Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146420

RESUMO

Aeroengine working condition recognition is a pivotal step in engine fault diagnosis. Currently, most research on aeroengine condition recognition focuses on the stable condition. To identify the aeroengine working conditions including transition conditions and better achieve the fault diagnosis of engines, a recognition method based on the combination of multi-scale convolutional neural networks (MsCNNs) and bidirectional long short-term memory neural networks (BiLSTM) is proposed. Firstly, the MsCNN is used to extract the multi-scale features from the flight data. Subsequently, the spatial and channel weights are corrected using the weight adaptive correction module. Then, the BiLSTM is used to extract the temporal dependencies in the data. The Focal Loss is used as the loss function to improve the recognition ability of the model for confusable samples. L2 regularization and DropOut strategies are employed to prevent overfitting. Finally, the established model is used to identify the working conditions of an engine sortie, and the recognition results of different models are compared. The overall recognition accuracy of the proposed model reaches over 97%, and the recognition accuracy of transition conditions reaches 94%. The results show that the method based on MsCNN-BiLSTM can effectively identify the aeroengine working conditions including transition conditions accurately.


Assuntos
Algoritmos , Redes Neurais de Computação , Coleta de Dados , Memória de Longo Prazo , Reconhecimento Psicológico
2.
Expert Rev Proteomics ; 18(3): 233-240, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33866908

RESUMO

Elucidating the dysregulated metabolic pathways in cancer cells and their relevance to cisplatin resistance could yield new insights into cancer therapy. We previously reported that eight metabolites involved in the tricarboxylic acid (TCA) cycle and glutamine metabolism were associated with platinum-based chemotherapy efficacy in human lung cancer. Here, we investigated the metabolic differences upon cisplatin treatment in lung cancer in vitro and in vivo. A simple and partially validated standard addition method was applied for the quantification of five metabolites involved in the TCA cycle and glutamine metabolism using amide hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The present study investigated the levels of these biomarkers in A549 cells and the cisplatin-resistant A549-DDP cells, as well as in the plasma before and after cisplatin treatment in A549 xenograft mice. Levels of five metabolites, including 2-hydroxyglutaric acid (2-HG), α-ketoglutarate (α-KG), succinate, glutamine, and glutamate, showed a decreasing trend in A549-DDP cells. In addition, 2-HG and glutamine were the most significantly altered metabolites in cisplatin-treated A549 xenograft mice. These data indicate that the TCA cycle and glutamine metabolism play important roles in cisplatin-based chemotherapy resistance in lung cancer. Our results provide a new angle for exploring the molecular mechanisms underlying cisplatin resistance.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glutamina/farmacologia , Glutamina/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Espectrometria de Massas em Tandem
3.
Expert Rev Proteomics ; 17(3): 233-242, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32306783

RESUMO

Background: Colorectal cancer (CRC) represents a third leading cause of cancer-related death worldwide. The reliable diagnostic biomarkers for detecting CRC at early stage is critical for decreasing the mortality.Method: A conjunctive lipidomic approach was employed to investigate the differences in plasma lipid profiles of CRC patients (n = 101) and healthy volunteers (n = 52). Based on UHPLC-Q-TOF MS and UHPLC-QQQ MS platforms, a total of 236 lipids were structurally detected. Multivariate data analysis was conducted for biomarkers discovery.Results: A total of 11 lipid species, including 1 Glycerophosphoethanolamine (PE), 3 ethanolamine plasmalogens (PlsEtn), 1 plasmanyl glycerophosphatidylethanolamine (PE-O), 3 fatty acids (FFA), 1 Fatty acid ester of hydroxyl fatty acid (FAHFA) and 2 Diacylglycerophosphates (PA) were identified to distinguish the CRC patients at early stage from healthy controls. In addition, these potential lipid biomarkers achieved an estimated AUC=0.981 in a validation set for univariate ROC analysis.Conclusion: By combining Q-TOF MS and QQQ MS analysis, the 11 lipids exhibited good performance in differentiating early-stage CRC and healthy control. This study also demonstrated that lipidomics is a powerful tool in discovering new potential biomarkers for cancer diagnosis.


Assuntos
Neoplasias Colorretais/sangue , Detecção Precoce de Câncer , Lipidômica , Plasmalogênios/sangue , Idoso , Ceramidas/sangue , Colesterol/sangue , Neoplasias Colorretais/patologia , Feminino , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Lisofosfatidilcolinas/sangue , Lisofosfolipídeos/sangue , Masculino , Pessoa de Meia-Idade , Esfingosina/análogos & derivados , Esfingosina/sangue , Triglicerídeos/sangue
4.
Pharmacol Res ; 146: 104283, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129178

RESUMO

Natural products have represented attractive alternatives for disease prevention and treatment over the course of human history and have contributed to the development of modern drugs. These natural products possess beneficial efficacies as well as adverse efffects, which vary largely among individuals because of genetic variations in their pharmacokinetics and pharmacodynamics. As with other synthetic chemical drugs, the dosing of natural products can be optimized to improve efficacy and reduce toxicity according to the pharmacogenetic properties. With the emergence and development of pharmacogenomics, it is possible to discover and identify the targets/mechanisms of pharmacological effects and therapeutic responses of natural products effectively and efficiently on the whole genome level. This review covers the effects of genetic variations in drug metabolizing enzymes, drug transporters, and direct and indirect interactions with the pharmacological targets/pathways on the individual response to natural products, and provides suggestions on dosing regimen adjustments of natural products based on their pharmacokinetic and pharmacogenetic paratmeters. Finally, we provide our viewpoints on the importance and necessity of pharmacogenetic and pharmacogenomic research of natural products in natural medicine's rational development and clinical application of precision medicine.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/farmacocinética , Transporte Biológico , Humanos , Farmacogenética
5.
Anal Bioanal Chem ; 411(20): 5079-5088, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201454

RESUMO

Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. Emerging evidence has shown that lipid metabolism plays important roles in the occurrence and progression of CRC. The identification of potential biomarkers for CRC progression is critical for precise diagnosis and treatment. Therefore, the aim of this study is to explore the potential lipid markers in relation to CRC progression. The plasma of patients with stage I/II CRC (n = 20) and stage III/IV CRC (n = 20) was collected. Lipidomic screening was performed by ultrahigh-performance liquid chromatography-mass spectrometry. After multivariate data analysis, including orthogonal partial least squares discriminant analysis, determination of the fold change, and the Mann-Whitney U test, eight lipid species with altered levels with p < 0.05 and fold change greater than 2 were selected as potential lipid biomarkers. Compared with patients with early-stage CRC, patients with advanced-stage CRC showed significantly higher levels of cholesteryl ester (20:4) and some triglycerides with a saturated fatty acid chain and a lower level of fatty acid ester of hydroxy fatty acid 27:1 (9:0-18:1) in plasma. Furthermore, the receiver operating characteristic including these potential lipid biomarkers yielded a sensitivity of 85% and specificity of 80% for separation of early-stage CRC patients from advanced-stage CRC patients. In all, this is the first report showing that the levels of triglycerides, the major contents of lipid droplets, increase in plasma of advanced-stage CRC patients compared with early-stage CRC patients. These data indicate that lipid droplets may be target organelles for the study of CRC progression and treatment. Graphical abstract.


Assuntos
Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Neoplasias Colorretais/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas/métodos , Triglicerídeos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Biomed Chromatogr ; 33(9): e4563, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31025385

RESUMO

Astragali Radix (AR) is a widely used traditional Chinese medicine for healing the cardiovascular, liver and immune systems. Recently, superfine pulverizing technology has been applied to developing novel formulations to improve bioavailability of the active constituents in herbs, such as ultrafine granular powder of AR. In this study, a universal and sensitive quantitative method based on LC-MS/MS was employed for determining formononetin, the main flavonoid in AR, in human plasma for comparative pharmacokinetics of three oral formulations of AR. Formononetin and IS (quercetin) were extracted by ethyl acetate from human plasma and were separated on a C18 column with a mobile phase consisting of acetonitrile and 0.1% formic acid. Positive-ion electrospray-ionization mode was applied in mass spectrometric detection. The quantitative method was validated with regards to selectivity, linearity, accuracy and precision, matrix effect, extraction recovery and stability, and was applied to comparing the pharmacokinetics of ultrafine granular powder (UGP), ultrafine powder (UP) and traditional decoction pieces (TDP) of AR after oral administration. The peak concentration and areas under the concentration-time curve of formononetin in UGP and UP were significantly higher than those of TDP. UGP and UP could significantly improve the bioavailability of AR in human compared with TDP after oral administration.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Isoflavonas/sangue , Isoflavonas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Astragalus propinquus , Estabilidade de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Humanos , Isoflavonas/química , Limite de Detecção , Modelos Lineares , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
7.
Xenobiotica ; 48(10): 999-1005, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29027845

RESUMO

1. The accumulation of fusidic acid (FA) after multiple doses of FA has been reported on in previous studies but the related mechanisms have not been clarified fully. In the present study, we explain the mechanisms related to the mechanism-based inactivation of CYP2D6 and CYP3A4. 2. The irreversible inhibitory effects of FA on CYP2D6 and CYP3A4 were examined via a series of experiments, including: (a) time-, concentration- and NADPH-dependent inactivation, (b) substrate protection in enzyme inactivation and (c) partition ratio with recombinant human CYP enzymes. Metoprolol α-hydroxylation and midazolam 1'-hydroxylation were used as marker reactions for CYP2D6 and CYP3A4 activities, and HPLC-MS/MS measurement was also utilised. 3. FA caused to the time- and concentration-dependent inactivation of CYP2D6 and CYP3A4. About 55.8% of the activity of CYP2D6 and 75.8% of the activity of CYP3A4 were suppressed after incubation with 10 µM FA for 15 min. KI and kinact were found to be 2.87 µM and 0.033 min-1, respectively, for CYP2D6, while they were 1.95 µM and 0.029 min-1, respectively, for CYP3A4. Inhibition of CYP2D6 and CYP3A4 activity was found to require the presence of NADPH. Substrates of CYP2D6 and CYP3A4 showed that the enzymes were protected against the inactivation induced by FA. The estimated partition ratio for the inactivation was 7 for CYP2D6 and 12 for CYP3A4. 4. FA is a potent mechanism-based inhibitor of CYP2D6 and CYP3A4, which may explain the accumulation of FA in vivo.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ácido Fusídico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ácido Fusídico/química , Humanos , Cinética , NADP/metabolismo , Análise de Regressão , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo
8.
Acta Pharmacol Sin ; 38(4): 581-590, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260796

RESUMO

Platinum-based chemotherapy is the standard first-line treatment for most lung cancer patients. However, the toxicity induced by platinum-based chemotherapy greatly impedes its clinical use. Previous studies showed that long non-coding RNAs (lncRNAs) with over 200 nucleotides in length affect drug response and toxicity. In the present study, we investigated the association of well-characterized lung cancer lncRNA polymorphisms with platinum-based chemotherapy toxicity in Chinese patients with lung cancer. A total of 467 lung cancer patients treated with platinum-based chemotherapy for at least two cycles were recruited. We primarily focused on gastrointestinal and hematological toxicities. A total of 14 potentially functional polymorphisms within 8 lncRNAs (HOTTIP, HOTAIT, H19, ANRIL, CCAT2, MALAT1, MEG3, and POLR2E) were genotyped. Unconditional logistical regression analysis was conducted to assess the associations. Gene-gene and gene-environment interactions were identified using the software generalized multifactor dimensionality reduction (GMDR). ANRIL rs1333049 was associated with severe overall toxicity in an additive model (adjusted OR=0.723, 95% CI=0.541-0.965, P=0.028). ANRIL rs1333049 was also associated with severe gastrointestinal toxicity in both the additive (adjusted OR=0.690, 95% CI=0.489-0.974, P=0.035) and dominant (adjusted OR=0.558, 95% CI=0.335-0.931, P=0.025) models. MEG3 rs116907618 was associated with severe gastrointestinal toxicity in an additive model (adjusted OR=1.717, 95% CI=1.007-2.927, P=0.047). GMDR identified the three-factor interaction model of POLR2E rs3787016-HOTTIP rs3807598-chemotherapy regimen as the best predictive model for hematological toxicity. In conclusion, ANRIL and MEG3 genetic polymorphisms are associated with severe platinum toxicity and could be considered as biomarkers for pretreatment evaluation in Chinese patients with lung cancer.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organoplatínicos/efeitos adversos , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Feminino , Interação Gene-Ambiente , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Adulto Jovem
9.
Int J Clin Pharmacol Ther ; 55(10): 774-780, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28737129

RESUMO

The copper transporters CTR1, CTR2, ATP7A, and ATP7B regulate intracellular concentration of platinum by mediating its uptake and efflux in cells. We sought to explore the effect of genetic polymorphisms in CTR1, CTR2, ATP7A, and ATP7B on platinum resistance in patients suffering from epithelial ovarian cancer (EOC). A total of 152 Chinese EOC patients were enrolled in this study, all of whom underwent adjuvant chemotherapy using platinum and taxane after maximal debulking surgery. In total, 11 single-nucleotide polymorphisms (SNPs) in CTR1, CTR2, ATP7A, and ATP7B were genotyped in these patients. The CTR1 rs10981694 polymorphism was observed to be associated with carboplatin resistance, while patients with the rs10981694 G allele showed a significantly higher rate of carboplatin resistance (OR = 4.00, 95% CI 1.309 - 12.23, p < 0.01). In addition, we found that ATP7A rs2227291 was associated with cisplatin resistance and that carriers of the C allele were more sensitive to cisplatin (OR = 0.40, 95% CI: 0.17 - 0.94, p = 0.03). Our findings suggest that the CTR1 and ATP7A genetic polymorphisms could affect platinum resistance. The CTR1 and ATP7A genes might be considered a predictive marker for carboplatin and cisplatin resistance, respectively.
.


Assuntos
Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Epiteliais e Glandulares/genética , Compostos Organoplatínicos/uso terapêutico , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Antineoplásicos/uso terapêutico , Carcinoma Epitelial do Ovário , Transportador de Cobre 1 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Proteínas SLC31
10.
Molecules ; 19(1): 1189-200, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24445345

RESUMO

A sensitive, reliable and specific LC-MS-MS method was developed and validated for the identification and quantitation of all-trans retinoic acid (ATRA) in human plasma. Acitretin was used as the internal standard (IS). After liquid-liquid extraction of 500 µL plasma with methyl tert-butyl ether (MTBE), ATRA and the IS were chromatographed on a HyPURITY C18 column (150 mm×2.1 mm, 5 µm) with the column temperature set at 40 °C. The mobile phase was consisted of 40% phase A (MTBE-methanol-acetic acid, 50:50:0.5, v/v) and 60% phase B (water-methanol-acetic acid, 50:50:0.5, v/v) with a flow rate of 0.3 mL/min. The API 4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring (MRM) mode via the positive electrospray ionization interface using the transition m/z 301.4→123.1 for ATRA and m/z 326.9→177.1 for IS, respectively. The calibration curve was linear over the range of 0.45-217.00 ng/mL (r≥0.999) with a lower limit of quantitation (LLOQ) of 0.45 ng/mL. The intra- and inter-day precisions values were below 8% relative standard deviation and the accuracy was from 98.98% to 106.19% in terms of relative error. The validated method was successfully applied in a bioequivalence study of ATRA in Chinese healthy volunteers.


Assuntos
Antineoplásicos/sangue , Espectrometria de Massas por Ionização por Electrospray , Tretinoína/sangue , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Humanos , Limite de Detecção , Extração Líquido-Líquido , Masculino , Éteres Metílicos/química , Solventes/química , Espectrometria de Massas em Tandem , Equivalência Terapêutica , Tretinoína/administração & dosagem , Tretinoína/farmacocinética
11.
J Anal Methods Chem ; 2022: 5952436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083093

RESUMO

Mice are the most frequently used animals in pharmacokinetic studies; however, collecting series of blood samples from mice is difficult because of their small sizes and tiny vessels. In addition, due to the small sample size, it is problematic to perform high required quantification. Thus, present work aims to find an effective strategy for overcoming these challenges using trans-resveratrol as a tool drug. Based on the idea of a joint technology, the capillary microsampling (CMS) was chosen for blood sample collection from mice after delivery of trans-resveratrol (150 mg/kg) by gavage, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of trans-resveratrol and its main metabolites. All the mouse blood samples were exactly collected by CMS without obvious deviation. This provided credible samples for subsequent quantitative analysis. The HPLC-MS/MS method was found to be sensitive, accurate, and repeatable, and the pharmacokinetic parameters for all analytes were comparable with those reported in previous studies. However, the present joint technology offers the advantages of less animal damage, easy for sample preparation, and improved reliability. It has overcome some of the major limitations revealed in previous pharmacokinetic studies in mice and therefore provides a more effective option for future studies.

12.
J Pharm Biomed Anal ; 200: 114077, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892396

RESUMO

Drug resistance and adverse reactions to oxaliplatin remain a considerable issue in clinical practice. Emerging evidence has suggested that alterations in the lipid metabolism during drug therapy affect cancer cells. To gain insight into the important process of lipid metabolism, we investigated the lipid and gene expression profile changes in HT29 cells treated with oxaliplatin. A total of 1403 lipid species from 16 lipid classes were identified by UHPLC-MS. Interestingly, phospholipids, including phosphatidylglycerol (PG), phosphatidic acid (PA), phosphatidylcholine (PC), and most of phosphatidylethanolamine (PE) with polyunsaturated fatty acid (PUFA) chains, were significantly higher due to oxaliplatin treatment, while triacylglycerols (TAGs) with a saturated fatty acid chain or monounsaturated fatty acid were significantly downregulated. Gene Set Enrichment Analysis (GSEA) based on RNA sequencing data suggested that neutral lipid metabolism was enriched in the control group, whereas the phospholipid metabolic process was enriched in the oxaliplatin-treated group. We observed that altered lipid metabolism enzyme genes were involved in the synthesis and lipolysis of TAGs and the Lands cycle pathway based on the network between the core lipid-related gene and lipid species, which was further verified by qRT-PCR. In summary, our findings revealed that oxaliplatin impressed a specific lipid profile signature and lipid transcriptional reprogramming in HT29 cells, which provides new insights into biomarker discovery and pathways for overcoming drug resistance and adverse reactions.


Assuntos
Neoplasias Colorretais , Lipidômica , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Metabolismo dos Lipídeos/genética , Oxaliplatina , Fosfolipídeos , Transcriptoma
13.
ACS Omega ; 6(29): 18610-18622, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337201

RESUMO

Hypertension adversely affects the quality of life in humans across modern society. Studies have attributed increased reactive oxygen species production to the pathophysiology of hypertension. So far, a specific drug to control the disease perfectly has not been developed. However, artichoke, an edible vegetable, plays an essential role in treating many diseases due to its potent antioxidant activities. The objective of this study is to evaluate the effect of artichoke bud extract (ABE) on heart tissue metabolomics of hypertensive rats. Spontaneously hypertensive rats and Wistar-Kyoto (WKY) rats were divided into six groups, then exposed to different doses comprising ABE, Enalapril Maleate, or 1% carboxylmethyl cellulose for 4 weeks. Their blood pressures were recorded at 0, 2, 3, and 4 weeks after the start of the test period. Thereafter, all rats were anesthetized, and blood was collected from their cardiac apexes. Then, we measured the levels for 15 kinds of serum biochemical parameters. An established orthogonal partial least square-discriminant analysis model completed the metabolomic analysis. Hypertensive rats in the ABE group exhibited well-controlled blood pressure, relative to those in the model group. Specifically, artichoke significantly lowered serum levels for total protein (TP), albumin (ALB), and uric acid (UA) in the hypertensive rats. This effect involved the action of eight metabolites, including guanine, 1-methylnicotinamide, p-aminobenzoic acid, NAD, NADH, uridine 5'-monophosphate, adenosine monophosphate, and methylmalonic acid. Collectively, these findings suggest that ABE may play a role in affecting oxidative stress and purine, nicotinate, and nicotinamide metabolism.

14.
15.
Genome Med ; 12(1): 83, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32988398

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) therapy has demonstrated considerable clinical benefit in several malignancies, but has shown favorable response in only a small proportion of cancer patients. Recent studies have shown that matrix metalloproteinases (MMPs) are highly associated with the microenvironment of tumors and immune cells. However, it is unknown whether MMPs are involved in immunotherapy. METHODS: Here, we used integrative analysis to explore the expression landscape of the MMP family and its association with immune features across multiple cancer types. We used T cell cytotoxicity-mediated tumor killing assay to determine the co-cultured T cell activity of SB-3CT, an MMP2/9 inhibitor. We then used in vitro assays to examine the regulating roles of SB-3CT on PD-L1. We further characterized the efficacy of SB-3CT, in combination with anti-PD-1 and/or anti-CTLA4 treatment in mouse models with melanoma and lung cancer. RESULTS: Our computational analysis demonstrated a strong association between MMP2/9 and immune features. We demonstrated that inhibition of MMP2/9 by SB-3CT significantly reduced the tumor burden and improved survival time by promoting anti-tumor immunity. Mechanistically, we showed that SB-3CT treatment significantly diminished both mRNA and protein levels of PD-L1 in cancer cells. Pre-clinically, SB-3CT treatment enhanced the therapeutic efficacy of PD-1 or CTLA-4 blockade in the treatment of both primary and metastatic tumors. CONCLUSIONS: Our study unraveled novel molecular mechanisms regarding the regulation of tumor PD-L1 and provided a novel combination therapeutic strategy of SB-3CT and ICB therapy to enhance the efficacy of immunotherapy.


Assuntos
Antígeno B7-H1/genética , Compostos Heterocíclicos com 1 Anel/farmacologia , Vigilância Imunológica/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Sulfonas/farmacologia , Animais , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos/imunologia , Linfócitos/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Melanoma Experimental , Camundongos , Microambiente Tumoral
16.
Bioanalysis ; 11(5): 365-380, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30873858

RESUMO

AIM: Ginsenoside compound K (CK) is considered to be a potential therapeutic drug for rheumatoid arthritis because of its good anti-inflammatory activity. The purpose of this work was to establish a rapid, sensitive and specific method for determination of CK and its active metabolite 20(S)-protopanaxadiol (20(S)-PPD). Materials & methods: The analytes and internal standards were extracted by liquid-liquid extraction. Then, were separated by high performance liquid phase and determined by triple quadrupole mass spectrometry. RESULTS: A LC-MS/MS using liquid-liquid extraction was developed for determining CK over the concentration range 1.00-1002.00 ng/ml and 0.15-54.30 ng/ml for 20(S)-PPD. The lower limits of quantification for CK and 20(S)-PPD were 1.00 and 0.15 ng/ml, respectively. CONCLUSION: This method was successfully validated for detecting both CK and 20(S)-PPD in the human plasma and urine, and was proved to be suitable for the pharmacokinetic study of CK in healthy Chinese volunteers. CLINICAL TRIAL REGISTRATION NUMBER: ChiCTR-TRC-14004824.


Assuntos
Cromatografia Líquida/métodos , Ginsenosídeos/uso terapêutico , Panax/química , Sapogeninas/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Artrite Reumatoide , Feminino , Ginsenosídeos/farmacologia , Humanos , Masculino , Sapogeninas/farmacologia
17.
Front Oncol ; 9: 508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249811

RESUMO

Background: Despite great advances in the diagnosis and treatment of non-small cell lung cancer (NSCLC), early diagnosis remains a challenge because patients usually have advanced lung cancer at the time they are diagnosed. The limited efficacy of conventional chemotherapy is another major problem in the treatment of NSCLC. Based on a published set of sequencing data, we find that hsa_circ_0001946 is a circRNA molecule with a significantly different expression level in three cell lines (human normal lung fibroblasts cell line MRC-5, human NSCLC cell line A549, cisplatin-resistant cell line A549/DDP), NSCLC tissues and paired adjacent normal tissues. We believe that hsa_circ_0001946 may have an effect on the progression of NSCLC and its sensitivity to cisplatin. Methods: We focused on investigating the circular RNA, hsa_circ_0001946. RNA interference of hsa_circ_0001946 was carried out in A549 cell lines to determine the effect of reduced hsa_circ_0001946 expression on lung cancer progression and was analyzed by Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine, clone formation, Hoechst, wound healing, and transwell assays. The nucleotide excision repair (NER) signaling pathway was identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Moreover, cellular responses to cisplatin were assessed through CCK-8 and flow cytometry assays. Western blot analysis and host-cell reactivation assay were used to determine the effect of hsa_circ_0001946 on NER signaling. Results: In this study, we found that the reduced expression of hsa_circ_0001946 promoted the viability, proliferation, migration, and invasion of NSCLC cells, as well as inhibition of cell apoptosis. Our findings suggest that hsa_circ_0001946 can affect the sensitivity of NSCLC cells to the chemotherapeutic drug cisplatin via modulation of the NER signaling pathway. Conclusions: Our study demonstrated the role of hsa_circ_0001946 in NSCLC pathogenesis, development, and chemosensitivity, and suggests that hsa_circ_0001946 may serve as a novel biomarker for the diagnosis and prediction of platinum-based chemosensitivity in patients with NSCLC.

18.
J Pharm Biomed Anal ; 154: 95-101, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29544107

RESUMO

Lung cancer is the common cause of cancer-related death worldwide. Platinum-based chemotherapy is the cornerstone of treatment for lung cancer. Platinum sensitivity is a major possibility for effective cancer treatment. In this study, several potential biomarkers were identified for evaluating and predicting the response to platinum-based chemotherapy. LC-MS-based metabolomics was performed on plasma samples from 43 lung cancer patients with different chemotherapy efficacy. By combing multivariate statistical analysis, pathway analysis with correlation analysis, 8 potential biomarkers were significantly associated with platinum chemotherapy response. Moreover, a prediction model with these biomarkers involved in citric acid cycle, glutamate metabolism and amino acid metabolism, showed 100% sensitivity and 100% specificity for predicting chemotherapy response in a validation set. Interestingly, 2-hydroxyglutaric acid (2-HG) as an oncometabolite accumulated in lung cancer was remarkably elevated in the partial response (PR) patients. Collectively, our findings implicated that metabolomics can serve as a potential tool to select lung cancer patients that are more likely to benefit from the platinum-based treatment.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/análise , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica/métodos , Compostos de Platina/uso terapêutico , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Glutaratos/análise , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Modelos Biológicos , Seleção de Pacientes , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Resultado do Tratamento
19.
Artigo em Inglês | MEDLINE | ID: mdl-30041085

RESUMO

Inter-individual variability in drug metabolism and disposition is common in both preclinical and clinical researches. Losartan and its active metabolite EXP3174 present a high degree of inter-individual differences in blood concentrations that affect drug efficacy and side effect. Pharmacometabolomics has been increasingly applied on predicting the drug responses by analyzing the differences in metabolic profile. A pre-dose metabolic phenotype was investigated to interpret inter-individual variations in the metabolism characteristics of losartan. 1H Nuclear Magnetic Resonance (NMR) spectroscopy-based metabolic profiles were performed on 36 healthy Chinese male volunteers by measuring their pre-dose plasma samples. After oral administration of losartan, the concentrations of losartan and its bioactive metabolite EXP3174 were monitored by liquid chromatography-mass spectrometry (LC-MS). Orthogonal partial least-squares (O-PLS) model was conducted to select potential biomarkers that substantially contributed to the inter-individual variations in the metabolism features via analyzing the ratio of pharmacokinetics (PK) parameters of its metabolite to parent drug. Potential metabolites such as glycine, phosphorylcholine, choline, creatine, creatinine, lactate, citrate, α-glucose, and lipids showed strong correlations with metabolism features of losartan. In addition, the pathway analysis revealed that baseline lipid metabolism, the glycine, serine and threonine pathway, and glycolysis or gluconeogenesis metabolism pathway were significantly associated with the ratio of PK parameters of EXP3174 to losartan. Step-wise multiple linear regression (MLR) was constructed to investigate the potential roles of the selected biomarkers in predicting individualized metabolism characteristics of losartan. These results showed that the pre-dose individual metabolic traits may be a useful approach for characterizing individual differences in losartan metabolism characteristics and therefore for expediting personalized dose-setting in further clinical studies.


Assuntos
Losartan/metabolismo , Losartan/farmacocinética , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Humanos , Análise dos Mínimos Quadrados , Losartan/sangue , Masculino , Análise Multivariada , Fenótipo , Adulto Jovem
20.
Chin Med ; 11: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27006687

RESUMO

BACKGROUND: Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA for treating cardiovascular disorders. The roles of cytochrome P450 enzymes (CYPs) in the metabolism of STS have remained unclear. This study aims to screen the main CYPs for metabolism of STS and study their interactions in vitro. METHODS: Seven major CYPs were screened for metabolism of STS by human liver microsomes (HLMs) or recombinant CYP isoforms. Phenacetin (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), metoprolol (CYP2D6), chlorzoxazone (CYP2E1), S-mephenytoin (CYP2C19), and midazolam (CYP3A4) were used as probe substrates to determine the potential of STS in affecting CYP-mediated phase I metabolism in humans. Enzyme kinetic studies were performed to investigate the modes of inhibition of the enzyme-substrate interactions by GraphPad Prism Enzyme Kinetic 5 Demo software. RESULTS: Sodium tanshinone IIA sulfonate inhibited the activity of CYP3A4 in a dose-dependent manner by the HLMs and CYP3A4 isoform. The K m and V max values of STS were 54.8 ± 14.6 µM and 0.9 ± 0.1 nmol/mg protein/min, respectively, for the HLMs and 7.5 ± 1.4 µM and 6.8 ± 0.3 nmol/nmol P450/min, respectively, for CYP3A4. CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP2E1, and CYP2C19 showed minimal or no effects on the metabolism of STS. CONCLUSION: This in vitro study showed that STS mainly inhibited the activities of CYP3A4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa