Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Haematologica ; 109(1): 33-43, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584295

RESUMO

Proteasomal degradation of proteins represents an important regulatory mechanism in maintaining healthy homeostasis in cells. Deregulation of the ubiquitin-proteasome system is associated with various diseases as it controls protein abundance and turnover in cells. Furthermore, proteasomal regulation of protein turnover rate can determine a cell's response to external stimuli. The Bcl-2 family of proteins is an important group of proteins involved in mediating cell survival or cell death in response to external stimuli. Aberrant overexpression of anti-apoptotic proteins or deletion of pro-apoptotic proteins can lead to the development of cancer. Unsurprisingly, proteasomal degradation of Bcl-2 proteins also serves as an important factor regulating the level of Bcl-2 proteins and thereby affecting the functional outcome of cell death. This review aims to highlight the regulation of the Bcl-2 family of proteins with particular emphasis on proteasomal-mediated degradation pathways and the current literature on the therapeutic approaches targeting the proteasome system.


Assuntos
Apoptose , Complexo de Endopeptidases do Proteassoma , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitinas/metabolismo
2.
Nat Immunol ; 12(4): 344-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21358639

RESUMO

Sepsis is one of the most challenging health problems worldwide. Here we found that phagocytes from patients with sepsis had considerable upregulation of Toll-like receptor 4 (TLR4) and TLR2; however, shock-inducing inflammatory responses mediated by these TLRs were inhibited by ES-62, an immunomodulator secreted by the filarial nematode Acanthocheilonema viteae. ES-62 subverted TLR4 signaling to block TLR2- and TLR4-driven inflammatory responses via autophagosome-mediated downregulation of the TLR adaptor-transducer MyD88. In vivo, ES-62 protected mice against endotoxic and polymicrobial septic shock by TLR4-mediated induction of autophagy and was protective even when administered after the induction of sepsis. Given that the treatments for septic shock at present are inadequate, the autophagy-dependent mechanism of action by ES-62 might form the basis for urgently needed therapeutic intervention against this life-threatening condition.


Assuntos
Proteínas de Helminto/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fagossomos/efeitos dos fármacos , Choque Séptico/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Células Cultivadas , Feminino , Humanos , Immunoblotting , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Fator 88 de Diferenciação Mieloide/imunologia , Fagossomos/imunologia , Fagossomos/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
3.
Nucleic Acids Res ; 48(22): 12727-12745, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33245769

RESUMO

Bcl-2 phosphorylation at serine-70 (S70pBcl2) confers resistance against drug-induced apoptosis. Nevertheless, its specific mechanism in driving drug-resistance remains unclear. We present evidence that S70pBcl2 promotes cancer cell survival by acting as a redox sensor and modulator to prevent oxidative stress-induced DNA damage and execution. Increased S70pBcl2 levels are inversely correlated with DNA damage in chronic lymphocytic leukemia (CLL) and lymphoma patient-derived primary cells as well as in reactive oxygen species (ROS)- or chemotherapeutic drug-treated cell lines. Bioinformatic analyses suggest that S70pBcl2 is associated with lower median overall survival in lymphoma patients. Empirically, sustained expression of the redox-sensitive S70pBcl2 prevents oxidative stress-induced DNA damage and cell death by suppressing mitochondrial ROS production. Using cell lines and lymphoma primary cells, we further demonstrate that S70pBcl2 reduces the interaction of Bcl-2 with the mitochondrial complex-IV subunit-5A, thereby reducing mitochondrial complex-IV activity, respiration and ROS production. Notably, targeting S70pBcl2 with the phosphatase activator, FTY720, is accompanied by an enhanced drug-induced DNA damage and cell death in CLL primary cells. Collectively, we provide a novel facet of the anti-apoptotic Bcl-2 by demonstrating that its phosphorylation at serine-70 functions as a redox sensor to prevent drug-induced oxidative stress-mediated DNA damage and execution with potential therapeutic implications.


Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma/tratamento farmacológico , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose/genética , Proliferação de Células/genética , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Fluoruracila/farmacologia , Humanos , Células Jurkat , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma/genética , Linfoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Serina/genética
4.
IUBMB Life ; 73(3): 530-542, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675120

RESUMO

The process of carcinogenesis and its progression involves an intricate interplay between a number of signaling networks, metabolic pathways and the microenvironment. These include an alteration in the cellular redox metabolism and deregulation of cell cycle checkpoints. Similar to the dichotomy of redox signaling in cancer cell fate and state determination, a diverging effect of an irreversible cell cycle arrest or senescence on carcinogenesis has been demonstrated. In this regard, while overwhelming oxidative stress has a damaging effect on tissue architecture and organ function and promotes death execution, a mild "pro-oxidant" environment is conducive for cell proliferation, growth and survival. Similarly, cellular senescence has been shown to elicit both a tumor suppressor and an oncogenic effect in a context-dependent manner. Notably, there appears to be a crosstalk between these two critical regulators of cell fate and state, particularly from the standpoint of the divergent effects on processes that promote or abate carcinogenesis. This review aims to provide an overview of these overarching themes and attempts to highlight critical intersection nodes, which are emerging as potential diagnostic and/or therapeutic targets for novel anticancer strategies.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/fisiologia , Neoplasias/patologia , Neoplasias/terapia , Proliferação de Células , Humanos , Imunoterapia/métodos , Neoplasias/prevenção & controle , Oxirredução , Estresse Oxidativo , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Fenótipo Secretor Associado à Senescência/fisiologia , Telomerase/antagonistas & inibidores
5.
Biol Chem ; 397(7): 585-93, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27060742

RESUMO

Across a wide spectrum of cellular redox status, there emerges a dichotomy of responses in terms of cell survival/proliferation and cell death. Of note, there is emerging evidence that the anti-apoptotic protein, Bcl-2, in addition to its conventional activity of titrating the pro-apoptotic effects of proteins such as Bax and Bak at the mitochondria, also impacts cell fate decisions via modulating cellular redox metabolism. In this regard, both pro- and anti-oxidant effects of Bcl-2 overexpression have been described under different conditions and cellular contexts. In this short review, we attempt to analyze existing observations and present a probable explanation for the seemingly conflicting redox regulating activity of Bcl-2 from the standpoint of its pro-survival function. The consequential effect(s) of the dual redox functions of Bcl-2 are also discussed, particularly from the viewpoint of developing novel therapeutic strategies against cancers rendered refractory due to the aberrant expression of Bcl-2.


Assuntos
Antioxidantes/metabolismo , Oxidantes/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose , Sobrevivência Celular , Humanos , Oxirredução
6.
Blood ; 124(14): 2223-34, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25082878

RESUMO

Bcl-2 is frequently overexpressed in hematopoietic malignancies, and selective phosphorylation at ser70 enhances its antiapoptotic activity. Phospho-ser70 is dephosphorylated by specific heterotrimers of protein phosphatase 2A (PP2A). We report here that a mild pro-oxidant intracellular milieu induced by either pharmacological inhibition or genetic knockdown of superoxide dismutase 1 (SOD1) inhibits the functional holoenzyme assembly of PP2A and prevents Bcl-2 ser70 dephosphorylation. This redox-dependent regulation of Bcl-2 phosphorylation is due to nitrosative modification of B56δ, which we identify as the regulatory subunit mediating PP2A-dependent Bcl-2 dephosphorylation. Redox inhibition of PP2A results from peroxynitrite-mediated nitration of a conserved tyrosine residue within B56δ (B56δ(Y289)). Although nitrated B56δ(Y289) binds efficiently to ser70-phosphorylated Bcl-2, this specific modification inhibits the recruitment of the PP2A catalytic core (A and C subunits). Furthermore, inhibition of B56δ(Y289) nitration restores PP2A holoenzyme assembly, thereby permitting S70 dephosphorylation of Bcl-2 and inhibiting its antiapoptotic activity. More important, in primary cells derived from clinical lymphomas, Bcl-2 phosphorylation at S70 directly correlates with B56δ nitration and repression of SOD1, but inversely correlates with B56δ interaction with the PP2A-C catalytic subunit. These data underscore the role of a pro-oxidant milieu in chemoresistance of hematopoietic and other cancers via selective targeting of tumor suppressors such as PP2A.


Assuntos
Apoptose , Regulação Neoplásica da Expressão Gênica , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Serina/química , Tirosina/química , Catálise , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células HeLa , Humanos , Células Jurkat , Neoplasias/tratamento farmacológico , Nitrogênio/química , Oxirredução , Fosforilação , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
7.
Antimicrob Agents Chemother ; 58(1): 550-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24217693

RESUMO

Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of intravacuolar Ca(2+). This assay uses the ImageStream 100, an imaging-capable flow cytometer, to assess the distribution of the fluorescent calcium probe Fluo-4. We obtained two hits from a small library of 25 test compounds, quinacrine and 3',4'-dichlorobenzamil. The ability of these compounds to permeabilize the digestive vacuole in laboratory strains and clinical isolates was validated by confocal microscopy. The hits could induce programmed cell death features in both chloroquine-sensitive and -resistant laboratory strains. Quinacrine was effective at inhibiting field isolates in a 48-h reinvasion assay regardless of artemisinin clearance status. We therefore present as proof of concept a phenotypic screening method with the potential to provide mechanistic insights to the activity of antimalarial drugs.


Assuntos
Amilorida/análogos & derivados , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinacrina/farmacologia , Vacúolos/efeitos dos fármacos , Amilorida/farmacologia
8.
Bioinformatics ; 29(3): 347-54, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239672

RESUMO

MOTIVATION: TRAIL has been widely studied for the ability to kill cancer cells selectively, but its clinical usefulness has been hindered by the development of resistance. Multiple compounds have been identified that sensitize cancer cells to TRAIL-induced apoptosis. The drug LY303511 (LY30), combined with TRAIL, caused synergistic (greater than additive) killing of multiple cancer cell lines. We used mathematical modelling and ordinary differential equations to represent how LY30 and TRAIL individually affect HeLa cells, and to predict how the combined treatment achieves synergy. RESULTS: Model-based predictions were compared with in vitro experiments. The combination treatment model was successful at mimicking the synergistic levels of cell death caused by LY30 and TRAIL combined. However, there were significant failures of the model to mimic upstream activation at early time points, particularly the slope of caspase-8 activation. This flaw in the model led us to perform additional measurements of early caspase-8 activation. Surprisingly, caspase-8 exhibited a transient decrease in activity after LY30 treatment, prior to strong activation. cFLIP, an inhibitor of caspase-8 activation, was up-regulated briefly after 30 min of LY30 treatment, followed by a significant down-regulation over prolonged exposure. A further model suggested that LY30-induced fluctuation of cFLIP might result from tilting the ratio of two key species of reactive oxygen species (ROS), superoxide and hydrogen peroxide. Computational modelling extracted novel biological implications from measured dynamics, identified time intervals with unexplained effects, and clarified the non-monotonic effects of the drug LY30 on cFLIP during cancer cell apoptosis.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Cromonas/farmacologia , Piperazinas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Caspase 8/metabolismo , Simulação por Computador , Sinergismo Farmacológico , Células HeLa , Humanos , Espécies Reativas de Oxigênio/metabolismo
9.
Autophagy ; 20(6): 1418-1441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38261660

RESUMO

RAS is one of the most commonly mutated oncogenes associated with multiple cancer hallmarks. Notably, RAS activation induces intracellular reactive oxygen species (ROS) generation, which we previously demonstrated as a trigger for autophagy-associated execution of mutant KRAS-expressing cancer cells. Here we report that drug (merodantoin; C1)-induced activation of mutant KRAS promotes phospho-AKT S473-dependent ROS-mediated S616 phosphorylation and mitochondrial localization of DNM1L/DRP1 (dynamin 1 like) and cleavage of the fusion-associated protein OPA1 (OPA1 mitochondrial dynamin like GTPase). Interestingly, accumulation of the outer mitochondrial membrane protein VDAC1 (voltage dependent anion channel 1) is observed in mutant KRAS-expressing cells upon exposure to C1. Conversely, silencing VDAC1 abolishes C1-induced mitophagy, and gene knockdown of either KRAS, AKT or DNM1L rescues ROS-dependent VDAC1 accumulation and stability, thus suggesting an axis of mutant active KRAS-phospho-AKT S473-ROS-DNM1L-VDAC1 in mitochondrial morphology change and cancer cell execution. Importantly, we identified MTOR (mechanistic target of rapamycin kinsase) complex 2 (MTORC2) as the upstream mediator of AKT phosphorylation at S473 in our model. Pharmacological or genetic inhibition of MTORC2 abrogated C1-induced phosphorylation of AKT S473, ROS generation and mitophagy induction, as well as rescued tumor colony forming ability and migratory capacity. Finally, increase in thermal stability of KRAS, AKT and DNM1L were observed upon exposure to C1 only in mutant KRAS-expressing cells. Taken together, our work has unraveled a novel mechanism of selective targeting of mutant KRAS-expressing cancers via MTORC2-mediated AKT activation and ROS-dependent mitofission, which could have potential therapeutic implications given the relative lack of direct RAS-targeting strategies in cancer.Abbreviations: ACTB/ß-actin: actin beta; AKT: AKT serine/threonine kinase; C1/merodantoin: 1,3-dibutyl-2-thiooxo-imidazoldine-4,5-dione; CAT: catalase; CETSA: cellular thermal shift assay; CHX: cycloheximide; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H2O2: hydrogen peroxide; HSPA1A/HSP70-1: heat shock protein family A (Hsp70) member 1A; HSP90AA1/HSP90: heat shock protein 90 alpha family class A member 1; KRAS: KRAS proto-oncogene, GTPase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; LC3B-I: unlipidated form of LC3B; LC3B-II: phosphatidylethanolamine-conjugated form of LC3B; MAPKAP1/SIN1: MAPK associated protein 1; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MFI: mean fluorescence intensity; MiNA: Mitochondrial Network Analysis; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; O2.-: superoxide; OMA1: OMA1 zinc metallopeptidase; OPA1: OPA1 mitochondrial dynamin like GTPase; RICTOR: RPTOR independent companion of MTOR complex 2; ROS: reactive oxygen species; RPTOR/raptor: regulatory associated protein of MTOR complex 1; SOD1: superoxide dismutase 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; VDAC1: voltage dependent anion channel 1; VDAC2: voltage dependent anion channel 2.


Assuntos
Neoplasias Colorretais , Alvo Mecanístico do Complexo 2 de Rapamicina , Mitocôndrias , Mitofagia , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras) , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Mitofagia/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação/genética , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos
10.
Cancer Res ; 84(8): 1195-1198, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616656

RESUMO

The 15th annual Frontiers in Cancer Science (FCS) conference gathered scientific experts who shared the latest research converging upon several themes of cancer biology. These themes included the dysregulation of metabolism, cell death, and other signaling processes in cancer cells; using patient "omics" datasets and single-cell and spatial approaches to investigate heterogeneity, understand therapy resistance, and identify targets; innovative strategies for inhibiting tumors, including rational drug combinations and improved drug delivery mechanisms; and advances in models that can facilitate screening for cancer vulnerabilities and drug testing. We hope the insights from this meeting will stimulate further progress in the field.


Assuntos
Neoplasias , Pesquisa , Humanos , Morte Celular , Sistemas de Liberação de Medicamentos , Neoplasias/terapia
11.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744809

RESUMO

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Assuntos
Glioblastoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metiltransferases , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-akt , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Transdução de Sinais , RNA de Transferência/metabolismo , RNA de Transferência/genética , Mitocôndrias/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proliferação de Células
12.
Blood ; 117(23): 6214-26, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21474673

RESUMO

The small GTPase Rac1 is involved in the activation of the reduced NAD phosphate oxidase complex resulting in superoxide production. We recently showed that Bcl-2 overexpression inhibited apoptosis in leukemia cells by creating a pro-oxidant intracellular milieu, and that inhibiting intracellular superoxide production sensitized Bcl-2-overexpressing cells to apoptotic stimuli. We report here that silencing and functional inhibition of Rac1 block Bcl-2-mediated increase in intracellular superoxide levels in tumor cells. Using confocal, electron microscopy and coimmunoprecipitation, as well as glutathione S-transferase-fusion proteins, we provide evidence for a colocalization and physical interaction between the 2 proteins. This interaction is blocked in vitro and in vivo by the BH3 mimetics as well as by synthetic Bcl-2 BH3 domain peptides. That this interaction is functionally relevant is supported by the ability of the Bcl-2 BH3 peptide as well as the silencing and functional inhibition of Rac1 to inhibit intracellular superoxide production as well as overcome Bcl-2-mediated drug resistance in human leukemia cells and cervical cancer cells. Notably, the interaction was observed in primary cells derived from patients with B-cell lymphoma overexpressing Bcl-2 but not in noncancerous tissue. These data provide a novel facet in the biology of Bcl-2 with potential implications for targeted anticancer drug design.


Assuntos
Apoptose , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxidos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Inativação Gênica , Células HeLa , Humanos , Células Jurkat , Camundongos , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neuropeptídeos/genética , Fragmentos de Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética
13.
Redox Biol ; 64: 102757, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285741

RESUMO

Using S-phase synchronized RPE1-hTERT cells exposed to the DNA damaging agent, methyl methanesulfonate, we show the existence of a redox state associated with replication stress-induced senescence termed senescence-associated redox state (SA-redox state). SA-redox state is characterized by its reactivity with superoxide-sensing fluorescent probes such as dihydroethidine, lucigenin and mitosox and peroxynitrite or hydroxyl radical sensing probe hydroxyphenyl fluorescein (HPF) but not the hydrogen peroxide (H2O2) reactive fluorescent probe CM-H2DCFDA. Measurement of GSH and GSSH also reveals that SA-redox state mitigates the level of total GSH rather than oxidizes GSH to GSSG. Moreover, supporting the role of superoxide (O2.-) in the SA-redox state, we show that incubation of senescent RPE1-hTERT cells with the O2.- scavenger, Tiron, decreases the reactivity of SA-redox state with the oxidants' reactive probes lucigenin and HPF while the H2O2 antioxidant N-acetyl cysteine has no effect. SA-redox state does not participate in the loss of proliferative capacity, G2/M cell cycle arrest or the increase in SA-ß-Gal activity. However, SA-redox state is associated with the activation of NF-κB, dictates the profile of the Senescence Associated Secretory Phenotype, increases TFEB protein level, promotes geroconversion evidenced by increased phosphorylation of S6K and S6 proteins, and influences senescent cells response to senolysis. Furthermore, we provide evidence for crosstalk between SA redox state, p53 and p21. While p53 mitigates the establishment of SA-redox state, p21 is critical for the sustained reinforcement of the SA-redox state involved in geroconversion and resistance to senolysis.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Senescência Celular , Proteína Supressora de Tumor p53/metabolismo , Oxirredução
14.
Biology (Basel) ; 12(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237461

RESUMO

Graft-versus-host disease (GVHD) is a life-threatening systemic complication of allogeneic hematopoietic stem cell transplantation (HSCT) characterized by dysregulation of T and B cell activation and function, scleroderma-like features, and multi-organ pathology. The treatment of cGVHD is limited to the management of symptoms and long-term use of immunosuppressive therapy, which underscores the need for developing novel treatment approaches. Notably, there is a striking similarity between cytokines/chemokines responsible for multi-organ damage in cGVHD and pro-inflammatory factors, immune modulators, and growth factors secreted by senescent cells upon the acquisition of senescence-associated secretory phenotype (SASP). In this pilot study, we questioned the involvement of senescent cell-derived factors in the pathogenesis of cGVHD triggered upon allogeneic transplantation in an irradiated host. Using a murine model that recapitulates sclerodermatous cGVHD, we investigated the therapeutic efficacy of a senolytic combination of dasatinib and quercetin (DQ) administered after 10 days of allogeneic transplantation and given every 7 days for 35 days. Treatment with DQ resulted in a significant improvement in several physical and tissue-specific features, such as alopecia and earlobe thickness, associated with cGVHD pathogenesis in allograft recipients. DQ also mitigated cGVHD-associated changes in the peripheral T cell pool and serum levels of SASP-like cytokines, such as IL-4, IL-6 and IL-8Rα. Our results support the involvement of senescent cells in the pathogenesis of cGVHD and provide a rationale for the use of DQ, a clinically approved senolytic approach, as a potential therapeutic strategy.

15.
NPJ Breast Cancer ; 9(1): 84, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863888

RESUMO

Despite our understanding of the genetic basis of intra-tumoral heterogeneity, the role of stromal heterogeneity arising from an altered tumor microenvironment in affecting tumorigenesis is poorly understood. In particular, extensive study on the peri-tumoral stroma in the morphologically normal tissues surrounding the tumor is lacking. Here, we examine the heterogeneity in tumors and peri-tumoral stroma from 8 ER+/PR+/HER2- invasive breast carcinomas, through multi-region transcriptomic profiling by microarray. We describe the regional heterogeneity observed at the intrinsic molecular subtype, pathway enrichment, and cell type composition levels within each tumor and its peri-tumoral region, up to 7 cm from the tumor margins. Moreover, we identify a pro-inflammatory adipose-enriched peri-tumoral subtype which was significantly associated with poorer overall survival in breast cancer patients, in contrast to an adaptive immune cell- and myofibroblast-enriched subtype. These data together suggest that peri-tumoral heterogeneity may be an important determinant of the evolution and treatment of breast cancers.

16.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37751299

RESUMO

The B cell leukemia/lymphoma 2 (BCL-2) inhibitor venetoclax is effective in chronic lymphocytic leukemia (CLL); however, resistance may develop over time. Other lymphoid malignancies such as diffuse large B cell lymphoma (DLBCL) are frequently intrinsically resistant to venetoclax. Although genomic resistance mechanisms such as BCL2 mutations have been described, this probably only explains a subset of resistant cases. Using 2 complementary functional precision medicine techniques - BH3 profiling and high-throughput kinase activity mapping - we found that hyperphosphorylation of BCL-2 family proteins, including antiapoptotic myeloid leukemia 1 (MCL-1) and BCL-2 and proapoptotic BCL-2 agonist of cell death (BAD) and BCL-2 associated X, apoptosis regulator (BAX), underlies functional mechanisms of both intrinsic and acquired resistance to venetoclax in CLL and DLBCL. Additionally, we provide evidence that antiapoptotic BCL-2 family protein phosphorylation altered the apoptotic protein interactome, thereby changing the profile of functional dependence on these prosurvival proteins. Targeting BCL-2 family protein phosphorylation with phosphatase-activating drugs rewired these dependencies, thus restoring sensitivity to venetoclax in a panel of venetoclax-resistant lymphoid cell lines, a resistant mouse model, and in paired patient samples before venetoclax treatment and at the time of progression.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Camundongos , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína bcl-X/genética , Proteínas Reguladoras de Apoptose , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
17.
Biochim Biophys Acta ; 1807(6): 735-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21453675

RESUMO

Defective or inefficient apoptosis is an acquired hallmark of cancer cells. Thus, a thorough understanding of apoptotic signaling pathways and insights into apoptosis resistance mechanisms are imperative to unravel novel drug targets for the design of more effective and target selective therapeutic strategies. This review aims at providing an overview of the recent understanding of apoptotic signaling pathways, the main mechanisms by which cancer cells resist apoptotic insults, and discusses some recent attempts to target the mitochondrion for restoring efficient cell death signaling in cancer cells.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Mitocôndrias/fisiologia , Neoplasias/tratamento farmacológico , Animais , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Oncologia/tendências , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Pesquisa/tendências
18.
Biochem J ; 435(3): 545-51, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21486225

RESUMO

The Bcl-2 (Bcl is B-cell lymphocytic-leukaemia proto-oncogene) family comprises two groups of proteins with distinct functional biology in cell-fate signalling. Bcl-2 protein was the first member to be discovered and associated with drug resistance in human lymphomas. Since then a host of other proteins such as Bcl-xL, Bcl-2A1 and Mcl-1 with similar anti-apoptotic functions have been identified. In contrast, the pro-apoptotic Bcl-2 proteins contain prototypic effector proteins such as Bax and Bak, and the BH3 (Bcl-2 homology)-only proteins comprising Bak, Bid, Bim, Puma and Noxa. A complex interplay between the association of pro-apoptotic and anti-apoptotic proteins with each other determines the sensitivity of cancer cells to drug-induced apoptosis. The canonical functional of Bcl-2 in terms of apoptosis inhibition is its ability to prevent mitochondrial permeabilization via inhibiting the translocation and oligomerization of pro-apoptotic proteins such as Bax; however, more recent evidence points to a novel mechanism of the anti-apoptotic activity of Bcl-2. Overexpression of Bcl-2 increases mitochondrial oxygen consumption and in doing so generates a slight pro-oxidant intracellular milieu, which promotes genomic instability and blocks death signalling. However, in the wake of overt oxidative stress, Bcl-2 regulates cellular redox status thereby preventing excessive build-up of ROS (reactive oxygen species), which is detrimental to cells and tissues. Taken together, the canonical and non-canonical activities of Bcl-2 imply a critical involvement of this protein in the processes of tumour initiation and progression. In the present paper we review these functionally distinct outcomes of Bcl-2 expression with implications for the chemotherapeutic management of cancers.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Linfoma/tratamento farmacológico , Linfoma/genética , Linfoma/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-2/genética
19.
Trends Microbiol ; 30(7): 679-692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35063304

RESUMO

Through oxidative phosphorylation, mitochondria play a central role in energy production and are an important production source of reactive oxygen species (ROS). Not surprisingly, viruses have evolved to exploit this organelle in order to support their infection cycle. Beyond its role in the cellular antiviral response, induction of oxidative stress has emerged as a common strategy employed by many viruses to promote their replication. Here, we review the key molecular mechanisms employed by viruses to interact with mitochondria and induce oxidative stress. Furthermore, we discuss how viruses benefit from increased ROS levels, how they control ROS production to maintain a favorable redox environment, and how they cope with ROS-mediated cell death.


Assuntos
Mitocôndrias , Viroses , Estresse do Retículo Endoplasmático , Humanos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Viroses/metabolismo
20.
Cancer Lett ; 526: 284-303, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843865

RESUMO

We report a novel topoisomerase IIα inhibitor, mercaptopyridine oxide (MPO), which induces G2/M arrest and senescence with distinctly different cell cycle regulators (p21 or p14ARF) in HCT116p 53WT and HCT116 p53-/- cells, respectively. MPO treatment induced defective topoisomerase IIα-mediated decatenation process and inhibition of the enzyme's catalytic activity that stalled entry into mitosis. Topoisomerase IIα inhibition was associated with ROS-mediated activation of ATM-Chk2 kinase axis in HCT116 p53WT cells, but not in HCT116 p53-/- cells displaying early Chk1 activation. Results suggest that E2F1 stabilization might link MPO-induced p53 phospho-activation in HCT116 p53WT cells or p14ARF induction in HCT116 p53-/- cells. Also, interaction between topoisomerase IIα and Chk1 was induced in both cell lines, which could be important for decatenation checkpoint activation, even upon p53 ablation. Notably, TCGA dataset analyses revealed topoisomerase IIα upregulation across a wide array of cancers, which was associated with lower overall survival. Corroborating that increased topoisomerase IIα expression might offer susceptibility to the novel inhibitor, MPO (5 µM) induced strong inhibition in colony forming ability of pancreatic and hepatocellular cancer cell lines. These data highlight a novel topoisomerase IIα inhibitor and provide proof-of-concept for its therapeutic potential against cancers even with loss-of-function of p53.


Assuntos
Proteínas de Ciclo Celular/genética , DNA Topoisomerases Tipo II/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteína Supressora de Tumor p53/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa