Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474680

RESUMO

Many important biological species have been identified as cancer biomarkers and are gradually becoming reliable targets for early diagnosis and late therapeutic evaluation of cancer. However, accurate quantitative detection of cancer biomarkers remains challenging due to the complexity of biological systems and the diversity of cancer development. Fluorescent probes have been extensively utilized for identifying biological substances due to their notable benefits of being non-invasive, quickly responsive, highly sensitive and selective, allowing real-time visualization, and easily modifiable. This review critiques fluorescent probes used for detecting and imaging cancer biomarkers over the last five years. Focuses are made on the design strategies of small-molecule and nano-sized fluorescent probes, the construction methods of fluorescence sensing and imaging platforms, and their further applications in detection of multiple biomarkers, including enzymes, reactive oxygen species, reactive sulfur species, and microenvironments. This review aims to guide the design and development of excellent cancer diagnostic fluorescent probes, and promote the broad application of fluorescence analysis in early cancer diagnosis.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Biomarcadores Tumorais , Espécies Reativas de Oxigênio/análise , Fluorescência , Microambiente Tumoral
2.
Anal Chem ; 94(30): 10676-10684, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853217

RESUMO

Lipid droplets (LDs) containing cytosolic and nuclear LDs have recently received increasing attention because of their diverse biological roles in living systems. However, developing fluorescent probes for super-resolution visualization of these subcellular LDs still remains challenging due to insufficient fluorescence brightness and poor nuclear membrane permeability. Herein, we rationally synthesized a series of ultrabright solvatochromic fluorescent probes based on benzoboranils (BBAs) for LD-specific super-resolution imaging using structured illumination microscopy (SIM). The rigidly structured probes exhibit ultrahigh fluorescence quantum yields of up to 99.9% in low-polar solvents. They also show more significant fluorescence enhancements in lipid environments than commercial LD probes. Owing to these excellent merits, our lipophilic fluorescent probes can specifically light up subcellular LDs at ultralow concentrations down to 10 nM. Further use of BBA-CF3 for super-resolution SIM imaging of cytosolic and nuclear LDs and their fusion process was successfully achieved. The unprecedented spatial resolution for nuclear LDs with an FWHM value of 142 nm was also acquired. Collectively, our ultrabright fluorescent probes hold tremendous potential to unveil the mysterious roles of cytosolic and nuclear LDs in biological research using SIM.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Permeabilidade da Membrana Celular , Citosol , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Microscopia de Fluorescência/métodos
3.
Anal Chem ; 94(9): 3881-3887, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35192331

RESUMO

The prominent pathological feature of fatty liver disease lesions is excessive fat accumulation in lipid droplets in hepatocytes. Thus, developing fluorescent lipid droplet-specific probes with high permeability and a high imaging contrast provides a robust tool for diagnosing fatty liver diseases. Herein, we rationally developed a novel donor-acceptor lipophilic fluorescent probe ANI with high photostability for wash-free visualization of lipid droplets and fatty liver disease characteristics. ANI showed a typical twisted intramolecular charge transfer effect with very faint fluorescence in high-polar solvents, but dramatically boosted emissions in low-polar environments. The solvatochromic probe can selectively light up lipid droplets with a high contrast in a wash-free manner. Further use of ANI to reveal the excessive accumulation of lipid droplets with a significantly large size in the liver tissues from the fatty liver disease model mice was successfully demonstrated. The remarkable imaging performances rendered ANI an alternative tool for accurately evaluating fatty liver disease in intraoperative diagnosis.


Assuntos
Fígado Gorduroso , Gotículas Lipídicas , Animais , Fígado Gorduroso/diagnóstico por imagem , Corantes Fluorescentes , Camundongos , Microscopia de Fluorescência
4.
J Org Chem ; 87(19): 12741-12748, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074893

RESUMO

The development of large π-conjugated polycyclic heteroaromatic materials is of immense interest, both in the academic as well as the industrial community. Herein, we present the efficient one-pot synthesis of novel pyreno[2,1-b]furan molecules from a newly designed intermediate, which display intense green emission (505-516 nm) in solution and a large red shift emission (625-640 nm) in the solid state, because of strong π-π stacking. More interestingly, the compounds exhibit novel two-photon absorption (TPA) properties, and the TPA cross-section (δ) value was increased to 533 GM by regulating the electronic effects of the substituents of the pyreno[2,1-b]furan molecules. This study not only offers a facile strategy for constructing new pyrene-fused luminescence materials with two-photon absorption properties but also provides a new chemical intermediate that opens up a new pathway to advanced materials.

5.
J Am Chem Soc ; 143(8): 3169-3179, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570390

RESUMO

In living systems, subcellular organelles mutually cooperate and closely contact to form organelle interaction networks. Thus, the simultaneous and discriminative visualization of different organelles is extremely valuable for elucidating their distribution and interplay. However, such meaningful investigations remain a great challenge due to the lack of advanced single fluorescent probes (SF-probes) capable of simultaneous and two-color imaging of two targets. Herein, for the first time, we present two excited-state intramolecular proton transfer (ESIPT) based SF-probes (PPC and EPC) for simultaneous two-color fluorescence imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER) under single-wavelength excitation. Due to the strong electron-donating ability of the side substituents, the fluorescence spectra and colors of these ESIPT probes are highly sensitive to the nuance of water contents between LDs and ER, leading to orange and green fluorescence in LDs and ER, respectively, in the Lambda imaging mode. Using the probe PPC or EPC, the morphology, size, and distribution of LDs and ER have been investigated in live cells and tissues. With the aid of in situ and real-time fluorescence imaging in Lambda mode, we observed the generation of newborn LDs near the ER regions and their close apposition and shared identical fluorescence colors, probably providing a valuable proof for the mainstream hypothesis that LDs originate from the ER. The remarkable imaging performances render these SF-probes as powerful tools to decipher LD-ER related biological processes.


Assuntos
Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/metabolismo , Gotículas Lipídicas/metabolismo , Imagem Óptica/métodos , Linhagem Celular , Cor , Humanos
6.
Anal Chem ; 93(26): 9074-9082, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132525

RESUMO

Visualizing cholesterol (CL) fluctuation in plasma membranes is a crucially important yet challenging task in cell biology. Here, we proposed a new imaging strategy based on permeability changes of plasma membranes triggered by different CL contents to result in controllable spatial distribution of single fluorescent probes (SF-probes) in subcellular organelles. Three spatial distribution-controllable SF-probes (PMM-Me, PMM-Et, and PMM-Bu) for imaging CL fluctuation in plasma membranes were rationally developed. These SF-probes target plasma membranes and mitochondria at normal CL levels, while they display solely staining in plasma membranes and mitochondria at increased and decreased CL levels, respectively. These polarity-sensitive probes also show distinct emission colors with fluorescence peaks of 575 and 620 nm in plasma membranes and mitochondria, respectively. Thus, the CL fluctuation in plasma membranes can be clearly visualized by means of the spatially distributed and two-color emissive SF-probes.


Assuntos
Corantes Fluorescentes , Organelas , Membrana Celular , Colesterol , Mitocôndrias
7.
Anal Chem ; 93(34): 11729-11735, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34229431

RESUMO

Lipid droplets (LDs) and lysosomes are crucial for maintaining intracellular homeostasis. But single fluorescent probes (SFPs) capable of simultaneous and discriminative visualizing of two organelles above and their interaction in living cells are still challenging due to the lack of rational design strategies. To break this bottleneck, herein, we develop a reliable strategy based on a pH-sensitive intramolecular spirocyclization. As a proof of concept, an SFP CMHCH, which possesses a switchable hemicyanine/spiro-oxazine moiety induced by pH, has been designed and synthesized. In acidic environments, the ring-open form CMHCH exhibits red-shift emission and low logP value, whereas the ring-closed form CMHC displays blue-shift emission and high logP value in neutral or basic environments. Thus, the distinct different hydrophilicity/hydrophobicity and absorption/emission properties of these two forms enable targeting LDs and lysosomes simultaneously and discriminatingly. Very importantly, the dynamic process of lipophagy can be directly monitored with CMHCH. The success of CMHCH indicated that the spirocyclization strategy is efficient for constructing SFPs to LDs and lysosomes.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Autofagia , Concentração de Íons de Hidrogênio , Lisossomos
8.
J Am Chem Soc ; 142(8): 3959-3969, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999445

RESUMO

New agents with particular specificity toward targeted bacteria and superefficacy in antibacterial activity are urgently needed in facing the crisis of worldwide antibiotic resistance. Herein, a novel strategy by equipping bacteriophage (PAP) with photodynamic inactivation (PDI)-active AIEgens (luminogens with aggregation-induced emission property) was presented to generate a type of AIE-PAP bioconjugate with superior capability for both targeted imaging and synergistic killing of certain species of bacteria. The targeting ability inherited from the bacteriophage enabled the bioconjugates to specifically recognize the host bacteria with preserved infection activity of phage itself. Meanwhile, the AIE characteristic empowered them a monitoring functionality, and the real-time tracking of their interactions with targets was therefore realized via convenient fluorescence imaging. More importantly, the PDI-active AIEgens could serve as powerful in situ photosensitizers producing high-efficiency reactive oxygen species (ROS) under white light irradiation. As a result, selective targeting and synergistic killing of both antibiotic-sensitive and multi-drug-resistant (MDR) bacteria were successfully achieved in in vitro and in vivo antibacterial tests with excellent biocompatibility. This novel AIE-phage integrated strategy would diversify the existing pool of antibacterial agents and inspire the development of promising drug candidates in the future.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bacteriófagos/fisiologia , Microscopia de Fluorescência , Pseudomonas aeruginosa/efeitos dos fármacos
9.
Angew Chem Int Ed Engl ; 59(25): 10003-10007, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31965684

RESUMO

Enzymes contain several subunits to maintain different biological functions. However, it remains a great challenge for specific discrimination of one subunit over another. Toward this end, the fluorescent probe TPEMA is now presented for highly specific detection of the B subunit of cytosolic creatine (CK) kinase isoenzyme (CK-B). Owing to its aggregation-induced emission property, TPEMA shows highly boosted emission toward CK-B with a fast response time and very low interference from other analytes, including the M subunit of CK (CK-M). With the aid of a Job plot assay, ITC assay and molecular dynamics simulation, it was directly confirmed that the remarkably enhanced fluorescence of TPEMA in the presence of CK-B results from the restriction of single molecular motion in the cavity. Selective wash-free fluorescence imaging of CK-B in macrophages under different treatments was successfully demonstrated.


Assuntos
Enzimas/ultraestrutura , Corantes Fluorescentes , Creatina Quinase/ultraestrutura , Macrófagos/enzimologia , Macrófagos/ultraestrutura , Simulação de Dinâmica Molecular , Imagem Molecular , Movimento (Física) , Imagem Óptica
10.
J Am Chem Soc ; 141(38): 15111-15120, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31436971

RESUMO

Acrylonitriles with aggregation-induced emission (AIE) characteristics have been found to show promising applications in two-photon biomedical imaging. Generally, elaborate synthetic efforts are required to achieve different acrylonitriles with distinct functionalities. In this work, we first reported the synthesis of two different group-functionalized AIE-active acrylonitriles (TPAT-AN-XF and 2TPAT-AN) obtained simply by mixing the same reactants at different temperatures using a facile and transition metal-free synthetic method. These two AIE luminogens (AIEgens) exhibit unique properties such as bright red emission in the solid state, large Stokes shift, and large two-photon absorption cross section. Water-soluble nanoparticles (NPs) of 2TPAT-AN were prepared by a nanoprecipitation method. In vitro imaging data show that 2TPAT-AN NPs can selectively stain lysosome in live cells. Besides one-photon imaging, remarkable two-photon imaging of live tumor tissues can be achieved with high resolution and deep tissue penetration. 2TPAT-AN NPs show high biocompatibility and are successfully utilized in in vivo long-term imaging of mouse tumors with a high signal-to-noise ratio. Thus, the present work is anticipated to shed light on the preparation of a library of AIE-active functionalized acrylonitriles with intriguing properties for biomedical applications.


Assuntos
Acrilonitrila/química , Corantes Fluorescentes/química , Imagem Óptica , Fótons , Acrilonitrila/síntese química , Corantes Fluorescentes/síntese química , Estrutura Molecular
11.
Anal Chem ; 89(3): 1922-1929, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208300

RESUMO

The development of near-infrared fluorescent probes with low pKa, high selectivity, high photostability, and high sensitivity for lysosomal pH detection is of great importance. In the present work, we developed a novel near-infrared lysosomal pH probe (Lyso-hNR) based on a rhodamine derivative. Lyso-hNR showed fast, highly sensitive, and highly selective fluorescence response to acidic pH caused by the H+-induced structure changes from the nonfluorescent spirolactam form to the highly emissive open-ring form. Lyso-hNR displays a significant fluorescence enhancement at 650 nm (over 280-fold) from pH 7.0 to 4.0 with a pKa value of 5.04. Live cell imaging data revealed that Lyso-hNR can selectively monitor lysosomal pH changes with excellent photostability and low cytotoxicity. In addition, Lyso-hNR can be successfully used in tracking lysosomal pH changes induced by chloroquine and those during apoptosis. All these features render Lyso-hNR a promising candidate to investigate lysosome-associated physiological and pathological processes.


Assuntos
Corantes Fluorescentes/química , Lisossomos/química , Rodaminas/química , Espectrometria de Fluorescência/métodos , Células A549 , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lactamas/química , Limite de Detecção , Espectrometria de Massas/métodos , Espectroscopia de Prótons por Ressonância Magnética
12.
J Org Chem ; 82(7): 3456-3462, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28272896

RESUMO

Two coumarin-based boron complexes (HBN and MBN) with aggregation-induced emission were designed and synthesized. The photophysical properties of the complexes were investigated in different solvents and in the solid state. Results showed that the inhibited C═N isomerization by N,O-chelated BF2 caused the significant enhancement of fluorescence in THF. In particular, the complexes displayed red-shifted emissions (>60 nm) in mixed solvents of CH3CN and water because of the aggregation-induced charge-transfer enhancement. In the solid state, the bright red emission appeared at 650 nm (620 nm), with a Stokes shift of 170 nm. Cell-imaging experiments indicated that the complexes have good membrane permeability and can be used as lysosome trackers.


Assuntos
Compostos de Boro/síntese química , Cumarínicos/síntese química , Compostos de Boro/química , Cumarínicos/química , Fluorescência , Lisossomos/química , Lisossomos/metabolismo , Estrutura Molecular , Tamanho da Partícula
13.
J Org Chem ; 81(17): 7393-9, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27486670

RESUMO

In this work, two xanthene dyes (H-hNR and TF-hNR) have been synthesized by a convenient and efficient method. These two dyes exhibited deep-red and near-infrared emissions, high fluorescence quantum yields, and good photostability. Their structure-optical properties were investigated by X-ray crystal structure analysis and density functional theory calculations. Live cell imaging data revealed that H-hNR and TF-hNR could rapidly stain both A549 and HeLa cells with low concentrations. The excellent photophysical and imaging properties render them as promising candidates for use in live cell imaging.


Assuntos
Corantes Fluorescentes/análise , Raios Infravermelhos , Xantenos/análise , Células A549 , Cristalografia por Raios X , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas , Espectrometria de Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho , Xantenos/metabolismo , Xantenos/farmacologia
14.
J Org Chem ; 80(6): 3170-5, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25692322

RESUMO

Aminobenzofuran-fused rhodamine dyes (AFR dyes) containing an amino group were constructed by an efficient condensation based on 3-coumaranone derivatives. AFR dyes exhibited significantly improved properties, including deep-red and near-infrared emissions, a large Stokes shift, good photostability, and wide pH stability. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium assay experiments show that these AFR dyes are biocompatible for their low cytotoxicity to both A549 and HeLa cells. Cell imaging data reveal that AFR1, AFR1E, and AFR2 are mainly located in the mitochondria, while AFR3 is a lysosome tracker. As far as we know, NIR AFR3 is the longest fluorescent rhodamine derivative containing the amino group. These amino group-containing AFR dyes hold great potential in fluorogenic detection, biomolecule labeling, and cell imaging.


Assuntos
Benzofuranos/farmacologia , Materiais Biocompatíveis/farmacologia , Corantes Fluorescentes/farmacologia , Rodaminas/farmacologia , Benzofuranos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Corantes Fluorescentes/química , Células HeLa , Humanos , Estrutura Molecular , Rodaminas/química , Relação Estrutura-Atividade
15.
Anal Chim Acta ; 1297: 342303, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438223

RESUMO

Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.


Assuntos
Corantes Fluorescentes , Óxido Nítrico , Animais , Reprodutibilidade dos Testes , Peixe-Zebra , Lisossomos
16.
J Org Chem ; 78(12): 6121-30, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23705772

RESUMO

A series of deep red fluorescent dyes (CR1 to CR3) was developed via introduction of a coumarin moiety into the rhodamine molecular skeleton. The novel dyes possessed the individual advantages of coumarin and rhodamine derivatives, and the emission wavelength was extended to the deep red region (>650 nm) due to the extension of fused-ring conjugate structure simultaneously. To illustrate its value, we designed and conveniently synthesized a series of novel deep red bioimaging dyes (CR1E to CR3E) by esterification of CR1 to CR3, which could selectively stain mitochondria. They were superior to the MitoTrackers for mitochondrial staining in terms of large Stokes shift, excellent contrast for imaging, high photostability, and low cytotoxicity. Furthermore, the fluorescence of the coumarin moiety and rhodamine-like fluorophore could be switched like classical rhodamine. Thus, they could be used as an effective platform in constructing fluorescence sensors. Based on this fact, we constructed a novel ratiometric sensor (CR1S) for Hg(2+) with good selectivity that could be successfully applied to the imaging of Hg(2+) in living A549 cells. This design strategy is straightforward and adaptable to various deep red dyes and sensing platforms by simply introducing different fluorophores.

17.
Chem Asian J ; 18(11): e202300163, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37029596

RESUMO

Developing halogen-functionalized fluorescent dyes with intriguing photophysical properties, including enhanced photostability, is particularly important for bioimaging. In this work, we synthesized two new halogen-functionalized aggregation-induced emission (AIE)-active molecules, DQMF-OH and DQMCl-OH, based on the quinoline-malononitrile chromophore. The halogen effect on the photophysical characteristics was detailedly studied by absorption and fluorescence spectroscopy, density functional theory calculations, and crystal structures. Compared with non-halogen substituted AIE luminogen (AIEgen) DQM-OH, the halogen substituted DQMF-OH and DQMCl-OH exhibited red-shifted absorptions and emissions in the solution and solid state. In addition, DQMF-OH and DQMCl-OH also possessed enhanced fluorescence toward viscosity changes. These AIEgens served as remarkable imaging tools for cell tracking in a wash-free manner. Furthermore, DQMF-OH and DQMCl-OH showed much more excellent photobleaching resistance than DQM-OH. Our work sheds new light on developing fluorescent halogenated dyes with enhanced photophysical performances for biological applications.


Assuntos
Halogenação , Quinolinas , Diagnóstico por Imagem , Corantes Fluorescentes/química , Imagem Óptica/métodos
18.
ACS Nano ; 17(15): 14347-14405, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486125

RESUMO

Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.


Assuntos
Corantes Fluorescentes , Substâncias Luminescentes , Corantes Fluorescentes/química , Luminescência , Diagnóstico por Imagem , Atenção à Saúde
19.
Org Lett ; 24(45): 8305-8309, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36351250

RESUMO

The effect of acceptor unit order on the photophysical properties of two distinct donor-acceptor-acceptor conjugated fluorescent acrylonitriles, TPA-AN-PhBT and TPA-BT-ANPh, was systematically investigated. Compared with faintly emissive TPA-AN-PhBT in solution, TPA-BT-ANPh showed strong red-shifted fluorescence. TPA-AN-PhBT and TPA-BT-ANPh exhibited enhanced green and deep red emissions with remarkable fluorescence quantum yields up to 44% in the solid state. In addition, TPA-BT-ANPh possessed stronger two-photon absorption than TPA-AN-PhBT. Furthermore, these biocompatible dyes served as excellent fluorescent markers for specific lipid droplet imaging.


Assuntos
Acrilonitrila , Fótons , Espectrometria de Fluorescência , Corantes
20.
Chem Sci ; 13(10): 2965-2970, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35382465

RESUMO

Tracking mitochondrial movement in neurons is an attractive but challenging research field as dysregulation of mitochondrial motion is associated with multiple neurological diseases. To realize accurate and long-term tracking of mitochondria in neurons, we elaborately designed a novel aggregation-induced emission (AIE)-active luminogen, TPAP-C5-yne, where we selected a cationic pyridinium moiety to target mitochondria and employed an activated alkyne terminus to achieve long-term tracking through bioconjugation with amines on mitochondria. For the first time, we successfully achieved the accurate analysis of the motion of a single mitochondrion in live primary hippocampal neurons and the long-term tracking of mitochondria for up to a week in live neurons. Therefore, this new AIEgen can be used as a potential tool to study the transport of mitochondria in live neurons.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa