Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Cell Physiol ; 235(2): 1821-1837, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31432516

RESUMO

Extracellular matrix (ECM) has a marked influence on adipose tissue development. Adipose tissue formation is initiated with proliferation of preadipocytes and migration before undergoing further differentiation into mature adipocytes. Previous studies showed that collagen I (col I) provides a good substratum for 3T3-L1 preadipocytes to grow and migrate. However, it remains unclear whether and how col I regulates adipogenic differentiation of preadipocytes. This study reports that lipid accumulation, representing in vitro adipogenesis of the 3T3-L1 preadipocytes or the mouse primary adipocyte precursor cells derived from subcutaneous adipose tissue in the inguinal region is inhibited by the culture on col I, owing to downregulation of adipogenic factors. Previous study shows that col I enhances 3T3-L1 cell migration via stimulating the nuclear translocation of yes-associated protein (YAP). In this study, we report that downregulation of YAP is associated with in vitro adipogenesis of preadipocytes as well as with in vivo adipose tissue of high-fat diet fed mice. Increased expression of YAP in the cells cultured on col I-coated dishes is correlated with repression of adipogenic differentiation processes. The inactivation of YAP using YAP inhibitor, verteporfin, or YAP small-interfering RNA enhanced adipogenic differentiation and reversed the inhibitory effect of col I. Activation of YAP either by the transfection of YAP plasmid or the silence of large tumor suppressor 1 (LATS1), an inhibitory kinase of YAP, inhibited adipogenic differentiation. The results indicate that col I inhibits adipogenic differentiation via YAP activation in vitro.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Adipogenia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Colágeno Tipo I/metabolismo , Células 3T3-L1 , Animais , Dieta Hiperlipídica , Camundongos , Células-Tronco/metabolismo , Proteínas de Sinalização YAP
2.
Arch Biochem Biophys ; 689: 108458, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32524997

RESUMO

Our previous studies showed that silibinin promoted activation of caspases to induce apoptosis in human breast cancer MCF-7 cells by down-regulating the protein expression level of estrogen receptor (ER) α and up-regulating ERß. Recently, it has been reported that silibinin-induced apoptosis also involved nuclear translocation of apoptosis-inducing factor (AIF). Here we report that silibinin induces nuclear translocation of AIF through the down-regulation of ERα and up-regulation of ERß in a concentration dependent manner in MCF-7 cells. AIF knockdown with siRNA significantly reverses silibinin-induced apoptosis. The nuclear translocation of AIF is enhanced by treatment with MPP, an ERα antagonist, and blocked with PPT, an ERα agonist. In contrast to ERα activity, the nuclear AIF is increased with an ERß agonist, DPN and blocked with an ERß antagonist, PHTPP. Autophagy, negatively regulated by ERα, positively controls AIF-mediated apoptosis, as evidenced by the preventive effect of autophagy inhibitor 3-MA and siRNA targeting LC3, on the nuclear translocation of AIF and cell death induced by silibinin co-treatment with or without MPP. In sum we conclude that AIF in nuclei is involved in silibinin-induced apoptosis, and the nuclear translocation of AIF is increased by down-regulated ERα pathway and/or up-regulated ERß pathway in MCF-7 cells, accompanying up-regulation of autophagy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fator de Indução de Apoptose/metabolismo , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Silibina/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7
3.
Arch Biochem Biophys ; 685: 108284, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32014401

RESUMO

We reported previously that higher doses (150-250 µM) of silibinin enhanced fission and inhibited fusion of mitochondria, accompanying apoptosis of double-positive breast cancer cell line MCF-7 cells and triple-negative breast cancer cell line MDA-MB-231 cells. We report here three important questions yet unclarified in the previous study; 1) Whether enhanced fission of mitochondria by the treatment of silibinin leads to mitophagy, 2) Whether mitophagy positively contributes to apoptosis and 3) Whether estrogen receptor-positive (ER+) MCF-7 cells and estrogen receptor-negative (ER-) MDA-MB-231 cells are affected in a different way by silibinin treatment, since silibinin often works through ERs signaling pathway. Mitophagy driven by Pink1/Parkin signaling, plays an important role in eliminating damaged mitochondria. Indeed, increased expression of Pink1 and the recruitment of Parkin and LC3-II to mitochondria by the treatment with silibinin account for silibinin induction of mitophagy. In this study, the effects of mitochondrial division inhibitor 1 (mdivi-1) and small interfering RNA targeting dynamin-related protein 1 (DRP1) were examined to reveal the effect of mitochondrial fission on mitophagy. As expected, mdivi-1 or siRNA targeting DRP1 reversed silibinin-induced mitochondrial fission due to down-regulation in the expression of DRP1. Inhibition of mitochondrial fission by mdivi-1 prevented induction of mitophagy as well as autophagy in both MCF-7 and MDA-MB-231 cells, indicating that silibinin-induced mitochondrial fission leads to mitophagy. Inhibition of mitochondrial fission efficiently prevented silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells in our previous work, and the second point of the present study, inhibition of mitophagy by Pink1 or Parkin knockdown increased silibinin-induced apoptosis of these cells, respectively, suggesting that the mitophagy induced by silibinin treatment serves as a cytoprotective effect, resulting in reduction of apoptosis of cancer cells in both cells. In the third point, we studied whether estrogen receptors (ERs) played a role in silibinin-induced mitophagy and apoptosis in MCF-7 and MDA-MB-231 cells. ERα and ERß are not involved in silibinin-induced mitophagic process in MCF-7 and MDA-MB-231 cells. These findings demonstrated that silibinin induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis not through ERs-Pink1 or -Parkin pathway in MCF-7 and MDA-MB-231.


Assuntos
Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Silibina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Dinaminas/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Biogênese de Organelas , Proteínas Quinases/genética , Quinazolinonas/farmacologia , Ubiquitina-Proteína Ligases/genética
4.
Mol Cell Biochem ; 463(1-2): 189-201, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31612353

RESUMO

Human triple negative breast cancer cells, MDA-MB-231, show typical epithelial to mesenchymal transition associated with cancer progression. Mitochondria play a major role in cancer progression, including metastasis. Changes in mitochondrial architecture affect cellular migration, autophagy and apoptosis. Silibinin is reported to have anti-breast cancer effect. We here report that silibinin at lower concentrations (30-90 µM) inhibits epithelial to mesenchymal transition (EMT) of MDA-MB-231, by increasing the expression of epithelial marker, E-cadherin, and decreasing the expression of mesenchymal markers, N-cadherin and vimentin. Besides, silibinin inhibition of cell migration is associated with reduction in the protein expression of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) and paxillin. In addition, silibinin treatment increases mitochondrial fusion through down-regulating the expression of mitochondrial fission-associated protein dynamin-related protein 1 (DRP1) and up-regulating the expression of mitochondrial fusion-associated proteins, optic atrophy 1, mitofusin 1 and mitofusin 2. Silibinin perturbed mitochondrial biogenesis via down-regulating the levels of mitochondrial biogenesis regulators including mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor gamma coactivator (PGC1) and nuclear respiratory factor (NRF2). Moreover, DRP1 knockdown or silibinin inhibited cell migration, and MFN1&2 knockdown restored it. Mitochondrial fusion contributes to silibinin's negative effect on cell migration. Silibinin decreased reactive oxygen species (ROS) generation, leading to inhibition of the NLRP3 inflammasome activation. In addition, knockdown of mitofusin 1&2 (MFN 1&2) relieved silibinin-induced inhibition of NLRP3 inflammasome activation. Repression of ROS contributes to the inhibition of the expression of NLRP3, caspase-1 and IL-ß proteins as well as of cell migration. Taken together, our study provides evidence that silibinin impairs mitochondrial dynamics and biogenesis, resulting in reduced migration and invasion of the MDA-MB-231 breast cancer cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Proteínas de Neoplasias/biossíntese , Silibina/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Dinâmica Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
5.
Arch Biochem Biophys ; 671: 42-51, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31085166

RESUMO

Mitochondria are dynamically regulated by fission and fusion processes. Silibinin induces apoptosis of MCF-7 and MDA-MB-231 human breast cancer cells. However, whether or not mitochondria dysfunction is involved in the apoptosis induction with silibinin of both types of the cells remains unknown. We here report that silibinin decreases the mitochondrial mass in terms of MitoTracker Green staining in both breast cancer cells. Silibinin induces morphological changes of mitochondria from oval to truncated or fragmented shapes accordingly. Condensed crests are observed in mitochondria by transmission electron microscopy. Silibinin causes mitochondrial membrane potential reduced. The expression of mitochondrial fission-associated proteins including dynamin-related protein 1 (DRP1) is up-regulated, whereas expression of the mitochondrial fusion-associated proteins, optic atrophy 1 and mitofusin 1, is down-regulated. In addition, silibinin treatment down-regulates ATP content as well as the levels of mitochondrial biogenesis-regulators including mitochondrial transcription factor A, peroxisome proliferator-activated receptor gamma coactivator 1 and nuclear respiratory factor 2. Moreover, treatments with DRP1 inhibitor, mdivi-1, or with DRP1-targetted siRNA efficiently prevent silibinin-induced apoptosis in the breast cancer cells, whereas inhibition of DRP1 phosphorylation with staurosporine increases apoptosis furthermore. Taken together, we conclude that silibinin impairs mitochondrial dynamics and biogenesis, leading to apoptosis of MCF-7 and MDA-MB-123 cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Silibina/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Linhagem Celular Tumoral , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Quinazolinonas/farmacologia
6.
Neurochem Res ; 44(8): 1818-1829, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102026

RESUMO

Excessive physical exercise (overtraining; OT) increases oxidative stress and induces damage in multiple organs including the brain, especially the hippocampus that plays an important role in learning and memory. Silibinin, a natural flavonoid derived from milk thistle of Silybum marianum, has been reported to exert neuroprotective effect. In this study, rats were subjected to overtraining exercise, and the protective effects of silibinin were investigated in these models. Morris water maze and novel object recognition tests showed that silibinin significantly attenuated memory defects in overtrained rats. At the same time, the results of Nissl, TUNEL and SA-ß-gal staining showed that silibinin reversed neuronal loss caused by apoptosis, and delayed cell senescence of the hippocampus in the overtrained rats, respectively. In addition, silibinin decreased malondialdehyde (MDA) levels which is associated with reactive oxygen species (ROS) generation. Silibinin prevented impairment of learning and memory caused by excessive physical exercise in rats, accompanied by reduced apoptosis and senescence in hippocampus cells.


Assuntos
Envelhecimento/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Silibina/uso terapêutico , Animais , Catalase/metabolismo , Hipocampo/patologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/efeitos adversos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
7.
Mol Cell Biochem ; 450(1-2): 87-96, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29846859

RESUMO

The extracellular matrix (ECM) is a major biomechanical environment for all cells in vivo, and tightly controls wound healing and cancer progression. Type I collagen (Col I) is the most abundant component in ECM and plays an essential role for cell motility control and migration beyond structural support. Our previous results showed that Col I increased the length of primary cilia and the expression of primary cilia-associated proteins in 3T3-L1 cells. The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes for the development and maintenance of tissue functions. In this study, we investigated the role of Hippo/YAP signaling in primary cilia growth of cells cultured on Col I-coated plate, as well as the potential link between primary cilia and migration. At 2-day post-confluence, YAP localization in the nucleus was dramatically increased when the cells were cultured on Col I-coated plate, accompanied by cilia growth. YAP inhibitor verteporfin repressed the growth of primary cilia as well as the expressions of ciliogenesis-associated proteins in confluent 3T3-L1 cells cultured on Col I-coated plate. Moreover, knockdown of either YAP or IFT88, one of the ciliogenesis-associated proteins, reversed the migration of confluent 3T3-L1 cells promoted by Col I-coating. In conclusion, activation of YAP pathway by Col I-coating of culture plate for confluent 3T3-L1 cells is positively associated with the primary cilia growth, which eventually results in promoted migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Núcleo Celular/metabolismo , Cílios/fisiologia , Colágeno Tipo I/metabolismo , Fosfoproteínas/metabolismo , Células 3T3-L1 , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Camundongos , Proteínas de Sinalização YAP
8.
Mol Cell Biochem ; 460(1-2): 81-92, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31183735

RESUMO

High levels of circulating free fatty acids often trigger pancreatic ß cell dysfunction during the development of type 2 diabetes. Silibinin, the main component of Silybum marianum fruit extract (silymarin), is reported to have anti-diabetic effect. This study is designed to determine the protective effect of silibinin on palmitic acid-induced damage in a rat pancreatic ß-cell line, INS-1 cells. Our results demonstrate that silibinin improves cell viability, enhances insulin synthesis and secretion, and resumes normal mitochondrial function in palmitic acid-treated INS-1 cells. An accumulating body of evidence has shown that the estrogen receptors are key molecules involved in glucose and lipid metabolism. Our results suggest that silibinin upregulates ERα signaling pathway from the finding that ERα-specific inhibitors abolish the anti-lipotoxic effect of silibinin. In conclusion, these findings suggest that silibinin protects INS-1 cells against apoptosis and mitochondrial damage through upregulation of ERα pathway.


Assuntos
Apoptose/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Mitocôndrias/patologia , Ácido Palmítico/toxicidade , Silibina/farmacologia , Animais , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Silibina/química , Regulação para Cima/efeitos dos fármacos
9.
Mol Cell Biochem ; 450(1-2): 1-23, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29916120

RESUMO

Preadipocyte migration is a fundamental and important process for the development of tissue organization, especially in the development of primitive adipose tissue and adipocyte tissue wound healing. However, excessive migration may result in abnormal development and fibrosis-related diseases such as hypertrophic scar. We previously reported that type I collagen (collagen I) enhanced migration of 3T3-L1 preadipocytes via phosphorylation and/or acetylation of NF-κB p65, and the enhanced cell migration is repressed by silibinin treatment through sirt1. It is known that sirt1 has an ability to deacetylate acetylated NF-κB p65, but little is known about the effect of sirt1 on phosphorylated NF-κB p65. This study aims to examine the potential effect of sirt1 on the regulation of phosphorylated NF-κB p65 and the underlying mechanism. Autophagy is involved in many physiological and pathological processes, including regulation of cell migration as well as in cellular homeostasis. The present study demonstrates that silibinin induces autophagy in a dose-dependent manner in 3T3-L1 cells. Autophagy is under the regulation of sirt1/AMPK pathway, and inhibits collagen I-enhanced migration of 3T3-L1 cells through negative regulation of NF-κB p65 phosphorylation but not acetylation. The expression of peroxisome proliferator-activated receptor α (PPARα) is up-regulated with silibinin accompanying up-regulation of autophagy through activating sirt1 in 3T3-L1 cells. Taken together, these findings indicate that silibinin-induced autophagy is mediated by up-regulation of PPARα-sirt1-AMPK, contributing to repression of type I collagen-enhanced migration in murine 3T3-L1 preadipocytes through down-regulation of phosphorylated NF-κB p65.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silibina/farmacologia , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Camundongos , Fosforilação/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
10.
Mol Cell Biochem ; 452(1-2): 83-94, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30022448

RESUMO

The objective was to investigate the mechanism of the protective effect of silibinin on amylin/Aß1-42-induced INS-1 cell apoptosis, with special reference to the roles of glucagon-like peptide-1 receptor (GLP-1R) and protein kinase A (PKA). The effects of silibinin on apoptosis, insulin secretion, GLP-1R, and PKA expression in the INS-1 cells treated with amylin/Aß1-42 were examined. INS-1 cells exposed to amylin showed increased TUNEL-positive ratio, reduced expression of GLP-1R and PKA. GLP-1R antagonists or PKA inhibitor enhanced the expression of apoptosis-associated proteins and TUNEL-positive ratio. Silibinin exerted antiapoptotic effect on and upregulation of GLP-1R and PKA. However, Aß1-42-induced INS-1 cell apoptosis, GLP-1R, and PKA expressions were not changed. Our results indicate that down-regulation of GLP-1R and PKA contributes to INS-1 cell apoptosis induced with amylin. Silibinin protects INS-1 cells from amylin-induced apoptosis through activation of GLP-1R/PKA signaling. Silibinin's inhibition of the toxic effects of Aß1-42 is independent of GLP-1R/PKA pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/patologia , Insulinoma/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Silibina/farmacologia , Agonistas dos Receptores da Amilina/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ratos , Transdução de Sinais , Ativação Transcricional , Células Tumorais Cultivadas , Regulação para Cima
11.
Connect Tissue Res ; 60(5): 463-476, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30871385

RESUMO

Extracellular matrix (ECM) molecules have multiple functions; prevention of cytotoxicity, provision of mechanical support, cell adhesive substrates and structural integrity in addition to mediation of cellular signaling. In this study, we report that the proliferation of INS-1 cells cultured on collagen I-coated dishes is enhanced, but it is inhibited on collagen V-coated dishes. Inhibitory proliferation on collagen V-coated is not due to apoptosis induction. Silibinin decreases hepatic glucose production and protects pancreatic ß-cells, as a potential medicine for type II diabetes. Silibinin up-regulates the proliferation of cells cultured on both collagen I- and V-coated dishes. Collagen-coating regulates gene expression of collagen in a collagen type-related manner. Silibinin increases mRNA expression of collagen I in the cells on collagen I- and V-coated dishes; however, silibinin decreases collagen V mRNA expression on collagen I- and V-coated dishes. Collagen I-coating significantly enhances nuclear translocation of ß-catenin, while collagen V-coating reduces it. Differential effects of silibinin on collagen I mRNA and collagen V mRNA can be accounted for by the finding that silibinin enhances nuclear translocation of ß-catenin on both collagen I- and V-coated dishes, since phenomenologically nuclear translocation of ß-catenin enhances collagen I mRNA but represses collagen V mRNA. These results demonstrate that nuclear translocation of ß-catenin up-regulates proliferation and collagen I gene expression, whereas it down-regulates collagen V gene expression of INS-1 cells. Differential gene expressions of collagen I and V by nuclear ß-catenin could be important for understanding fibrosis where collagen I and V may have differential effects.


Assuntos
Núcleo Celular/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo V/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Silibina/farmacologia , beta Catenina/metabolismo , Animais , Bovinos , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
12.
Connect Tissue Res ; 60(4): 323-334, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30277081

RESUMO

Purpose: Our previous studies indicate that phorbol 12-myristate 13-acetate (PMA)-treated U937 cells cultured on collagen I-coated dishes express lowered production of pro-inflammatory mediators in parallel through reduced reactive oxygen species (ROS) levels. By contrast, PMA-treated U937 cells on gelatin, the denatured collagen, show enhanced production of pro-inflammatory mediators, mediated by up-regulating autophagy levels. The present study is aimed to investigate the effect of ROS levels in PMA-treated U937 cells cultured on gelatin-coated surface. Material and methods: MTT assay, flow cytometric analysis of ROS and autophagy, biochemical detection of antioxidant levels, enzyme-linked immunosorbent assay, and western blot were used. Results: Gelatin-coating increased ROS levels in PMA-treated U937 cells. Increased ROS levels are involved in the regulation of cell aggregation and the release of pro-inflammatory mediators in gelatin-coated culture. These results lead to the query about the crosstalk between the two positive regulators, the autophagy and ROS. Autophagy induction is attenuated by N-acetyl-L-cysteine treatment, but the treatment with autophagy inhibitor, 3-methyladenine, does not affect ROS levels, suggesting ROS are upstream of autophagy in the regulation axis of differentiated U937 cells on gelatin-coated surface. Further study confirmed that upregulation of autophagy was responsible for ROS-induced cell aggregation and production of pro-inflammatory mediators. Conclusion: The results suggest that gelatin-coating promotes the aggregation of PMA-treated U937 cells and the production of pro-inflammatory mediators by ROS-autophagy signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Gelatina/química , Mediadores da Inflamação/metabolismo , Ésteres de Forbol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Humanos , Interleucina-1beta/metabolismo , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Células U937
13.
Phytother Res ; 33(4): 998-1009, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729588

RESUMO

Amylin and amyloid-ß (Aß) were found to induce reactive oxygen species (ROS) and reactive nitrogen species (RNS) in rat pancreatic ß-cell line, INS-1 cells, leading to cell death. In this study, we report on reciprocal relationship between the expression of estrogen receptors (ERs) α and ß (ERα and ERß) and generation of ROS/RNS in amylin/Aß1-42 -treated INS-1 cells. That is, pharmacological activation of ERs in INS-1 cells significantly decreases ROS/RNS generation, but blockage of ERs increases ROS/RNS generation. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with phytoestrogen activities, also known as silybin. Treatment with silibinin down-regulated ROS/RNS production induced by treatment with amylin/Aß1-42 in the cells. Silencing ERs expression with siRNAs targeting ERs showed that the protective effect of silibinin was markedly weakened, indicating that silibinin protection is largely attributed to activation of ERs' signaling. The binding of silibinin to ERs implies that the protective effect of silibinin on amylin/Aß1-42 -treated INS-1 cells owes to down-regulation of ROS/RNS through the activation of ERs phosphorylation. Amylin and Aß1-42 cotreatment enhanced furthermore ROS/RNS generation and cytotoxicity through further down-regulation of ERs phosphorylation, and this was reversed by silibinin. Silibinin also protects INS-1 cells from amylin and Aß1-42 cotreatment. These results indicate that protective effect of silibinin is mediated by enhancement of ERs phosphorylation that depresses ROS/RNS generation in amylin/Aß1-42 -treated INS-1 cells.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Fragmentos de Peptídeos/toxicidade , Substâncias Protetoras/farmacologia , Receptores de Estrogênio/metabolismo , Silibina/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
Mol Cell Biochem ; 441(1-2): 35-62, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28933025

RESUMO

Migration of fibroblast-like preadipocytes is important for the development of adipose tissue, whereas excessive migration is often responsible for impaired adipose tissue related with obesity and fibrotic diseases. Type I collagen (collagen I) is the most abundant component of extracellular matrix and has been shown to regulate fibroblast migration in vitro, but its role in adipose tissue is not known. Silibinin is a bioactive natural flavonoid with antioxidant and antimetastasis activities. In this study, we found that type I collagen coating promoted the proliferation and migration of murine 3T3-L1 preadipocytes in a dose-dependent manner, implying that collagen I could be an extracellular signal. Regarding the mechanisms of collagen I-stimulated 3T3-L1 migration, we found that NF-κB p65 is activated, including the increased nuclear translocation of NF-κB p65 as well as the upregulation of NF-κB p65 phosphorylation and acetylation, accompanied by the increased expressions of proinflammatory factors and the generation of reactive oxygen species (ROS). Reduction of collagen I-enhanced migration of cells by treatment with silibinin was associated with suppression of NF-κB p65 activity and ROS generation, and negatively correlated with the increasing sirt1 expression. Taken together, the enhanced migration of 3T3-L1 cells induced on collagen I-coated dish is mediated by the activation of NF-κB p65 function and ROS generation that can be alleviated with silibinin by upregulation of sirt1, leading to the repression of NF-κB p65 function and ROS generation.


Assuntos
Adipócitos/metabolismo , Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/química , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silimarina/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Animais , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Camundongos , Silibina , Fator de Transcrição RelA/metabolismo
15.
Neurochem Res ; 42(4): 1073-1083, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28004303

RESUMO

Alzheimer's disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that inflammatory response, oxidative stress and autophagy are involved in amyloid ß (Aß)-induced memory deficits. Silibinin (silybin), a flavonoid derived from the herb milk thistle, is well known for its hepatoprotective activities. In this study, we investigated the neuroprotective effect of silibinin on Aß25-35-injected rats. Results demonstrated that silibinin significantly attenuated Aß25-35-induced memory deficits in Morris water maze and novel object-recognition tests. Silibinin exerted anxiolytic effect in Aß25-35-injected rats as determined in elevated plus maze test. Silibinin attenuated the inflammatory responses, increased glutathione (GSH) levels and decreased malondialdehyde (MDA) levels, and upregulated autophagy levels in the Aß25-35-injected rats. In conclusion, silibinin is a potential candidate for AD treatment because of its anti-inflammatory, antioxidant and autophagy regulating activities.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Autofagia/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Silimarina/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Autofagia/fisiologia , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Transtornos da Memória/metabolismo , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Silibina , Silimarina/farmacologia
16.
Connect Tissue Res ; 58(5): 456-463, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27764545

RESUMO

PURPOSE: Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. MATERIAL AND METHODS: We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. RESULTS: L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. CONCLUSION: NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Colágeno Tipo I , Hidrogéis , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Colágeno Tipo I/química , Colágeno Tipo I/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Prolina/análogos & derivados , Prolina/farmacologia , Tiocarbamatos/farmacologia
17.
Acta Pharmacol Sin ; 38(2): 277-289, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27867187

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulating cell survival and death. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with anti-tumor activities, but it was found to induce cytoprotective ROS/RNS in human breast cancer MCF-7 cells. Furthermore, treatment with silibinin down-regulates ERα expression in MCF-7 cells, and inducing both autophagy and apoptosis. In this study we explored the relationship between ER-associated pathways and RNS/ROS in MCF-7 cells. We also investigated the molecular mechanisms underlying the reciprocal regulation between ROS/RNS levels and autophagy in the death signaling pathways in silibinin-treated MCF-7 cells. Silibinin (100-300 µmol/L) dose-dependently increased ROS/RNS generation in MCF-7 cells (with high expression of ERα and low expression of ERß) and MDA-MB-231 cells (with low expression of ERα and high expression of ERß). Scavenging ROS/RNS significantly enhanced silibinin-induced death of MCF-7 cells, but not MDA-MB231 cells. Pharmacological activation or blockade of ERα in MCF-7 cells significantly enhanced or decreased, respectively, silibinin-induced ROS/RNS generation, whereas activation or block of ERß had no effect. In silibinin-treated MCF-7 cells, exposure to the ROS/RNS donators decreased the autophagic levels, whereas inhibition of autophagy with 3-MA significantly increased ROS/RNS levels. We further showed that increases in ROS/RNS generation, ERα activation or autophagy down-regulation had protective roles in silibinin-treated MCF-7 cells. Under a condition of ERα activation, scavenging ROS/RNS or stimulating autophagy enhanced the cytotoxicity of silibinin. These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells: one involves the down-regulation of ERα and thereby augmenting the pro-apoptotic autophagy downstream, leading to cell death; the other involves the up-regulation of pro-survival ROS/RNS; and that the generation of ROS/RNS and autophagy form a negative feedback loop whose balance is regulated by ERα.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Silimarina/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Humanos , Silibina , Regulação para Cima/efeitos dos fármacos
18.
Acta Pharmacol Sin ; 38(10): 1401-1411, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28649131

RESUMO

Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi Gordon, exerts anti-tumor effects in several cancer cell lines. Our previous study showed that PAB mainly induced senescence via p53-p21 activation rather than apoptosis in suppression of the growth of human lung cancer A549 cells (p53 wild-type). In p53-null human lung cancer H1299 cells, however, PAB caused apoptosis without senescence. In this study we investigated what mechanism was responsible for the switch from senescence to apoptosis in PAB-treated human lung cancer cell lines. Senescent cells were examined by SA-ß-gal staining. Glucose uptake and the apoptosis ratio were assessed using a FACScan flow cytometer. Commercial assay kits were used to measure the levels of ATP and lactate. Transfection of siRNA was used to knockdown the expression of p53 or p21. Western blot analysis was applied to measure the protein expression levels. In p53 wild-type A549 cells, PAB (20 µmol/L) caused senescence, and time-dependently increased glucose utilization; knockdown of p53 or p21 significantly decreased the uptake and metabolism of glucose but elevated PAB-induced apoptosis. Inhibition of glucose utilization using a glycolytic inhibitor 2-DG (1 mmol/L) significantly enhanced apoptosis induction. Similar results were observed in another p53 wild-type H460 cells treated with PAB. Opposite results were found in p53-null H1299 cells, where PAB time-dependently decreased glucose utilization, and induced only apoptosis. Our results demonstrate that PAB-induced senescence is associated with enhanced glucose utilization, and lower glucose utilization might contribute to apoptosis induction. Thus, blocking glucose utilization contributes to the switch from senescence to apoptosis, and p53 plays an important role in this process.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Glucose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Antineoplásicos Fitogênicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fatores de Tempo , Proteína Supressora de Tumor p53/genética
19.
Arch Biochem Biophys ; 591: 141-9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26767948

RESUMO

We previously reported that silibinin induced a loss of cell viability in breast cancer (MCF-7) cells by ERα down-regulation. But whether this cytotoxicity depends on another estrogen receptor, ERß, has yet to be elucidated. Therefore, we sought to explore the effects of ERß modulation on cell viability by using an ERß-selective agonist (Diarylprepionitrile, DPN) and an antagonist (PHTPP). Our data demonstrated that ERß served as a growth suppressor in MCF-7 cells, and the incubation of silibinin, elevated ERß expression, resulting in the tumor growth inhibition. The cytotoxic effect of silibinin was diminished by PHTPP and enhanced by DPN. Silencing of ERß by siRNA confirmed these results. Apoptotic cascades, including the sequential activation of caspase-9 and -6, and finally the cleavage of caspase substrates, PARP and ICAD, caused by treatment with silibinin, were all repressed by PHTPP pre-treatment but exacerbated by DPN. Unlike ERα, ERß did not involve autophagic process in the regulation, since neither autophagic inhibitor (3-MA) nor the inducer (rapamycin) affected the cell survival rates regardless ERß activity. Taken together, silibinin induced apoptosis through mitochondrial pathway by up-regulating ERß pathways in MCF-7 cells without the involvement of autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Mitocôndrias/metabolismo , Silimarina/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Silibina
20.
Neurochem Res ; 41(7): 1662-72, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26961891

RESUMO

Silibinin, a flavonoid derived from the herb milk thistle (Silybum marianum), has been used as a hepato-protectant in the clinical treatment of liver disease. In the present study, the effect of silibinin on lipopolysaccharide (LPS)-induced neuroinflammatory impairment in rats is investigated. Injection of LPS into lateral ventricle caused learning and memory impairment. Rats were treated with silibinin to see the effect in comparison with resveratrol as a positive control. Y-maze and Morris water maze tests showed that silibinin significantly attenuated memory damage caused by LPS treatment. At the molecular analysis, the levels of IL-1ß and of IL-4 in the hippocampus were decreased and enhanced, respectively, by the treatment with silibinin. NF-κB expression was attenuated by silibinin treatment. Furthermore, generation of total reactive oxygen species (ROS) in the hippocampus was elevated in silibinin-treated groups, and so were the expressions of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB). At the same time, LPS-induced reduction of neurons in hippocampus was reversed by silibinin. In conclusion, silibinin ameliorated the impairment of learning and memory of LPS-injection rats, possibly due to the activation of ROS-BDNF-TrkB pathway in the hippocampus as well as the suppression of inflammatory response. This study gives an insight on the beneficial consequences of ROS in central nervous system. Silibinin might be a potential candidate drug for neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Receptor trkB/metabolismo , Silimarina/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Relação Dose-Resposta a Droga , Lipopolissacarídeos/toxicidade , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Silibina , Silimarina/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa