Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pathobiology ; 90(1): 44-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35679834

RESUMO

INTRODUCTION: Tryptophan metabolism has been shown to be involved in tumor development. Two main tryptophan-degrading enzymes, tryptophan 2,3-dioxygenase (TDO2) and indoleamine 2,3-dioxygenase 1 (IDO1), may potently promote cancer cell survival and distant metastasis in diverse types of cancer, such as lung and breast cancer. IDO1 overexpression is an independent prognosticator in gastric cancer (GC). This work aimed to uncover the expression of TDO2 and its clinicopathologic significance in GC. METHODS: TDO2 expression was evaluated in public data of The Cancer Genome Atlas cohort STAD and in two different GC cohorts. Correlation between TDO2 and immune cell infiltrates as well as PD-L1 tumor staining was investigated. The biofunction of TDO2 was examined with MTT, colony formation, and spheroid formation assays by RNA interference. RESULTS: TDO2 expression was correlated with both progressive disease and clinical outcome, and its expression was an independent predictor of prognosis in GC. TDO2 expression was correlated with infiltration of immune cells and tumor expression of PD-L1. Inhibition of TDO2 expression suppressed cell proliferation, colony formation, and cell invasion of GC cells. Additionally, suppression of TDO2 expression inhibited spheroid body-formation and viability of GC organoids. CONCLUSION: Our data show that TDO2 might be a crucial marker for predicting prognosis and targeted therapy in GC.


Assuntos
Neoplasias Gástricas , Triptofano Oxigenase , Humanos , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Neoplasias Gástricas/genética , Antígeno B7-H1/genética , Células-Tronco Neoplásicas/metabolismo
2.
Cancer Sci ; 113(2): 784-795, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34808009

RESUMO

The utility of Schlafen 11 (SLFN11) expression as a predictive biomarker for platinum-based chemotherapy has been established for cancers from different histologies. However, the therapeutic relevance of SLFN11 in bladder cancer (BC) is unknown. Here, we examined the clinicopathologic significance of SLFN11 expression across 120 BC cases by immunohistochemistry. We divided the cases into two cohorts, one including 50 patients who received adjuvant or neoadjuvant platinum-based chemotherapy, and the other including 70 BC patients treated by surgical resection without chemotherapy. In the cohort of 50 BC cases treated with platinum-based chemotherapy, the SLFN11-positive group (n = 25) showed significantly better overall survival than the SLFN11-negative group (n = 25, P = .012). Schlafen 11 expression correlated significantly with the expression of luminal subtype marker GATA3. Multivariate analyses identified SLFN11 expression as an independent prognostic predictor (odds ratio, 0.32; 95% confidence interval, 0.11-0.91; P = .033). Conversely, in the cohort of 70 BC cases not receiving platinum-based chemotherapy, the SLFN11-positive group (n = 29) showed significantly worse overall survival than the SLFN11-negative group (n = 41, P = .034). In vitro analyses using multiple BC cell lines confirmed that SLFN11 KO rendered cells resistant to cisplatin. The epigenetic modifying drugs 5-azacytidine and entinostat restored SLFN11 expression and resensitized cells to cisplatin and carboplatin in SLFN11-negative BC cell lines. We conclude that SLFN11 is a predictive biomarker for BC patients who undergo platinum-based chemotherapy and that the combination of epigenetic modifiers could rescue refractory BC patients to platinum derivatives by reactivating SLFN11 expression.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Nucleares/metabolismo , Platina/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Idoso , Antineoplásicos/farmacologia , Azacitidina/farmacologia , Benzamidas/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Fator de Transcrição GATA3/metabolismo , Humanos , Masculino , Proteínas Nucleares/genética , Platina/farmacologia , Prognóstico , Piridinas/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/cirurgia
3.
BMC Cancer ; 21(1): 737, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174844

RESUMO

BACKGROUND: Tryptophan 2,3-dioxygenase (TDO2) is the primary enzyme catabolizing tryptophan. Several lines of evidence revealed that overexpression of TDO2 is involved in anoikis resistance, spheroid formation, proliferation, and invasion and correlates with poor prognosis in some cancers. The aim of this research was to uncover the expression and biofunction of TDO2 in renal cell carcinoma (RCC). METHODS: To show the expression of TDO2 in RCC, we performed qRT-PCR and immunohistochemistry in integration with TCGA data analysis. The interaction of TDO2 with PD-L1, CD44, PTEN, and TDO2 expression was evaluated. We explored proliferation, colony formation, and invasion in RCC cells line affected by knockdown of TDO2. RESULTS: RNA-Seq and immunohistochemical analysis showed that TDO2 expression was upregulated in RCC tissues and was associated with advanced disease and poor survival of RCC patients. Furthermore, TDO2 was co-expressed with PD-L1 and CD44. In silico analysis and in vitro knockout of PTEN in RCC cell lines revealed the ability of PTEN to regulate the expression of TDO2. Knockdown of TDO2 suppressed the proliferation and invasion of RCC cells. CONCLUSION: Our results suggest that TDO2 might have an important role in disease progression and could be a promising marker for targeted therapy in RCC. (199 words).


Assuntos
Biomarcadores Tumorais/metabolismo , Triptofano Oxigenase/metabolismo , Idoso , Carcinoma de Células Renais/patologia , Progressão da Doença , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Estudos Retrospectivos
4.
Gastric Cancer ; 24(6): 1264-1277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34272617

RESUMO

BACKGROUND: The attainment of drug resistance in gastric cancer (GC) is a problematic issue. Although many studies have shown that cancer stem cells (CSCs) play an important role in the acquisition of drug resistance, there is no clinically available biomarker for predicting oxaliplatin (L-OHP) resistance in relation to CSCs. Organoid technology, a novel 3D cell culture system, allows harboring of patient-derived cancer cells containing abundant CSCs using niche factors in a dish. METHODS: In this study, we established L-OHP-resistant gastric cancer organoids (GCOs) and evaluated their gene expression profile using microarray analysis. We validated the upregulated genes in the L-OHP-resistant GCOs compared to their parental GCOs to find a gene responsible for L-OHP resistance by qRT-PCR, immunohistochemistry, in vitro, and in vivo experiments. RESULTS: We found myoferlin (MYOF) to be a candidate gene through microarray analysis. The results from cell viability assays and qRT-PCR showed that high expression of MYOF correlated significantly with the IC50 of L-OHP in GCOs. Immunohistochemistry of MYOF in GC tissue samples revealed that high expression of MYOF was significantly associated with poor prognosis, T grade, N grade, and lymphatic invasion, and showed MYOF to be an independent prognostic indicator, especially in the GC patients treated with platinum-based chemotherapy. The knockdown of MYOF repressed L-OHP resistance, cell growth, stem cell features, migration, invasion, and in vivo tumor growth. CONCLUSIONS: Our results suggest that MYOF is highly involved in L-OHP resistance and tumor progression in GC. MYOF could be a promising biomarker and therapeutic target for L-OHP-resistant GC cases.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Organoides/metabolismo , Oxaliplatina/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Idoso , Técnicas de Cultura de Células em Três Dimensões , Feminino , Humanos , Japão , Masculino , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Análise de Sobrevida
5.
Gastric Cancer ; 23(5): 863-873, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32323025

RESUMO

BACKGROUND: The transcribed ultraconserved regions (T-UCRs) are a novel class of long non-coding RNAs and are involved in the development of several types of cancer. Although several different papers have described the oncogenic role of Uc.63+, there are no reports mentioning its importance in gastric cancer (GC) biology. METHODS: In this study, we evaluated Uc.63+ expression using clinical samples of GC by qRT-PCR, and also assessed the correlation between Uc.63+ expression and clinico-pathological factors. RESULTS: The upregulation of Uc.63+ was significantly correlated with advanced clinico-pathological features. Knockdown of Uc.63+ significantly repressed GC cell growth and migration, whereas overexpression of Uc.63+ conversely promoted those of GC cells. In situ hybridization of Uc.63+ revealed its preferential expression in poorly differentiated adenocarcinoma. We further conducted a microarray analysis using MKN-1 cells overexpressing Uc.63- and found that NF-κB signaling was significantly upregulated in accordance with Uc.63+ expression. CONCLUSION: Our results suggest that Uc.63+ could be involved in GC progression by regulating GC cell growth and migration via NF-κB signaling.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Idoso , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Masculino , NF-kappa B/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas
6.
Oncology ; 95(5): 297-308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30134247

RESUMO

OBJECTIVE: Esophageal cancer is one of the deadliest cancers in the world, and the main subtype is esophageal squamous cell carcinoma (ESCC), which comprises 90% of cases. Expression of tryptophan 2,3-dioxygenase (TDO2), an enzyme involved in tryptophan catabolism, has been linked with tumor survival and poor prognosis of brain and breast cancer. However, no studies have investigated the potential role of TDO2 in esophageal cancer. Here we explored the expression and biological significance of TDO2 in ESCC. METHODS: TDO2 protein expression was evaluated in 90 ESCC tissue samples by immunohistochemistry. TDO2 function in ESCC cell lines and spheroid colony formation were evaluated by RNA interference (RNAi). RESULTS: TDO2 overexpression was associated with tumor stage, recurrence status, and the CD44 cancer stem cell marker in ESCC. TDO2 overexpression was correlated with poor outcome of ESCC patients. Inhibition of TDO2 expression by RNAi in TE-10 and TE-11 cell lines reduced both the number and the size of spheroid colonies as well as cell proliferation. Knockdown of TDO2 expression also induced inactivation of the epidermal growth factor receptor signaling pathway. CONCLUSION: Our results imply that TDO2 could play an important role in the progression of ESCC. Furthermore, TDO2 may be a potential therapeutic target in ESCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/enzimologia , Neoplasias Esofágicas/enzimologia , Células-Tronco Neoplásicas/enzimologia , Triptofano Oxigenase/metabolismo , Idoso , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Proliferação de Células , Quimioterapia Adjuvante , Progressão da Doença , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago , Esofagectomia , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Triptofano Oxigenase/genética , Regulação para Cima
7.
Cancer Rep (Hoboken) ; 4(6): e1417, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34101386

RESUMO

BACKGROUND: Bladder cancer (BC) is the 10th most common cancer in the world. BC with muscle invasion results in a poor prognosis and is usually fatal. Cancer cell metabolism has an essential role in the development and progression of tumors. Expression of tryptophan 2,3-dioxygenase (TDO2) is associated with tumor progression and worse survival in some other cancers. However, no studies have been performed to uncover the biofunctional roles of TDO2 in BC. AIM: This study aim to investigate the clinicopathologic significance of TDO2 in BC. METHODS AND RESULTS: TDO2 expression was evaluated by qRT-PCR and immunohistochemistry in an integrated analysis with the Cancer Genome Atlas (TCGA) and other published datasets. TDO2 overexpression was significantly associated with T classification, N classification, and M classification, tumor stage, recurrence, and basal type, and with the expression of CD44 and aldehyde dehydrogenase 1 (ALDH1) in BC. High TDO2 expression correlated with poor outcome of BC patients. Using BC cell lines with knockdown and forced expression of TDO2, we found that TDO2 was involved in the growth, migration, and invasiveness of BC cells. Moreover, TDO2 was found to be crucial for spheroid formation in BC cells. Importantly, TDO2 promoted BC cells resistance to cetuximab through integration of the EGFR pathway. CONCLUSION: Our results indicate that TDO2 might take an essential part in BC progression and could be a potential marker for targeted therapy in BC.


Assuntos
Cetuximab/farmacologia , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Triptofano Oxigenase/metabolismo , Neoplasias da Bexiga Urinária/patologia , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais , Estudos de Casos e Controles , Seguimentos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/enzimologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Prognóstico , Taxa de Sobrevida , Triptofano Oxigenase/genética , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/enzimologia
8.
J Clin Med ; 10(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768355

RESUMO

Kinesin family member C1 (KIFC1), a minus end-directed motor protein, is reported to play an essential role in cancer. This study aimed to analyze KIFC1 expression and examine KIFC1 involvement in cisplatin resistance in bladder cancer (BC). Immunohistochemistry showed that 37 of 78 (47.4%) BC cases were positive for KIFC1. KIFC1-positive cases were associated with high T stage and lymph node metastasis. Kaplan-Meier analysis showed that KIFC1-positive cases were associated with poor prognosis, consistent with the results from public databases. Molecular classification in several public databases indicated that KIFC1 expression was increased in basal type BC. Immunohistochemistry showed that KIFC1-positive cases were associated with basal markers 34ßE12, CK5 and CD44. KIFC1 expression was increased in altered TP53 compared to that in wild-type TP53. Immunohistochemistry showed that KIFC1-positive cases were associated with p53-positive cases. P53 knockout by CRISPR-Cas9 induced KIFC1 expression in BC cell lines. Knockdown of KIFC1 by siRNA increased the sensitivity to cisplatin in BC cells. Kaplan-Meier analysis indicated that prognosis was poor among KIFC1-positive BC patients treated with cisplatin-based chemotherapy. Immunohistochemistry showed that KIFC1-positive cases were associated with PD-L1-positive cases. High KIFC1 expression was associated with a favorable prognosis in patients treated with atezolizumab from the IMvigor 210 study. These results suggest that KIFC1 might be a promising biomarker and therapeutic target in BC.

9.
Biomedicines ; 9(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34440097

RESUMO

Homeobox genes function as master regulatory transcription factors during embryogenesis. HOXB5 is known to play an important role in several cancers. However, the biological role of HOXB5 in prostate cancer (PCa) is not fully elucidated. This study aimed to analyze the expression and function of HOXB5 and involvement of HOXB5 in neuroendocrine differentiation in PCa. Immunohistochemistry showed that 56 (43.8%) of 128 cases of localized PCa were positive for HOXB5. HOXB5-positive cases were associated with poor prostate-specific antigen recurrence-free survival after prostatectomy. Among 74 cases of metastatic PCa, 43 (58.1%) were positive for HOXB5. HOXB5 expression was higher in metastatic PCa than that in localized PCa. HOXB5 knockdown suppressed cell growth and invasion, but HOXB5 overexpression increased cell growth and invasion in PCa cell lines. Furthermore, HOXB5 regulated RET expression. Gene set enrichment analysis revealed that Nelson androgen response gene set was enriched in low HOXB5 expression group. RB1 knockout increased HOXB5 expression. Of note, additional p53 knockdown further increased HOXB5 expression in RB1 knockout cells. In silico analysis showed that HOXB5 expression was increased in neuroendocrine PCa (NEPC). These results suggest that HOXB5 may be a promising prognostic marker after prostatectomy and is involved in progression to NEPC.

10.
J Cancer Res Clin Oncol ; 146(12): 3255-3268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32870388

RESUMO

PURPOSE: Deoxycholic acid (DCA), a secondary bile acid, is reportedly increased in the serum of patients with nonalcoholic steatohepatitis and animals with experimentally induced hepatocellular carcinoma (HCC), but its contribution to malignant behaviors of HCC has not been precisely clarified. This study aimed to examine the effect of DCA on hepatic stellate cells (HSCs), a major component of nonparenchymal cells in the liver, and its subsequent indirect effect on HCC cells. METHODS: LX2 cells, a human HSC line, were treated with DCA in vitro. Then, HuH7 cells, a human hepatoma cell line, were incubated in conditioned media of DCA-treated LX2 to investigate the subsequent effect focusing on malignant behaviors. RESULTS: DCA resulted in cellular senescence in LX2 with the decreased cell proliferation via cell cycle arrest at G0/1 phase, together with the induction of senescence-associated secretory phenotype (SASP) factors. To investigate the influence of SASP factors secreted by HSCs in response to DCA, HCC cells were treated with conditioned media that promoted cell migration and invasion via induction of epithelial mesenchymal transition. These changes were attenuated in the presence of neutralizing antibody against IL8 or TGFß. Pathological analysis of surgical specimens from HCC patients revealed that senescent HSCs were detected in the stroma surrounding HCC. CONCLUSION: Our data suggest an important role of HSC senescence caused by DCA for the malignant biological behaviors of HCC via induction of SASP factors, particularly IL8 and TGFß.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ácido Desoxicólico/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Anticorpos Neutralizantes/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Interleucina-8/antagonistas & inibidores , Interleucina-8/imunologia , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/imunologia
11.
Oncogene ; 39(50): 7265-7278, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046798

RESUMO

5-FU is one of the key drugs in the treatment of gastric cancer (GC). Much evidence has shown that cancer stem cells (CSCs) play a key role in the acquisition of drug resistance. The organoid is a novel 3D cell culture system technology that sustains stem-cell-driven formation of near-physiological, self-renewing tissues using specific niche factors in a dish. In this study, we established GC organoids (GCOs) and gradually treated them with higher concentrations of 5-FU. We successfully harvested four 5-FU-resistant GCOs, which were supported by significant changes in the expression of molecules related to 5-FU metabolism. We then performed microarray analysis using three normal gastric organoids and three pairs of 5-FU-resistant and parental GCOs. Through the comparison of expression profiles and further validation, we chose KHDRBS3 as a target gene. We found KHDRBS3 to be an independent prognostic factor in GC patients, especially in GC patients treated with 5-FU chemotherapy. We also determined that KHDRBS3 might play an important role in the acquisition of stem cell-like features, such as multi-drug resistance and organoid formation, by regulating CD44 variant expression. We found KHDRBS3, which is thought to play an important role in the acquisition of characteristics of CSCs in GC, to be a promising candidate marker for predicting therapeutic effect and prognosis in GC patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Organoides/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/patologia , Idoso , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Organoides/patologia , Prognóstico , Proteínas de Ligação a RNA/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
12.
J Pathol Transl Med ; 53(6): 361-368, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31525834

RESUMO

BACKGROUND: Gastrointestinal stromal tumors (GISTs) are the most frequent mesenchymal neoplasms of the gastrointestinal tract. Management of GIST patients is currently based on clinicopathological features and associated genetic changes. However, the detailed characteristics and molecular genetic features of GISTs have not yet been described in the Vietnamese population. METHODS: We first identified 155 patients with primary GIST who underwent surgery with primary curative intent between 2011 and 2014 at University Medical Center at Ho Chi Minh City, Vietnam. We evaluated the clinicopathological features and immunohistochemical reactivity to p53 and Ki-67 in these patients. Additionally, KIT genotyping was performed in 100 cases. RESULTS: The largest proportion of GISTs was classified as high-risk (43.2%). Of the 155 GISTs, 52 (33.5%) were positive for Ki-67, and 58 (37.4%) were positive for p53. The expression of Ki-67 and p53 were correlated with mitotic rate, tumor size, risk assessment, and tumor stage. Out of 100 GIST cases, KIT mutation was found in 68%, of which 62 (91.2%) were found in exon 11, two (2.9%) in exon 9, and four (5.8%) in exon 17. No mutation in exon 13 was identified. Additionally, KIT mutations did not correlate with any clinicopathological features. CONCLUSIONS: The expression of Ki-67 and p53 were associated with high-risk tumors. Mutations in exon 11 were the most commonly found, followed by exon 17 and exon 9. Additionally, KIT mutation status was not correlated with any recognized clinicopathological features.

13.
Anticancer Res ; 37(6): 2853-2860, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28551621

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. MATERIALS AND METHODS: BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. RESULTS: Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. CONCLUSION: These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC.


Assuntos
Antígenos CD/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Idoso , Antígenos CD/genética , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Masculino , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa