRPV1 channel.


Assuntos
Anticonvulsivantes , Convulsões , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Eletrochoque , Glicina/análogos & derivados , Camundongos , Estrutura Molecular , Convulsões/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa