Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581243

RESUMO

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Assuntos
Cicloexilaminas , Ferroptose , Fenilenodiaminas , Calcificação Vascular , Humanos , Músculo Liso Vascular/metabolismo , Fosfolipídeos/metabolismo , Fosforilcolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
2.
J Lipid Res ; 65(2): 100499, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218337

RESUMO

Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Cicloexilaminas , Ferroptose , Fenilenodiaminas , Animais , Camundongos , Humanos , Fosfolipídeos , Fosforilcolina , Éteres Fosfolipídicos/metabolismo , Éteres Fosfolipídicos/farmacologia , Camundongos Endogâmicos C57BL , Células Endoteliais da Veia Umbilical Humana/metabolismo , Endotélio/metabolismo , Glutationa/metabolismo , Ferro/metabolismo , Proteína 3 Ligante de Ácido Graxo
3.
Circulation ; 148(7): 589-606, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37203562

RESUMO

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Assuntos
Dissecção Aórtica , Músculo Liso Vascular , Animais , Humanos , Camundongos , Dissecção Aórtica/genética , Sistema de Sinalização das MAP Quinases , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação
4.
J Pathol ; 258(3): 213-226, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894849

RESUMO

Vascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, an effective therapy for vascular calcification is still lacking. The ketone body ß-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects. However, whether BHB protects against vascular calcification in CKD remains unclear. In this study, Alizarin Red staining and calcium content assay showed that BHB reduced calcification of vascular smooth muscle cells (VSMCs) and arterial rings. Of note, compared with CKD patients without thoracic calcification, serum BHB levels were lower in CKD patients with thoracic calcification. Supplementation with 1,3-butanediol (1,3-B), the precursor of BHB, attenuated aortic calcification in CKD rats and VitD3-overloaded mice. Furthermore, RNA-seq analysis revealed that BHB downregulated HDAC9, which was further confirmed by RT-qPCR and western blot analysis. Both pharmacological inhibition and knockdown of HDAC9 attenuated calcification of human VSMCs, while overexpression of HDAC9 exacerbated calcification of VSMCs and aortic rings, indicating that HDAC9 promotes vascular calcification under CKD conditions. Of note, BHB treatment antagonized HDAC9-induced vascular calcification. In addition, HDAC9 overexpression activated the NF-κB signaling pathway and inhibition of NF-κB attenuated HDAC9-induced VSMC calcification, suggesting that HDAC9 promotes vascular calcification via activation of NF-κB. In conclusion, our study demonstrates that BHB supplementation inhibits vascular calcification in CKD via modulation of the HDAC9-dependent NF-κB signaling pathway. Moreover, we unveil a crucial mechanistic role of HDAC9 in vascular calcification under CKD conditions; thus, nutritional intervention or pharmacological approaches to enhance BHB levels could act as promising therapeutic strategies to target HDAC9 for the treatment of vascular calcification in CKD. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ácido 3-Hidroxibutírico/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Regulação para Baixo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Cetonas/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Ratos , Insuficiência Renal Crônica/patologia , Proteínas Repressoras/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle
5.
Proc Natl Acad Sci U S A ; 117(41): 25712-25721, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989127

RESUMO

Vogt-Koyanagi-Harada (VKH) disease is a systemic autoimmune disorder affecting multiple organs, including eyes, skin, and central nervous system. It is known that monocytes significantly contribute to the development of autoimmune disease. However, the subset heterogeneity with unique functions and signatures in human circulating monocytes and the identity of disease-specific monocytic populations remain largely unknown. Here, we employed an advanced single-cell RNA sequencing technology to systematically analyze 11,259 human circulating monocytes and genetically defined their subpopulations. We constructed a precise atlas of human blood monocytes, identified six subpopulations-including S100A12, HLA, CD16, proinflammatory, megakaryocyte-like, and NK-like monocyte subsets-and uncovered two previously unidentified subsets: HLA and megakaryocyte-like monocyte subsets. Relative to healthy individuals, cellular composition, gene expression signatures, and activation states were markedly alternated in VKH patients utilizing cell type-specific programs, especially the CD16 and proinflammatory monocyte subpopulations. Notably, we discovered a disease-relevant subgroup, proinflammatory monocytes, which showed a discriminative gene expression signature indicative of inflammation, antiviral activity, and pathologic activation, and converted into a pathologic activation state implicating the active inflammation during VKH disease. Additionally, we found the cell type-specific transcriptional signature of proinflammatory monocytes, ISG15, whose production might reflect the treatment response. Taken together, in this study, we present discoveries on accurate classification, molecular markers, and signaling pathways for VKH disease-associated monocytes. Therapeutically targeting this proinflammatory monocyte subpopulation would provide an attractive approach for treating VKH, as well as other autoimmune diseases.


Assuntos
Monócitos/imunologia , Síndrome Uveomeningoencefálica/genética , Síndrome Uveomeningoencefálica/imunologia , Adulto , Autoimunidade , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de IgG/genética , Receptores de IgG/imunologia , Proteína S100A12/genética , Proteína S100A12/imunologia , Ubiquitinas/genética , Ubiquitinas/imunologia
6.
J Mol Cell Cardiol ; 173: 154-168, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36367517

RESUMO

Vascular calcification is an important risk factor for cardiovascular events, accompanied by DNA damage during the process. The sirtuin 6 (SIRT6) has been reported to alleviate atherosclerosis, which is related to the reduction of DNA damage. However, whether smooth muscle cell SIRT6 mediates vascular calcification involving DNA damage remains unclear. Western blot and immunofluorescence revealed that SIRT6 expression was decreased in human vascular smooth muscle cells (HVSMCs), human and mouse arteries during vascular calcification. Alizarin red staining and calcium content assay showed that knockdown or deletion of SIRT6 significantly promoted HVSMC calcification induced by high phosphorus and calcium, accompanied by upregulation of osteogenic differentiation markers including Runx2 and BMP2. By contrast, adenovirus-mediated SIRT6 overexpression attenuated osteogenic differentiation and calcification of HVSMCs. Moreover, ex vivo study revealed that SIRT6 overexpression inhibited calcification of mouse and human arterial rings. Of note, smooth muscle cell-specific knockout of SIRT6 markedly aggravated Vitamin D3-induced aortic calcification in mice. Mechanistically, overexpression of SIRT6 reduced DNA damage and upregulated p-ATM during HVSMCs calcification, whereas knockdown of SIRT6 showed the opposite effects. Knockdown of ATM in HVSMCs abrogated the inhibitory effect of SIRT6 overexpression on calcification and DNA damage. This study for the first time demonstrates that vascular smooth muscle cell-specific deletion of SIRT6 facilitates vascular calcification via suppression of DNA damage repair. Therefore, modulation of SIRT6 and DNA damage repair may represent a therapeutic strategy for vascular calcification.


Assuntos
Sirtuínas , Calcificação Vascular , Humanos , Cálcio/metabolismo , Dano ao DNA , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Calcificação Vascular/genética , Reparo do DNA
7.
Kidney Int ; 102(6): 1259-1275, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063875

RESUMO

Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD). Cell death such as apoptosis plays a critical role in vascular calcification. Ferroptosis is a type of iron-catalyzed and regulated cell death resulting from excessive iron-dependent reactive oxygen species and lipid peroxidation. However, it is unclear whether ferroptosis of vascular smooth muscle cells (VSMCs) regulates vascular calcification in CKD. Our results showed that high calcium and phosphate concentrations induced ferroptosis in rat VSMCs in vitro. Inhibition of ferroptosis by ferrostatin-1 dose-dependently reduced mineral deposition in rat VSMCs under pro-osteogenic conditions, as indicated by alizarin red staining and quantification of calcium content. In addition, gene expression analysis revealed that ferrostatin-1 inhibited osteogenic differentiation of rat VSMCs. Similarly, ferrostatin-1 remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in vitamin D3-overloaded mice in vivo. Moreover, inhibition of ferroptosis by either ferrostatin-1 or deferoxamine attenuated aortic calcification in rats with CKD. Mechanistically, high calcium and phosphate downregulated expression of SLC7A11 (a cystine-glutamate antiporter), and reduced glutathione (GSH) content in VSMCs. Additionally, GSH depletion induced by erastin (a small molecule initiating ferroptotic cell death) significantly promoted calcification of VSMCs under pro-osteogenic conditions, whereas GSH supplement by N-acetylcysteine reduced calcification of VSMCs. Consistently, knockdown of SLC7A11 by siRNA markedly promoted VSMC calcification. Furthermore, high calcium and phosphate downregulated glutathione peroxidase 4 (GPX4) expression, and reduced glutathione peroxidase activity. Inhibition of GPX4 by RSL3 promoted VSMC calcification. Thus, repression of the SLC7A11/GSH/GPX4 axis triggers ferroptosis of VSMCs to promote vascular calcification under CKD conditions, providing a novel targeting strategy for vascular calcification.


Assuntos
Ferroptose , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Ratos , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Músculo Liso Vascular , Osteogênese , Cálcio/metabolismo , Antiporters/metabolismo , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle , Ferro/metabolismo , Glutationa/metabolismo , Insuficiência Renal Crônica/patologia , Fosfatos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
8.
Adv Exp Med Biol ; 1377: 189-195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575931

RESUMO

In addition to the well-known functions, plasma HDL also plays an important role in postsurgery periods. In this chapter, we summarized the changes of HDL after surgery like bariatric surgery and cardiac surgery. Not only the amount of HDL changed, the HDL components or functions have also been altered after various surgeries. Furthermore, a few HDL-related indexes have been recognized as important clinical predictors after surgery, such as HDL cholesterol efflux capacity, HDL pro-inflammatory index, HDL cholesterol (HDL-C) concentration, and monocyte count to HDL ratio (MHR).


Assuntos
Cirurgia Bariátrica , HDL-Colesterol
9.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570211

RESUMO

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Células Espumosas , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Pró-Proteína Convertase 9
10.
J Lipid Res ; 62: 100066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711324

RESUMO

Endothelial-to-mesenchymal transition (EndMT), the process by which an endothelial cell (EC) undergoes a series of molecular events that result in a mesenchymal cell phenotype, plays an important role in atherosclerosis. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine, is a proinflammatory lipid found in atherosclerotic lesions. Whether POVPC promotes EndMT and how simvastatin influences POVPC-mediated EndMT remains unclear. Here, we treated human umbilical vein ECs with POVPC, simvastatin, or both, and determined their effect on EC viability, morphology, tube formation, proliferation, and generation of NO and superoxide anion (O2•-). Expression of specific endothelial and mesenchymal markers was detected by immunofluorescence and immunoblotting. POVPC did not affect EC viability but altered cellular morphology from cobblestone-like ECs to a spindle-like mesenchymal cell morphology. POVPC increased O2- generation and expression of alpha-smooth muscle actin, vimentin, Snail-1, Twist-1, transforming growth factor-beta (TGF-ß), TGF-ß receptor II, p-Smad2/3, and Smad2/3. POVPC also decreased NO production and expression of CD31 and endothelial NO synthase. Simvastatin inhibited POVPC-mediated effects on cellular morphology, production of O2•- and NO, and expression of specific endothelial and mesenchymal markers. These data demonstrate that POVPC induces EndMT by increasing oxidative stress, which stimulates TGF-ß/Smad signaling, leading to Snail-1 and Twist-1 activation. Simvastatin inhibited POVPC-induced EndMT by decreasing oxidative stress, suppressing TGF-ß/Smad signaling, and inactivating Snail-1 and Twist-1. Our findings reveal a novel mechanism of atherosclerosis that can be inhibited by simvastatin.


Assuntos
Fosforilcolina
11.
Acta Pharmacol Sin ; 42(1): 10-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32457416

RESUMO

Atherosclerosis (AS) is the main pathological cause of coronary heart disease (CHD). Current clinical interventions including statin drugs can effectively reduce acute myocardial infarction and stroke to some extent, but residual risk remains high. The current clinical treatment regimens are relatively effective for early atherosclerotic plaques and can even reverse their progression. However, the effectiveness of these treatments for advanced AS is not ideal, and advanced atherosclerotic plaques-the pathological basis of residual risk-can still cause a recurrence of acute cardiovascular and cerebrovascular events. Recently, nanomedicine-based treatment strategies have been extensively used in antitumor therapy, and also shown great potential in anti-AS therapy. There are many microstructures in late-stage atherosclerotic plaques, such as neovascularization, micro-calcification, and cholesterol crystals, and these have become important foci for targeted nanomedicine delivery. The use of targeted nanoparticles has become an important strategy for the treatment of advanced AS to further reduce the residual risk of cardiovascular events. Furthermore, the feasibility and safety of nanotechnology in clinical treatment have been preliminarily confirmed. In this review, we summarize the application of nanomedicine delivery in the treatment of advanced AS and the clinical value of several promising nanodrugs.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Portadores de Fármacos/química , Hipolipemiantes/uso terapêutico , Nanopartículas Metálicas/química , Animais , Humanos , Lipossomos/química , Neovascularização Patológica/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico
12.
Am J Physiol Endocrinol Metab ; 319(1): E217-E231, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516026

RESUMO

We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.


Assuntos
Quimiotaxia de Leucócito/imunologia , Vesículas Extracelulares/imunologia , Doenças das Valvas Cardíacas/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Rim/imunologia , Neutrófilos/imunologia , Insuficiência Renal/imunologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Adulto , Animais , Estudos de Casos e Controles , Quimiocina CCL5/efeitos dos fármacos , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Dexmedetomidina/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/imunologia , Proteína Forkhead Box O3/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Fosforilação , Fator Plaquetário 4/efeitos dos fármacos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal/metabolismo , Vasodilatação
13.
Curr Atheroscler Rep ; 22(6): 23, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32468443

RESUMO

PURPOSE OF REVIEW: This review summarizes the effects of microparticles and exosomes in the progression of atherosclerosis and the prospect for their diagnostic and therapeutic potentials. RECENT FINDINGS: Microparticles and exosomes can induce endothelial dysfunction, vascular inflammation, coagulation, thrombosis, and calcification via their components of proteins and noncoding RNAs, which may promote the progression of atherosclerosis. The applications of microparticles and exosomes become the spotlight of clinical diagnosis and therapy. Microparticles and exosomes are members of extracellular vesicles, which are generated in various cell types by different mechanisms of cell membrane budding and multivesicular body secretion, respectively. They are important physiologic pathways of cell-to-cell communication in vivo and act as messengers accelerating or alleviating the process of atherosclerosis. Microparticles and exosomes may become diagnostic biomarkers and therapeutic approaches of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Animais , Biomarcadores/metabolismo , Progressão da Doença , Endotélio Vascular/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Trombose/metabolismo , Calcificação Vascular/metabolismo
14.
J Mol Cell Cardiol ; 129: 144-153, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797815

RESUMO

Ischemia postconditioning (PTC) can reduce myocardial ischemia/reperfusion injury. However, the effectiveness of PTC cardioprotection is reduced or lost in diabetes and the mechanisms are largely unclear. Hyperglycemia can induce overexpression of inducible nitric oxide synthesis (iNOS) in the myocardium of diabetic subjects. However, it is unknown whether or not iNOS especially its overexpression plays an important role in the loss of cardioprotection of PTC in diabetes. C57BL6 and iNOS-/- mice were treated with streptozotocin to induce diabetes. Part of diabetic C57BL6 mice were also treated with an iNOS specific inhibitor, 1400 W. Mice were subjected to myocardial ischemia/ reperfusion with/without PTC. The hemodynamic parameters, plasma levels of cardiac troponin T (cTnT), TNF-α, IL-6 and nitric oxide (NO) were monitored. The myocardial infarct size, superoxide anion (O2-) generation, nitrotyrosine production and apoptosis were measured. The expression of phosphorylated Akt, endothelial NOS (eNOS), iNOS and Erk1/2 in ischemic heart were detected by immunoblot analysis. In diabetic C57BL6 and iNOS-/- mice, the post-ischemic hemodynamics were impaired, the cTnT, TNF-α, IL-6 level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation were increased and the Akt/eNOS signal pathways were inhibited. PTC improved hemodynamic parameters, reduced cTnT level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation and activated Akt/eNOS and Erk1/2 signal pathways in both non-diabetic C57BL6 and iNOS-/- mice as well as diabetic iNOS-/- mice, but not in diabetic C57BL6 mice. PTC also increased NO production in both non-diabetic and diabetic C57BL6 and iNOS-/- mice, and enhanced iNOS expression in non-diabetic C57BL6 mice. 1400 W restored the cardioprotection of PTC in diabetic C57BL6 mice. Our data demonstrated that PTC reduced myocardial ischemia/reperfusion injury in non-diabetic mice but not C57BL6 diabetic mice. Deletion of iNOS restored the cardioprotection of PTC in diabetic mice. Our findings suggest that iNOS plays a key role in the reduction of cardioprotection of PTC in diabetes and may provide a therapeutic target for diabetic patients.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Pós-Condicionamento Isquêmico , Miocárdio/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Apoptose , Glicemia/metabolismo , Peso Corporal , Citocinas/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Troponina T/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Função Ventricular
15.
Circulation ; 135(14): 1339-1354, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28122883

RESUMO

BACKGROUND: Retinol-binding protein 4 (RBP4) is an adipokine that plays decisive roles in glucose metabolism and insulin sensitivity. Elevated circulating RBP4 levels were reported to be associated with increased risk for cardiovascular disease, but the precise role of RBP4 in atherosclerotic diseases and its mechanisms of action remain elusive. METHODS: Serum RBP4 levels of 1683 participants from South China were evaluated and the occurrence of major adverse cardiovascular events was followed up for 5 years. Apolipoprotein E-deficient mice infected with RBP4-overexpressing/silencing adenovirus, J774A.1 macrophages, and primary peritoneal macrophages from RBP4 transgenic mice were used for investigating the function of RBP4 in foam cell formation. RESULTS: Prospective cohort studies revealed that baseline serum RBP4 level was an independent predictor for incidence of adverse cardiovascular events after adjustment for traditional risk factors. Increased RBP4 expression was observed in atherosclerotic lesions of aortic specimens from both humans and apolipoprotein E-deficient mice, and RBP4 was localized to areas rich in macrophage foam cells. RBP4 inhibition attenuated whereas overexpression accelerated atherosclerosis progression in apolipoprotein E-deficient mice. Both treatment with exogenous recombinant RBP4 and overexpression of RBP4 gene promoted macrophage-derived foam cell formation through the activation of scavenger-receptor CD36-mediated cholesterol uptake, and RBP4 transcriptionally upregulated CD36 expression in a manner dependent on jun N-terminal kinase and signal transducer and activator of transcription 1. The tyrosine kinase c-Src was identified as the upstream regulator of jun N-terminal kinase-signal transducer and activator of transcription 1-mediated CD36-dependent cholesterol uptake, and RBP4 challenge was found to alter the membrane distribution of c-Src and cause c-Src to partition into lipid-raft membrane subdomains, where the kinase was activated. Lastly, Toll-like receptor 4, but not retinol or stimulated by retinoic acid 6, mediated the inductive effects of RBP4 in macrophages. CONCLUSIONS: Inclusion of RBP4 levels in traditional models enhances the predictive ability for the incidence of atherosclerotic events. RBP4 promotes atherogenesis by inducing macrophage-derived foam cell formation.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Células Espumosas/metabolismo , Macrófagos/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Animais , Aterosclerose/patologia , Proteínas de Transporte , Estudos de Coortes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática , Estudos Prospectivos
16.
Am J Physiol Renal Physiol ; 315(6): F1759-F1768, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846109

RESUMO

Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of the intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 wk with vehicle, bovine serum albumin (5 g·kg-1·day-1 via a single ip injection), alone or in conjunction with the PRR decoy inhibitor PRO20 (500 µg·kg-1·day-1 via 3 sc injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, and inflammation, accompanied by elevated urinary N-acetyl-ß-d-glucosaminidase activity and urinary ß2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen, and ANG II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.


Assuntos
Nefropatias/metabolismo , Rim/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina , Soroalbumina Bovina , Animais , Modelos Animais de Doenças , Fibrose , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Nefropatias/induzido quimicamente , Nefropatias/fisiopatologia , Nefropatias/prevenção & controle , Masculino , Nefrectomia , Estresse Oxidativo , Fragmentos de Peptídeos/farmacologia , Proteinúria/induzido quimicamente , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Proteinúria/prevenção & controle , Ratos Wistar , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Renina/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras , Receptor de Pró-Renina
17.
Lab Invest ; 98(10): 1320-1332, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29785051

RESUMO

Vascular calcification is a highly regulated biological process similar to bone formation involving osteogenic differentiation of vascular smooth muscle cells (VSMCs). Hyaluronan (HA), a major structural component of the extracellular matrix in cartilage, has been shown to inhibit osteoblast differentiation. However, whether HA affects osteogenic differentiation and calcification of VSMCs remains unclear. In the present study, we used in vitro and ex vivo models of vascular calcification to investigate the role of HA in vascular calcification. Both high and low molecular weight HA treatment significantly reduced calcification of rat VSMCs in a dose-dependent manner, as detected by alizarin red staining and calcium content assay. Ex vivo study further confirmed the inhibitory effect of HA on vascular calcification. Similarly, HA treatment decreased ALP activity and expression of bone-related molecules including Runx2, BMP2 and Msx2. By contrast, inhibition of HA synthesis by 4-methylumbelliferone (4MU) promoted calcification of rat VSMCs. In addition, adenovirus-mediated overexpression of HA synthase 2 (HAS2), a major HA synthase in VSMCs, also inhibited calcification of VSMCs, whereas CRISPR/Cas9-mediated HAS2 knockout promoted calcification of rat A10 cells. Furthermore, we found that BMP2 signaling was inhibited in VSMCs after HA treatment. Recombinant BMP2 enhanced high calcium and phosphate-induced VSMC calcification, which can be blocked by HA treatment. Taken together, these findings suggest that HA inhibits vascular calcification involving BMP2 signaling.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Ácido Hialurônico/metabolismo , Calcificação Vascular/etiologia , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , Ratos Sprague-Dawley , Calcificação Vascular/metabolismo
18.
Circ Res ; 119(12): 1296-1312, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27729467

RESUMO

RATIONALE: Macrophage survival within the arterial wall is a central factor contributing to atherogenesis. Oxysterols, major components of oxidized low-density lipoprotein, exert cytotoxic effects on macrophages. OBJECTIVE: To determine whether oxysterol-binding protein-related protein 4 L (ORP4L), an oxysterol-binding protein, affects macrophage survival and the pathogenesis of atherosclerosis. METHODS AND RESULTS: By hiring cell biological approaches and ORP4L-/- mice, we show that ORP4L coexpresses with and forms a complex with Gαq/11 and phospholipase C (PLC)-ß3 in macrophages. ORP4L facilitates G-protein-coupled ligand-induced PLCß3 activation, IP3 production, and Ca2+ release from the endoplasmic reticulum. Through this mechanism, ORP4L sustains antiapoptotic Bcl-XL expression through Ca2+-mediated c-AMP responsive element binding protein transcriptional regulation and thus protects macrophages from apoptosis. Excessive stimulation with the oxysterol 25-hydroxycholesterol disassembles the ORP4L/Gαq/11/PLCß3 complexes, resulting in reduced PLCß3 activity, IP3 production, and Ca2+ release, as well as decreased Bcl-XL expression and increased apoptosis. Overexpression of ORP4L counteracts these oxysterol-induced defects. Mice lacking ORP4L exhibit increased apoptosis of macrophages in atherosclerotic lesions and a reduced lesion size. CONCLUSIONS: ORP4L is crucial for macrophage survival. It counteracts the cytotoxicity of oxysterols/oxidized low-density lipoprotein to protect macrophage from apoptosis, thus playing an important role in the development of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais/fisiologia , Animais , Aterosclerose/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
J Cardiovasc Pharmacol ; 72(4): 176-185, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29985281

RESUMO

Simvastatin treatment is cardioprotective in patients undergoing noncoronary artery cardiac surgery. However, the mechanisms by which simvastatin treatment protects the myocardium under these conditions are not fully understood. Seventy patients undergoing noncoronary cardiac surgery, 35 from a simvastatin treatment group and 35 from a control treatment group, were enrolled in our clinical study. Simvastatin (20 mg/d) was administered preoperatively for 5-7 days. Myocardial tissue biopsies were taken before and after surgery. Apoptosis was detected by TUNEL staining. The expressions of Bcl-2 and Bak in myocardial tissue were detected by immunoblotting. The expressions of miRNA and Bcl-2 mRNA were detected by quantitative real-time polymerase chain reaction assays. Cardiomyocytes were isolated from rat and cultured cells. MiR-15a-5p mimic was transfected into cardiomyocytes, and the Bcl-2 was detected by immunoblotting. TUNEL staining showed significantly less myocardial apoptosis in the simvastatin treatment group when compared with the control treatment group. Protein expression of Bcl-2 was increased in the simvastatin treatment group before surgery, and Bak expression was increased in the control treatment group after surgery. Further comparisons showed that Bcl-2/Bak ratios were reduced in the control treatment group but were not significantly changed in the simvastatin treatment group after surgery. Furthermore, microarray assays revealed that miR-15a-5p was significantly decreased by simvastatin treatment. This was validated by quantitative real-time polymerase chain reaction analysis. MiR-15a-5p was predicted to target Bcl-2 mRNA at nucleotide positions 2529-2536. This was validated by luciferase binding assays. Coincident with the change in miR-15a-5p, the mRNA expression of Bcl-2 was increased in the simvastatin treatment group. MiR-15a-5p mimic significantly inhibited Bcl-2 expression in cardiomyocytes. Our findings strongly suggest that simvastatin treatment preoperatively protected the myocardium in patients undergoing noncoronary artery cardiac surgery, at least in part, by inhibiting apoptosis via suppressing miR-15a-5p expression, leading to increasing expression of Bcl-2 and decreasing expression of Bak.


Assuntos
Apoptose/efeitos dos fármacos , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Cardiopatias/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Sinvastatina/administração & dosagem , Adulto , Animais , Células Cultivadas , China , Esquema de Medicação , Feminino , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/efeitos adversos , Resultado do Tratamento , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
20.
J Mol Cell Cardiol ; 112: 40-48, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28870504

RESUMO

Endothelial dysfunction is an early stage of atherosclerosis. We recently have shown that 25-hydroxycholesterol found in atherosclerotic lesions could impair endothelial function and vasodilation by uncoupling and inhibiting endothelial nitric oxide synthase (eNOS). 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), the oxidation product of oxidized low-density lipoprotein, is another proinflammatory lipid and has also been found in atherosclerotic lesions. However, whether POVPC promotes atherosclerosis like 25-hydroxycholesterol remains unclear. The purpose of this study was to explore the effects of POVPC on endothelial function and vasodilation. Human umbilical vein endothelial cells (HUVECs) were incubated with POVPC. Endothelial cell proliferation, migration and tube formation were measured. Nitric oxide (NO) production and superoxide anion generation (O2-) were determined. The expression and phosphorylation of endothelial nitric oxide synthase (eNOS), AKT, PKC-ßII and P70S6K as well as the association of eNOS and heat shock protein 90 (HSP90) were detected by immunoblotting and immunoprecipitation. Endothelial cell apoptosis was monitored by TUNEL staining. The expression of Bcl-2, Bax, and Cleaved Caspase 3 were detected by immunoblotting. Finally, aortic ring from C57BL6 mice were isolated and treated with POVPC and the endothelium-dependent vasodilation was evaluated. POVPC significantly inhibited HUVECs proliferation, migration, tube formation, decreased NO production but increased O2- generation. POVPC inhibited the phosphorylation of Akt and eNOS at Ser1177, increased activation of PKC-ßII, P70S6K and the phosphorylation of eNOS at Thr495, reduced the association of HSP90 with eNOS. Meanwhile, POVPC induced endothelial cell apoptosis by inhibiting Bcl-2 expression, increasing Bax and cleaved caspase-3 expressions as well as caspase-3 activity and impaired endothelium-dependent vasodilation. These data demonstrated that POVPC impaired endothelial function by uncoupling and inhibiting eNOS as well as by inducing endothelial cell apoptosis. Therefore, POVPC may play an important role in the development of atherosclerosis and may be considered as a potential therapeutic target for atherosclerosis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Éteres Fosfolipídicos/farmacologia , Vasodilatação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa