Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38670232

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in both pediatric and adult populations. The development of AD has been linked to antibiotic usage, which causes perturbation of the microbiome and has been associated with abnormal immune system function. However, imbalances in the gut microbiome itself associated with antibiotic usage have been inconsistently linked to AD. OBJECTIVES: This study aimed to elucidate the timing and specific factors mediating the relationship between systemic (oral or intravenous) antibiotic usage and AD. METHODS: We used statistical modeling and differential analysis to link CHILD Cohort Study participants' history of antibiotic usage and early-life gut microbiome alterations to AD. RESULTS: Here we report that systemic antibiotics during the first year of life, as compared to later, are associated with AD risk (adjusted odds ratio [aOR] = 1.81; 95% CI: 1.28-2.57; P < .001), with an increased number of antibiotic courses corresponding to a dose response-like increased risk of AD risk (1 course: aOR: 1.67; 95% CI: 1.17-2.38; 2 or more courses: aOR: 2.16; 95% CI: 1.30-3.59). Further, we demonstrate that microbiome alterations associated with both AD and systemic antibiotic usage fully mediate the effect of antibiotic usage on the development of AD (ßindirect = 0.072; P < .001). Alterations in the 1-year infant gut microbiome of participants who would later develop AD included increased Tyzzerella nexilis, increased monosaccharide utilization, and parallel decreased Bifidobacterium and Eubacterium spp, and fermentative pathways. CONCLUSIONS: These findings indicate that early-life antibiotic usage, especially in the first year of life, modulates key gut microbiome components that may be used as markers to predict and possibly prevent the development of AD.

2.
Pediatr Res ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212387

RESUMO

BACKGROUND: Early identification of children at risk of asthma can have significant clinical implications for effective intervention and treatment. This study aims to disentangle the relative timing and importance of early markers of asthma. METHODS: Using the CHILD Cohort Study, 132 variables measured in 1754 multi-ethnic children were included in the analysis for asthma prediction. Data up to 4 years of age was used in multiple machine learning models to predict physician-diagnosed asthma at age 5 years. Both predictive performance and variable importance was assessed in these models. RESULTS: Early-life data (≤1 year) has limited predictive ability for physician-diagnosed asthma at age 5 years (area under the precision-recall curve (AUPRC) < 0.35). The earliest reliable prediction of asthma is achieved at age 3 years, (area under the receiver-operator curve (AUROC) > 0.90) and (AUPRC > 0.80). Maternal asthma, antibiotic exposure, and lower respiratory tract infections remained highly predictive throughout childhood. Wheezing status and atopy are the most important predictors of early childhood asthma from among the factors included in this study. CONCLUSIONS: Childhood asthma is predictable from non-biological measurements from the age of 3 years, primarily using parental asthma and patient history of wheezing, atopy, antibiotic exposure, and lower respiratory tract infections. IMPACT: Machine learning models can predict physician-diagnosed asthma in early childhood (AUROC > 0.90 and AUPRC > 0.80) using ≥3 years of non-biological and non-genetic information, whereas prediction with the same patient information available before 1 year of age is challenging. Wheezing, atopy, antibiotic exposure, lower respiratory tract infections, and the child's mother having asthma were the strongest early markers of 5-year asthma diagnosis, suggesting an opportunity for earlier diagnosis and intervention and focused assessment of patients at risk for asthma, with an evolving risk stratification over time.

3.
Glia ; 70(5): 820-841, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35019164

RESUMO

Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Animais , Cognição , Microbioma Gastrointestinal/fisiologia , Desnutrição/complicações , Camundongos , Camundongos Endogâmicos C57BL , Microglia
4.
Int J Obes (Lond) ; 46(7): 1351-1358, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35428865

RESUMO

BACKGROUND/OBJECTIVE: The steep rise in childhood obesity has emerged as a worldwide public health problem. The first 4 years of life are a critical window where long-term developmental patterns of body mass index (BMI) are established and a critical period for microbiota maturation. Understanding how the early-life microbiota relate to preschool growth may be useful for identifying preventive interventions for childhood obesity. We aim to investigate whether longitudinal shifts within the bacterial community between 3 months and 1 year of life are associated with preschool BMI z-score trajectories. METHODS: BMI trajectories from birth to 5 years of age were identified using group-based trajectory modeling in 3059 children. Their association with familial and environmental factors were analyzed. Infant gut microbiota at 3 months and 1 year was defined by 16S RNA sequencing and changes in diversity and composition within each BMIz trajectory were analyzed. RESULTS: Four BMIz trajectories were identified: low stable, normative, high stable, and rapid growth. Infants in the rapid growth trajectory were less likely to have been breastfed, and gained less microbiota diversity in the first year of life. Relative abundance of Akkermansia increased with age in children with stable growth, but decreased in those with rapid growth, abundance of Ruminococcus and Clostridium at 1 year were elevated in children with rapid growth. Children who were breastfed at 6 months had increased levels of Sutterella, and decreased levels of Ruminococcus and Clostridium. CONCLUSION: This study provides new insights into the relationship between the gut microbiota in infancy and patterns of growth in a cohort of preschool Canadian children. We highlight that rapid growth since birth is associated with bacteria shown in animal models to have a causative role in weight gain. Our findings support a novel avenue of research targeted on tangible interventions to reduce childhood obesity.


Assuntos
Microbioma Gastrointestinal , Obesidade Infantil , Bactérias , Índice de Massa Corporal , Canadá , Criança , Pré-Escolar , Humanos , Lactente , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Obesidade Infantil/prevenção & controle , Aumento de Peso
5.
PLoS Genet ; 15(2): e1007970, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768595

RESUMO

Identifying regulatory mechanisms that influence inflammation in metabolic tissues is critical for developing novel metabolic disease treatments. Here, we investigated the role of microRNA-146a (miR-146a) during diet-induced obesity in mice. miR-146a is reduced in obese and type 2 diabetic patients and our results reveal that miR-146a-/- mice fed a high-fat diet (HFD) have exaggerated weight gain, increased adiposity, hepatosteatosis, and dysregulated blood glucose levels compared to wild-type controls. Pro-inflammatory genes and NF-κB activation increase in miR-146a-/- mice, indicating a role for this miRNA in regulating inflammatory pathways. RNA-sequencing of adipose tissue macrophages demonstrated a role for miR-146a in regulating both inflammation and cellular metabolism, including the mTOR pathway, during obesity. Further, we demonstrate that miR-146a regulates inflammation, cellular respiration and glycolysis in macrophages through a mechanism involving its direct target Traf6. Finally, we found that administration of rapamycin, an inhibitor of mTOR, was able to rescue the obesity phenotype in miR-146a-/- mice. Altogether, our study provides evidence that miR-146a represses inflammation and diet-induced obesity and regulates metabolic processes at the cellular and organismal levels, demonstrating how the combination of diet and miRNA genetics influences obesity and diabetic phenotypes.


Assuntos
Inflamação/prevenção & controle , Doenças Metabólicas/prevenção & controle , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/prevenção & controle , Inflamação/genética , Inflamação/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Macrófagos/metabolismo , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , NF-kappa B/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/genética
6.
Curr Opin Pediatr ; 32(6): 790-797, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33027216

RESUMO

PURPOSE OF REVIEW: The microbiome and immune system are intrinsically linked, and during infancy these crucial biological systems undergo a concurrent and expansive maturation process. As these maturation processes progress, some children develop a sequence of IgE-mediated immune disorders termed the 'Allergic March', and unfortunately the prevalence of these lifelong and burdensome allergic conditions has increased over the past half century. Our current treatment strategies are unable to prevent or cure components of the Allergic March. However, recent discoveries have enhanced our mechanistic understanding of early-life microbiota-immune interactions with exciting implications for preventing these allergic disorders. RECENT FINDINGS: The current review will detail recent literature regarding perinatal factors (e.g. birth mode, antibiotic exposure, breastmilk seeding of the microbiota, built environment) that shape the infant gut microbiota composition. Furthermore, we will discuss new findings that have highlighted immune cells which are particularly sensitive to microbial influences in utero and during the early-life window of development. SUMMARY: As our understanding of the dynamic relationship between the developing infant microbiota and immune system grows, a priority toward preserving critical early-life interactions may provide life-long protection to these diseases in the future.


Assuntos
Hipersensibilidade , Sistema Imunitário , Microbiota , Humanos , Hipersensibilidade/prevenção & controle , Sistema Imunitário/microbiologia , Lactente , Microbiota/imunologia
7.
J Immunol ; 200(4): 1457-1470, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330323

RESUMO

T cells predominate the immune responses in the synovial fluid of patients with persistent Lyme arthritis; however, their role in Lyme disease remains poorly defined. Using a murine model of persistent Lyme arthritis, we observed that bystander activation of CD4+ and CD8+ T cells leads to arthritis-promoting IFN-γ, similar to the inflammatory environment seen in the synovial tissue of patients with posttreatment Lyme disease. TCR transgenic mice containing monoclonal specificity toward non-Borrelia epitopes confirmed that bystander T cell activation was responsible for disease development. The microbial pattern recognition receptor TLR2 was upregulated on T cells following infection, implicating it as marker of bystander T cell activation. In fact, T cell-intrinsic expression of TLR2 contributed to IFN-γ production and arthritis, providing a mechanism for microbial-induced bystander T cell activation during infection. The IL-10-deficient mouse reveals a novel TLR2-intrinsic role for T cells in Lyme arthritis, with potentially broad application to immune pathogenesis.


Assuntos
Interleucina-10/deficiência , Doença de Lyme/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Feminino , Interleucina-10/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Proc Natl Acad Sci U S A ; 114(21): 5497-5502, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487480

RESUMO

Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease.


Assuntos
Apoptose , Proteínas de Membrana/fisiologia , Microbiota , Linfócitos T/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Encefalomielite Autoimune Experimental/metabolismo , Homeostase , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Receptor fas/metabolismo
11.
Cell Microbiol ; 16(7): 1024-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798552

RESUMO

Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal-host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis, will be fundamental to treating complex immune diseases.


Assuntos
Imunidade Adaptativa , Disbiose/imunologia , Imunidade Inata , Microbiota/imunologia , Animais , Clostridioides difficile/imunologia , Disbiose/microbiologia , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/terapia , Interações Hospedeiro-Patógeno , Humanos
12.
Cell Mol Gastroenterol Hepatol ; 17(5): 827-852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38307490

RESUMO

BACKGROUND & AIMS: Micronutrient deficiency (MND) (ie, lack of vitamins and minerals) during pregnancy is a major public health concern. Historically, studies have considered micronutrients in isolation; however, MNDs rarely occur alone. The impact of co-occurring MNDs on public health, mainly in shaping mucosal colonization by pathobionts from the Enterobacteriaceae family, remains undetermined due to lack of relevant animal models. METHODS: To establish a maternal murine model of multiple MND (MMND), we customized a diet deficient in vitamins (A, B12, and B9) and minerals (iron and zinc) that most commonly affect children and women of reproductive age. Thereafter, mucosal adherence by Enterobacteriaceae, the associated inflammatory markers, and proteomic profile of intestines were determined in the offspring of MMND mothers (hereafter, low micronutrient [LM] pups) via bacterial plating, flow cytometry, and mass spectrometry, respectively. For human validation, Enterobacteriaceae abundance, assessed via 16s sequencing of 3-month-old infant fecal samples (n = 100), was correlated with micronutrient metabolites using Spearman's correlation in meconium of children from the CHILD birth cohort. RESULTS: We developed an MMND model and reported an increase in colonic abundance of Enterobacteriaceae in LM pups at weaning. Findings from CHILD cohort confirmed a negative correlation between Enterobacteriaceae and micronutrient availability. Furthermore, pro-inflammatory cytokines and increased infiltration of lymphocyte antigen 6 complex high monocytes and M1-like macrophages were evident in the colons of LM pups. Mechanistically, mitochondrial dysfunction marked by reduced expression of nicotinamide adenine dinucleotide (NAD)H dehydrogenase and increased expression of NAD phosphate oxidase (Nox) 1 contributed to the Enterobacteriaceae bloom. CONCLUSION: This study establishes an early life MMND link to intestinal pathobiont colonization and mucosal inflammation via damaged mitochondria in the offspring.


Assuntos
Desnutrição , NAD , Gravidez , Lactente , Feminino , Humanos , Animais , Camundongos , Proteômica , Modelos Animais de Doenças , Interações entre Hospedeiro e Microrganismos , Vitaminas , Micronutrientes , Minerais
13.
J Biol Chem ; 287(44): 37371-82, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22930756

RESUMO

The 20S proteasome is an essential, 28-subunit protease that sequesters proteolytic sites within a central chamber, thereby repressing substrate degradation until proteasome activators open the entrance/exit gate. Two established activators, Blm10 and PAN/19S, induce gate opening by binding to the pockets between proteasome α-subunits using C-terminal HbYX (hydrophobic-tyrosine-any residue) motifs. Equivalent HbYX motifs have been identified in Pba1 and Pba2, which function in proteasome assembly. Here, we demonstrate that Pba1-Pba2 proteins form a stable heterodimer that utilizes its HbYX motifs to bind mature 20S proteasomes in vitro and that the Pba1-Pba2 HbYX motifs are important for a physiological function of proteasomes, the maintenance of mitochondrial function. Other factors that contribute to proteasome assembly or function also act in the maintenance of mitochondrial function and display complex genetic interactions with one another, possibly revealing an unexpected pathway of mitochondrial regulation involving the Pba1-Pba2 proteasome interaction. Our determination of a proteasome Pba1-Pba2 crystal structure reveals a Pba1 HbYX interaction that is superimposable with those of known activators, a Pba2 HbYX interaction that is different from those reported previously, and a gate structure that is disrupted but not sufficiently open to allow entry of even small peptides. These findings extend understanding of proteasome interactions with HbYX motifs and suggest multiple roles for Pba1-Pba2 interactions throughout proteasome assembly and function.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Ligação de Hidrogênio , Proteínas Imobilizadas/química , Leupeptinas/química , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
PLoS One ; 18(8): e0288689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556397

RESUMO

Growing evidence is demonstrating the connection between the microbiota gut-brain axis and neurodevelopment. Microbiota colonization occurs before the maturation of many neural systems and is linked to brain health. Because of this it has been hypothesized that the early microbiome interactions along the gut-brain axis evolved to promote advanced cognitive functions and behaviors. Here, we performed a pilot study with a multidisciplinary approach to test if the microbiota composition of infants is associated with measures of early cognitive development, in particular neural rhythm tracking; language (forward speech) versus non-language (backwards speech) discrimination; and social joint attention. Fecal samples were collected from 56 infants between four and six months of age and sequenced by shotgun metagenomic sequencing. Of these, 44 performed the behavioral Point and Gaze test to measure joint attention. Infants were tested on either language discrimination using functional near-infrared spectroscopy (fNIRS; 25 infants had usable data) or neural rhythm tracking using electroencephalogram (EEG; 15 had usable data). Infants who succeeded at the Point and Gaze test tended to have increased Actinobacteria and reduced Firmicutes at the phylum level; and an increase in Bifidobacterium and Eggerthella along with a reduction in Hungatella and Streptococcus at the genus level. Measurements of neural rhythm tracking associated negatively to the abundance of Bifidobacterium and positively to the abundance of Clostridium and Enterococcus for the bacterial abundances, and associated positively to metabolic pathways that can influence neurodevelopment, including branched chain amino acid biosynthesis and pentose phosphate pathways. No associations were found for the fNIRS language discrimination measurements. Although the tests were underpowered due to the small pilot sample sizes, potential associations were identified between the microbiome and measurements of early cognitive development that are worth exploring further.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Lactente , Projetos Piloto , Bactérias , Fezes/microbiologia , Encéfalo
15.
Nat Commun ; 14(1): 4785, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644001

RESUMO

Allergic diseases affect millions of people worldwide. An increase in their prevalence has been associated with alterations in the gut microbiome, i.e., the microorganisms and their genes within the gastrointestinal tract. Maturation of the infant immune system and gut microbiota occur in parallel; thus, the conformation of the microbiome may determine if tolerant immune programming arises within the infant. Here we show, using deeply phenotyped participants in the CHILD birth cohort (n = 1115), that there are early-life influences and microbiome features which are uniformly associated with four distinct allergic diagnoses at 5 years: atopic dermatitis (AD, n = 367), asthma (As, n = 165), food allergy (FA, n = 136), and allergic rhinitis (AR, n = 187). In a subset with shotgun metagenomic and metabolomic profiling (n = 589), we discover that impaired 1-year microbiota maturation may be universal to pediatric allergies (AD p = 0.000014; As p = 0.0073; FA p = 0.00083; and AR p = 0.0021). Extending this, we find a core set of functional and metabolic imbalances characterized by compromised mucous integrity, elevated oxidative activity, decreased secondary fermentation, and elevated trace amines, to be a significant mediator between microbiota maturation at age 1 year and allergic diagnoses at age 5 years (ßindirect = -2.28; p = 0.0020). Microbiota maturation thus provides a focal point to identify deviations from normative development to predict and prevent allergic disease.


Assuntos
Asma , Dermatite Atópica , Microbioma Gastrointestinal , Hipersensibilidade , Microbiota , Lactente , Humanos , Criança , Microbioma Gastrointestinal/genética
16.
Med ; 4(2): 92-112.e5, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36603585

RESUMO

BACKGROUND: Early antibiotic exposure is linked to persistent disruption of the infant gut microbiome and subsequent elevated pediatric asthma risk. Breastfeeding acts as a primary modulator of the gut microbiome during early life, but its effect on asthma development has remained unclear. METHODS: We harnessed the CHILD cohort to interrogate the influence of breastfeeding on antibiotic-associated asthma risk in a subset of children (n = 2,521). We then profiled the infant microbiomes in a subset of these children (n = 1,338) using shotgun metagenomic sequencing and compared human milk oligosaccharide and fatty acid composition from paired maternal human milk samples for 561 of these infants. FINDINGS: Children who took antibiotics without breastfeeding had 3-fold higher asthma odds, whereas there was no such association in children who received antibiotics while breastfeeding. This benefit was associated with widespread "re-balancing" of taxonomic and functional components of the infant microbiome. Functional changes associated with asthma protection were linked to enriched Bifidobacterium longum subsp. infantis colonization. Network analysis identified a selection of fucosylated human milk oligosaccharides in paired maternal samples that were positively associated with B. infantis and these broader functional changes. CONCLUSIONS: Our data suggest that breastfeeding and antibiotics have opposing effects on the infant microbiome and that breastfeeding enrichment of B. infantis is associated with reduced antibiotic-associated asthma risk. FUNDING: This work was supported in part by the Canadian Institutes of Health Research; the Allergy, Genes and Environment Network of Centres of Excellence; Genome Canada; and Genome British Columbia.


Assuntos
Asma , Microbiota , Sulfaleno , Criança , Lactente , Feminino , Humanos , Aleitamento Materno , Antibacterianos/efeitos adversos , Microbiota/genética , Bifidobacterium longum subspecies infantis , Oligossacarídeos/uso terapêutico , Colúmbia Britânica , Asma/epidemiologia
17.
Cell Host Microbe ; 30(5): 650-659, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35550668

RESUMO

Secretory immunoglobulin A (SIgA) in human milk plays a central role in complex maternal-infant interactions that influence long-term health outcomes. Governed by genetics and maternal microbial exposure, human milk SIgA shapes both the microbiota and immune system of infants. Historically, SIgA-microbe interactions have been challenging to unravel due to their dynamic and personalized nature, particularly during early life. Recent advances have helped to clarify how SIgA acts beyond simple pathogen clearance to help guide and constrain a healthy microbiota, promote tolerance, and influence immune system development. In this review, we highlight these new findings in the context of the critical early-life window and propose outstanding areas of study that will be key to harnessing the benefits of SIgA to support healthy immune development during infancy.


Assuntos
Imunoglobulina A Secretora , Microbiota , Feminino , Humanos , Lactente , Saúde do Lactente , Saúde Materna , Leite Humano
18.
Nat Rev Immunol ; 21(8): 514-525, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33568782

RESUMO

IgA mediates microbial homeostasis at the intestinal mucosa. Within the gut, IgA acts in a context-dependent manner to both prevent and promote bacterial colonization and to influence bacterial gene expression, thus providing exquisite control of the microbiota. IgA-microbiota interactions are highly diverse across individuals and populations, yet the factors driving this variation remain poorly understood. In this Review, we summarize evidence for the host, bacterial and environmental factors that influence IgA-microbiota interactions. Recent advances have helped to clarify the antigenic specificity and immune selection of intestinal IgA and have highlighted the importance of microbial glycan recognition. Furthermore, emerging evidence suggests that diet and nutrition play an important role in shaping IgA recognition of the microbiota. IgA-microbiota interactions are disrupted during both overnutrition and undernutrition and may be altered dynamically in response to diet, with potential implications for host health. We situate this research in the context of outstanding questions and future directions in order to better understand the fascinating paradigm of IgA-microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imunoglobulina A Secretora/imunologia , Animais , Dieta , Microbioma Gastrointestinal/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Homeostase , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Imunoglobulina A Secretora/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Microbiota , Modelos Imunológicos , Fenômenos Fisiológicos da Nutrição , Hipermutação Somática de Imunoglobulina , Linfócitos T/imunologia
19.
JDS Commun ; 2(4): 200-206, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36338447

RESUMO

The practice of rearing cows and calves together is gaining popularity on dairy farms, with different systems currently under assessment in mainland Europe, the United Kingdom, and Oceania. Research into the effects of cow-calf rearing has primarily focused on direct health and welfare implications, and little work has examined the role of different rearing paradigms on calf microbiota. We trialed a cow-calf rearing system on a Canadian dairy farm and compared fecal microbiota of these calves with the microbiota of calves reared according to the conventional practice of the same farm (separated from the dam and fed waste milk). At 4 wk, the conventionally reared calves had reduced relative abundance of Lactobacillus and higher relative abundance of other taxa, including Sutterella, Prevotella, and Bacteroides. We also detected predicted functional differences, such as reduced l-tryptophan biosynthesis in conventionally reared calves. These results suggest that maternal contact may influence the calf microbiota, but the observed differences are also likely related to other aspects of the rearing environment independent of maternal contact (e.g., potential exposure to antibiotic residues in waste milk). These findings provide preliminary evidence of the effects of early rearing environments on the establishment of the dairy calf fecal microbiota. This research is needed, given the critical role of the bovine gut microbiome in behavioral, metabolic, and immune development.

20.
Cell Rep Med ; 2(5): 100260, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095873

RESUMO

Microbiota maturation and immune development occur in parallel with, and are implicated in, allergic diseases, and research has begun to demonstrate the importance of prenatal influencers on both. Here, we investigate the meconium metabolome, a critical link between prenatal exposures and both early microbiota and immune development, to identify components of the neonatal gut niche that contribute to allergic sensitization. Our analysis reveals that newborns who develop immunoglobulin E (IgE)-mediated allergic sensitization (atopy) by 1 year of age have a less-diverse gut metabolome at birth, and specific metabolic clusters are associated with both protection against atopy and the abundance of key taxa driving microbiota maturation. These metabolic signatures, when coupled with early-life microbiota and clinical factors, increase our ability to accurately predict whether or not infants will develop atopy. Thus, the trajectory of both microbiota colonization and immune development are significantly affected by metabolites present in the neonatal gut at birth.


Assuntos
Microbioma Gastrointestinal/imunologia , Hipersensibilidade Imediata/genética , Mecônio/microbiologia , Metaboloma/fisiologia , Feminino , Humanos , Imunoglobulina E/metabolismo , Lactente , Recém-Nascido , Metaboloma/genética , Microbiota/fisiologia , Gravidez , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa