Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 128: 140-148, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682485

RESUMO

Chitosan is a polysaccharide well-known for its applicability as a biocompatible, biodegradable, and non-toxic material to produce drugs excipients and food coatings. Acidic media are required to disperse chitosan, and aqueous solutions of acetic acid have been typically used for this purpose. However, this acid has several sensory drawbacks. In this study, chitosan was dispersed [0.1 g·(100 mL)-1] in aqueous media containing acetic (AA), glycolic (GA), propionic (PA), or lactic (LA) acid, at 10, 20, 30, 40, or 50 mmol·L-1. The increase of acid concentration reduced pH and viscosity of the dispersions, and |ζ potential| of dispersed particles. Conversely, it increased electrical conductivity and density of the dispersions, and hydrodynamic diameter of dispersed particles. At a given concentration, these effects were slightly more pronounced for dispersions formed with GA or LA, compared to AA or PA. FT-IR data suggested more intense attractive interactions of chitosan chains with glycolate and lactate anions, than with acetate and propionate. Chitosan chains interacted more strongly with hydroxylated acids counter-anions than with their non-hydroxylated counterparts, leading to slight quantitative changes of physicochemical properties of these systems. Then, in physicochemical terms, GA, LA or PA are suitable to replace AA when preparing aqueous chitosan dispersions for technological applications.


Assuntos
Ácido Acético/química , Fenômenos Químicos , Quitosana/química , Glicolatos/química , Ácido Láctico/química , Acetilação , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Peso Molecular , Reologia , Soluções , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa