Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Plant Cell ; 35(3): 1134-1159, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36585808

RESUMO

Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaßLIM1a. CaßLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaßLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.


Assuntos
Ascomicetos , Cicer , Fatores de Transcrição , Ascomicetos/genética , Ascomicetos/metabolismo , Cicer/genética , Cicer/metabolismo , Cicer/microbiologia , Lignina/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nature ; 586(7831): 749-756, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087929

RESUMO

The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.


Assuntos
Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , Mutação com Perda de Função/genética , Fenótipo , Idoso , Densidade Óssea/genética , Colágeno Tipo VI/genética , Demografia , Feminino , Genes BRCA1 , Genes BRCA2 , Genótipo , Humanos , Canais Iônicos/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Penetrância , Fragmentos de Peptídeos/genética , Reino Unido , Varizes/genética , Proteínas Ativadoras de ras GTPase/genética
3.
Rev Med Virol ; 34(4): e2568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937111

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Oócitos , SARS-CoV-2 , Humanos , COVID-19/virologia , SARS-CoV-2/fisiologia , Feminino , Oócitos/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Internalização do Vírus , Catepsina L/metabolismo , Basigina/metabolismo , Folículo Ovariano/virologia , Folículo Ovariano/metabolismo , Estresse Oxidativo , Serina Endopeptidases/metabolismo
4.
Planta ; 260(2): 38, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951258

RESUMO

MAIN CONCLUSION: Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.


Assuntos
Antocianinas , Cicer , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proantocianidinas , Sementes , Fatores de Transcrição , Cicer/genética , Cicer/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biossíntese , Proantocianidinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento
5.
J Exp Bot ; 75(1): 219-240, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813680

RESUMO

Flavonols are structurally and functionally diverse biomolecules involved in plant biotic and abiotic stress tolerance, pollen development, and inhibition of auxin transport. However, their effects on global gene expression and signaling pathways are unclear. To explore the roles of flavonol metabolites in signaling, we performed comparative transcriptome and targeted metabolite profiling of seedlings from the flavonol-deficient Arabidopsis loss-of-function mutant flavonol synthase1 (fls1) with and without exogenous supplementation of flavonol derivatives (kaempferol, quercetin, and rutin). RNA-seq results indicated that flavonols modulate various biological and metabolic pathways, with significant alterations in camalexin and aliphatic glucosinolate synthesis. Flavonols negatively regulated camalexin biosynthesis but appeared to promote the accumulation of aliphatic glucosinolates via transcription factor-mediated up-regulation of biosynthesis genes. Interestingly, upstream amino acid biosynthesis genes involved in methionine and tryptophan synthesis were altered under flavonol deficiency and exogenous supplementation. Quercetin treatment significantly up-regulated aliphatic glucosinolate biosynthesis genes compared with kaempferol and rutin. In addition, expression and metabolite analysis of the transparent testa7 mutant, which lacks hydroxylated flavonol derivatives, clarified the role of quercetin in the glucosinolate biosynthesis pathway. This study elucidates the molecular mechanisms by which flavonols interfere with signaling pathways, their molecular targets, and the multiple biological activities of flavonols in plants.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Flavonóis/metabolismo , Glucosinolatos/metabolismo , Quempferóis/metabolismo , Quempferóis/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia , Vias Biossintéticas , Rutina
6.
Nanotechnology ; 35(32)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38710179

RESUMO

We have investigated the plasma-enhanced chemical vapor deposition growth of the phosphorus-doped hydrogenated nanocrystalline silicon (n-nc-Si:H) film as an electron-selective layer in silicon heterojunction (SHJ) solar cells. The effect of power densities on the precursor gas dissociation are investigated using optical emission spectra and the crystalline fraction in n-nc-Si:H films are correlated with the dark conductivity. With thePdof 122 mW cm-2and ∼2% phosphorus doping, we observed Raman crystallinity of 53%, high dark conductivity of 43 S cm-1, and activation energy of ∼23 meV from the ∼30 nm n-nc-Si:H film. The n-nc-Si:H layer improves the textured c-Si surface passivation by two-fold to ∼2 ms compared to the phosphorus-doped hydrogenated amorphous silicon (n-a-Si:H) layers. An enhancement in the open-circuit voltage and external quantum efficiency (from >650 nm) due to the better passivation at the rear side of the cell after integrating the n-nc-Si:H layer compared to its n-a-Si:H counterpart. An improvement in the charge carrier transport is also observed with an increase in fill factor from ∼71% to ∼75%, mainly due to a reduction in electron-selective contact resistivity from ∼271 to ∼61 mΩ-cm2. Finally, with the relatively better c-Si surface passivation and carrier selectivity, a power conversion efficiency of ∼19.90% and pseudo-efficiency of ∼21.90% have been realized from the SHJ cells.

7.
Ann Vasc Surg ; 103: 99-108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395340

RESUMO

BACKGROUND: Takayasu Arteritis (TA) is an immune mediated arteritis causing inflammation of the aorta and its branches, which can result in aortic aneurysms. Our aim is to describe the outcome of surgical management in these patients who presented with Thoracoabdominal aortic aneurysm (TAAA). METHODS: Between 2003 and 2023, 40 TA patients with TAAA underwent operative repair. RESULTS: There were 24 females and 16 males, in the age group of 19-53 years, with hypertension in 20 patients. Raised Erythrocyte sedimentation Rate was present in 13 patients. According to Crawford classification, there were 2 patients with type I, 2 with type II, 17 with type III, 12 patients with type IV and 7 with type V aneurysm. Multiple steno-occlusive lesions of aortic branches were present in 21 patients, with majority affecting the renal artery. Femoral Artery Femoral Vein Partial cardiopulmonary bypass was used for types I, II, III and V. Separate bypass to visceral branches was done in eight patients, of whom five had multiple bypasses and three patients only had renal bypass. Twelve patients underwent reimplantation of branches, out of which nine had multiple vessel reimplantation. Four patients underwent staged repair of the aneurysm, which included visceral debranching in the first day, followed by repair of the aneurysm in the next day. In the immediate postoperative period, ten patients developed acute kidney injury and two required dialysis. Other morbidities included acute respiratory distress syndrome (ARDS), spinal cord dysfunction, bleeding, and wound complications. Three patients expired in the immediate postoperative period. Mean duration of intensive care unit stay was 4.1 days and hospital stay was 12.7 days. Comparison of disease activity with morbidity and mortality was statistically insignificant. Patients were on follow-up for a range of 6 months to 14 years and median follow-up of 25 months. Over this time period four patients expired and four developed anastomotic pseudoaneurysm requiring intervention. On comparing the disease activity at the time of surgery with the long-term arteritis related complications that required intervention, the P value was 0.653 and hence statistically not significant. The 10-year survival rate is 84.4%. CONCLUSIONS: Surgical repair has good and satisfactory outcome, with low early and late mortality rates. Progression of disease can occur at any stage of the disease, hence indicating the need for long term follow-up and frequent imaging.


Assuntos
Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Complicações Pós-Operatórias , Arterite de Takayasu , Humanos , Arterite de Takayasu/complicações , Arterite de Takayasu/cirurgia , Arterite de Takayasu/diagnóstico por imagem , Feminino , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Adulto , Pessoa de Meia-Idade , Aneurisma da Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/mortalidade , Aneurisma da Aorta Torácica/etiologia , Implante de Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/mortalidade , Fatores de Tempo , Adulto Jovem , Complicações Pós-Operatórias/etiologia , Fatores de Risco , Tempo de Internação , Angiografia por Tomografia Computadorizada , Ponte Cardiopulmonar , Aneurisma da Aorta Toracoabdominal
8.
Int J Phytoremediation ; : 1-10, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832563

RESUMO

A study was carried out to evaluate phytodiversity along with the metal accumulation potential of native plants growing in the vicinity of a thermal power plant (TPP). We documented 26 tree species, six shrubs, and 35 herbs. Importance value index (IVI), which measures the extent to which a species dominates in an area, was found highest for Senna siamea (95.7) followed by Tectona grandis (56.5), and Pithecellobium dulce (19.6). Soil was acidic (pH 5.4) in nature with higher concentrations of Al and Fe. The pH of ground water was found acidic while pH of nearby river was found slightly alkaline. Values of PM2.5 and PM10 were slightly higher than NAAQS standards for industrial areas. The concentration of metals was found higher in aquatic plants than in terrestrial plants. In general, herbs and shrubs showed more metal accumulation potential than trees. Our results suggest that Senna siamea could be used for revegetation purposes in FA landfills. Further, terrestrial and aquatic plants such as Ageratina adenophora and Stuckenia pectinata could be used for reclamation of Mn, Zn, Al, and Fe from contaminated soils. Hydrilla verticillata (Ni and Mn), Nelumbo nucifera, and Ipomoea aquatica (Cr) can be used for metal removal from contaminated water.


The study focuses on the assessment of phytodiversity, soil and water analysis, ambient air quality, and bioaccumulation of heavy metals in plants growing in and around a thermal power plant. The study assumes significance as more than 65% of India's electricity generation is still by coal-fired power plants, having major implications for air, soil, and water pollution. By selecting native plant species adapted to the region, we can enhance biodiversity, restore habitats, and contribute to the overall ecological health of the area surrounding the power plant.

9.
World J Microbiol Biotechnol ; 40(3): 81, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285224

RESUMO

An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.


Assuntos
Chlorella , Microalgas , Biocombustíveis , Ácidos Graxos , Têxteis
10.
Environ Monit Assess ; 196(2): 119, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183498

RESUMO

Arsenic (As) toxicity is an escalating problem; however, information about the metabolic events controlling the varied pattern of As accumulation in rice genotypes within their natural environment is still lacking. The present study is thus an advancement in unravelling the response of such rice genotypes. Soil-water-rice samples were analyzed for As accumulation using ICP-MS. Furthermore, we implemented metabolomics through LC-MS/MS and UHPLC to identify metabolic signatures regulating As content by observing the metalloid's composition in rice agrosystem. Results showed that rice genotypes differed significantly in their levels of metabolites, with Mini mansoori and Pioneer having the highest levels. Mini mansoori contained least As which might have been regulated by Ala, Ser, Glu, Phe, Asn, His, Ile, Lys, Gln, Trp, Tyr, chlorogenic, p-coumaric, trans-ferulic, rutin, morin, naringenin, kampferol, and myricetin, while Asp, Arg, Met, syringic, epigalocatechin, and apigenin contributed to the greater As acclimatization ability of Pioneer. Multivariate tools separated the rice genotypes into two major clusters: Pioneer-Mini mansoori and Damini-Sampoorna-Chintu. KEGG identified three major metabolic pathways (aminoacyl-tRNA, phenylpropanoid, and secondary metabolites biosynthesis route) linked with As tolerance and adaptation mechanisms in rice. Overall, these two genotypes symbolize their As hostile and accommodating attitudes probably due to the accumulated metabolites and the physicochemical attributes of the soil-water. Thus, thorough understanding of the metabolic reactions to As may facilitate the emergence of As tolerant/resilient genotypes. This will aid in the selection of molecular markers to cultivate healthier rice genotypes in As-contaminated areas.


Assuntos
Arsênio , Oryza , Oryza/genética , Arsênio/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Genótipo , Solo , Água
11.
J Biol Chem ; 298(3): 101719, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151690

RESUMO

The mitochondrial protein LonP1 is an ATP-dependent protease that mitigates cell stress and calibrates mitochondrial metabolism and energetics. Biallelic mutations in the LONP1 gene are known to cause a broad spectrum of diseases, and LonP1 dysregulation is also implicated in cancer and age-related disorders. Despite the importance of LonP1 in health and disease, specific inhibitors of this protease are unknown. Here, we demonstrate that 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its -methyl and -imidazole derivatives reversibly inhibit LonP1 by a noncompetitive mechanism, blocking ATP-hydrolysis and thus proteolysis. By contrast, we found that CDDO-anhydride inhibits the LonP1 ATPase competitively. Docking of CDDO derivatives in the cryo-EM structure of LonP1 shows these compounds bind a hydrophobic pocket adjacent to the ATP-binding site. The binding site of CDDO derivatives was validated by amino acid substitutions that increased LonP1 inhibition and also by a pathogenic mutation that causes cerebral, ocular, dental, auricular and skeletal (CODAS) syndrome, which ablated inhibition. CDDO failed to inhibit the ATPase activity of the purified 26S proteasome, which like LonP1 belongs to the AAA+ superfamily of ATPases Associated with diverse cellular Activities, suggesting that CDDO shows selectivity within this family of ATPases. Furthermore, we show that noncytotoxic concentrations of CDDO derivatives in cultured cells inhibited LonP1, but not the 26S proteasome. Taken together, these findings provide insights for future development of LonP1-specific inhibitors with chemotherapeutic potential.


Assuntos
Proteases Dependentes de ATP , Trifosfato de Adenosina , Mitocôndrias , Proteínas Mitocondriais , Ácido Oleanólico/análogos & derivados , Trifosfato de Adenosina/metabolismo , Endopeptidases/metabolismo , Hidrólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Ácido Oleanólico/farmacologia
12.
New Phytol ; 238(2): 798-816, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683398

RESUMO

Flavonoids are important plant pigments and defense compounds; understanding the transcriptional regulation of flavonoid biosynthesis may enable engineering crops with improved nutrition and stress tolerance. Here, we characterize R2R3-MYB domain subgroup 7 transcription factor CaMYB39, which regulates flavonol biosynthesis primarily in chickpea trichomes. CaMYB39 overexpression in chickpea was accompanied by a change in flux availability for the phenylpropanoid pathway, particularly flavonol biosynthesis. Lines overexpressing CaMYB39 showed higher isoflavonoid levels, suggesting its role in regulating isoflavonoid pathway. CaMYB39 transactivates the transcription of early flavonoid biosynthetic genes (EBG). FLAVONOL SYNTHASE2, an EBG, encodes an enzyme with higher substrate specificity for dihydrokaempferol than other dihydroflavonols explaining the preferential accumulation of kaempferol derivatives as prominent flavonols in chickpea. Interestingly, CaMYB39 overexpression increased trichome density and enhanced the accumulation of diverse flavonol derivatives in trichome-rich tissues. Moreover, CaMYB39 overexpression reduced reactive oxygen species levels and induced defense gene expression which aids in partially blocking the penetration efficiency of the fungal pathogen, Ascochyta rabiei, resulting in lesser symptoms, thus establishing its role against deadly Ascochyta blight (AB) disease. Overall, our study reports an instance where R2R3-MYB-SG7 member, CaMYB39, besides regulating flavonol biosynthesis, modulates diverse pathways like general phenylpropanoid, isoflavonoid, trichome density, and defense against necrotrophic fungal infection in chickpea.


Assuntos
Cicer , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Cicer/genética , Cicer/metabolismo , Flavonoides , Flavonóis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
13.
J Exp Bot ; 74(1): 130-148, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205079

RESUMO

Flower and seed coat colour are important agronomic traits in chickpea (Cicer arietinum L.). Cultivated chickpeas are of two types namely, desi (dark seeded, purple flowered) and kabuli (light seeded, white flowered). There has been limited information about the molecular mechanism underlying colour variation of flower and seed coats in desi and kabuli chickpea. We profiled the anthocyanin and proanthocyanidin (PA) contents in chickpea flowers and seed coats. Tissue-specific silencing of two genes encoding a basic helix-loop-helix (CabHLH) protein and a tonoplast-localized multidrug and toxic compound extrusion (CaMATE1) transporter in a desi genotype resulted in the reduction in expression of anthocyanin and PA biosynthetic genes and anthocyanin and PA contents in the flower and seed coat, and produced flowers and seeds with kabuli characteristics. Transcriptional regulation of a subset of anthocyanin and PA biosynthetic genes by a natural CabHLH variant and transport assay of a natural CaMATE1 variant explained the association of these alleles with the kabuli phenotype. We carried out a detailed molecular characterization of these genes, and provided evidence that kabuli chickpea flower and seed colour phenotypes can be derived by manipulation of single genes in a desi chickpea background.


Assuntos
Cicer , Proantocianidinas , Cicer/genética , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Cor , Sementes/genética , Sementes/metabolismo , Flores/genética
14.
Plant Cell Rep ; 42(5): 909-919, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894686

RESUMO

KEYMESSAGE: CbSE overexpression increased stigmasterol levels and altered plant morphology. The genes upstream and downstream of CbSE were found to be upregulated, which confirms its regulatory role in the saponin biosynthetic pathway. Chlorophytum borivilianum is a high-value medicinal plant with many promising preclinical applications that include saponins as a major active ingredient. Squalene epoxidase (SE) is one of the major rate-limiting enzymes of the saponin biosynthetic pathway. Here, we functionally characterized C. borivilianum SE (CbSE) by over-expressing heterologously in Nicotiana tabacum. The heterologous expression of CbSE resulted in stunted pant growth with altered leaf and flower morphology. Next, RT-qPCR analysis of transgenic plants overexpressing CbSE revealed increased expression levels of Cycloartenol synthase (CAS), Beta amyrin synthase (ßAS), and cytochrome P450 monooxygenase 51 (CYP51) (Cytochrome P450), which encode key enzymes for triterpenoid and phytosterol biosynthesis in C. borivilianum. Further, Methyl Jasmonate (MeJa) treatment upregulated Squalene synthase (SQS), SE, and Oxidosqualene cyclases (OSCs) to a significant level. GC-MS analysis of the leaf and hairy roots of the transformants showed an increased stigmasterol content (0.5-1.0 fold) compared to wild type (WT) plants. These results indicate that CbSE is a rate-limiting gene, which encodes an efficient enzyme responsible for phytosterol and triterpenoid production in C. borivilianum.


Assuntos
Fitosteróis , Saponinas , Triterpenos , Nicotiana/genética , Nicotiana/metabolismo , Estigmasterol , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Nucleic Acids Res ; 49(5): 2674-2683, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621338

RESUMO

Precise identification of correct exon-intron boundaries is a prerequisite to analyze the location and structure of genes. The existing framework for genomic signals, delineating exon and introns in a genomic segment, seems insufficient, predominantly due to poor sequence consensus as well as limitations of training on available experimental data sets. We present here a novel concept for characterizing exon-intron boundaries in genomic segments on the basis of structural and energetic properties. We analyzed boundary junctions on both sides of all the exons (3 28 368) of protein coding genes from human genome (GENCODE database) using 28 structural and three energy parameters. Study of sequence conservation at these sites shows very poor consensus. It is observed that DNA adopts a unique structural and energy state at the boundary junctions. Also, signals are somewhat different for housekeeping and tissue specific genes. Clustering of 31 parameters into four derived vectors gives some additional insights into the physical mechanisms involved in this biological process. Sites of structural and energy signals correlate well to the positions playing important roles in pre-mRNA splicing.


Assuntos
Éxons , Genoma Humano , Íntrons , Genes Essenciais , Genômica , Humanos , Sítios de Splice de RNA
16.
PLoS Genet ; 16(12): e1009258, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315951

RESUMO

Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Camundongos , Fator 1 Relacionado a NF-E2/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Proteínas Quinases/genética , Transdução de Sinais
17.
J Acoust Soc Am ; 153(5): 2751, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133814

RESUMO

Recent years have brought considerable advances to our ability to increase intelligibility through deep-learning-based noise reduction, especially for hearing-impaired (HI) listeners. In this study, intelligibility improvements resulting from a current algorithm are assessed. These benefits are compared to those resulting from the initial demonstration of deep-learning-based noise reduction for HI listeners ten years ago in Healy, Yoho, Wang, and Wang [(2013). J. Acoust. Soc. Am. 134, 3029-3038]. The stimuli and procedures were broadly similar across studies. However, whereas the initial study involved highly matched training and test conditions, as well as non-causal operation, preventing its ability to operate in the real world, the current attentive recurrent network employed different noise types, talkers, and speech corpora for training versus test, as required for generalization, and it was fully causal, as required for real-time operation. Significant intelligibility benefit was observed in every condition, which averaged 51% points across conditions for HI listeners. Further, benefit was comparable to that obtained in the initial demonstration, despite the considerable additional demands placed on the current algorithm. The retention of large benefit despite the systematic removal of various constraints as required for real-world operation reflects the substantial advances made to deep-learning-based noise reduction.


Assuntos
Aprendizado Profundo , Auxiliares de Audição , Perda Auditiva Neurossensorial , Perda Auditiva , Percepção da Fala , Humanos , Inteligibilidade da Fala , Limiar Auditivo
18.
J Environ Manage ; 332: 117350, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36701830

RESUMO

In this study, an airlift reactor (ALR) has been employed to evaluate the carbon dioxide fixation rate (Rc) and lipid yield (LY) of unicellular green microalgae Scenedesmus sp. ASK22, using dairy effluent as a biofuel feedstock. Independent process parameters (PPs) such as light intensity, CO2 concentration, and aeration rate and their effect on Rc and LY were revealed. The central composite design (CCD) was used to optimize the PPs. The best-operating conditions were measured as light intensity -6.24 Klux, CO2 concentration -14.03% (v v-1), and aeration rate -1.02 liter per minute (LPM). Under these conditions, LY and Rc were found to be 4.22 gL-1 and 1.27 gL-1d-1 which were 2.24- and 1.94-fold higher than the value obtained in the control experiment (1.88 gL-1 and 0.656 gL-1d-1) at the end of 12th day. The corresponding values for bioremediation of nitrate, phosphate, as well as chemical oxygen demand (COD), remained within 98-100%. The biochemical, CHN, thermogravimetric, and fatty acid analysis of Scenedesmus sp. ASK22 biomass and lipid confirmed their potential as a clean biofuel feedstock. Furthermore, a comprehensive analysis of lipid-extracted microalgae biomass (LEMB) was carried out suggesting that LEMB could be used as a high-quality cattle and fish feed, fertilizers, and a sustainable source for biogas, bioethanol, and bio-oils. In addition to improving the developed system's efficiency, a semi-continuous regime was implemented which resulted in biomass productivity of 1.89 gL-1d-1 which was 2.6-fold higher than the batch cultivation without hampering lipid productivity (0.377 gL-1d-1). The present results suggest that Scenedesmus sp. ASK22 is a potential candidate for CO2 sequestration from atmosphere/flue gas, biofuel production (biodiesel, bioethanol, biogas, biobutanol, etc.), and waste remediation.


Assuntos
Microalgas , Scenedesmus , Animais , Bovinos , Biocombustíveis/análise , Dióxido de Carbono/análise , Ácidos Graxos , Biodegradação Ambiental , Biomassa
19.
J Environ Manage ; 344: 118713, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37567004

RESUMO

Microplastics (MPs) have become a prevalent environmental concern, exerting detrimental effects on marine and terrestrial ecosystems, as well as human health. Addressing this urgent issue necessitates the implementation of coordinated waste management policies and strategies. In this study, we present a comprehensive review focusing on key results and the underlying mechanisms associated with microplastics. We examine their sources and pathways, elucidate their ecological and human health impacts, and evaluate the current state of waste management policies. By drawing upon recent research and pertinent case studies, we propose a range of practical solutions, encompassing enhanced recycling and waste reduction measures, product redesign, and innovative technological interventions. Moreover, we emphasize the imperative for collaboration and cooperation across sectors and jurisdictions to effectively tackle this pressing environmental challenge. The findings of this study contribute to the broader understanding of microplastics and provide valuable insights for policymakers, researchers, and stakeholders alike.


Assuntos
Gerenciamento de Resíduos , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Monitoramento Ambiental , Ecossistema , Poluentes Químicos da Água/análise
20.
Environ Monit Assess ; 195(12): 1425, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936028

RESUMO

The present study examined the ability of Quercus castaneifolia C.A.M., Parrotia persica C.A.M., and Carpinus betulus L. for environmental pollution biomonitoring based on the Air Pollution Tolerance Index (APTI). Four leaf traits, total leaf chlorophyll content, leaf extract pH, ascorbic acid content, and relative water content of leaf, were used to compute the APTI values. The study was conducted at five sites in the Hyrcanian forests at different distances from a cement factory close to the Neka city, northern Iran. Based on the results, a 22.5, 30.1, and 25.8% decrease was thus recorded in total chlorophyll content for Q. castaneifolia, P. persica, and C. betulus, respectively, compared to the reference site. However, ascorbic acid content shows an increment of 179.8, 116.8, and 97.3% for P. persica, C. betulus, and Q. castaneifolia, respectively, in the polluted sites as compared to the reference site. The relative water content of P. persica was significantly higher than of Q. castaneifolia and C. betulus in all studied sites. APTI was significantly different among the species, and P. persica was highly tolerant to air pollution, with the highest values of APTI ranging from 11.8 to 16.9. The APTI values of Q. castaneifolia ranged from 9.5 to 11.3 and showed an intermediate tolerance to air pollution. Also, the most sensitive species to air pollution was C. betulus, with a range of 6.6-7.9 in APTI values. Based on APTI values, it can be suggested that P. persica can be used as a biomonitor, while C. betulus can be used as a bioindicator for atmospheric dust deposition and heavy metal pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Árvores , Poluentes Atmosféricos/análise , Monitoramento Biológico , Plantas , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Clorofila/análise , Ácido Ascórbico/análise , Água/análise , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa