Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
PLoS Biol ; 20(4): e3001627, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486643

RESUMO

Brain imaging research enjoys increasing adoption of supervised machine learning for single-participant disease classification. Yet, the success of these algorithms likely depends on population diversity, including demographic differences and other factors that may be outside of primary scientific interest. Here, we capitalize on propensity scores as a composite confound index to quantify diversity due to major sources of population variation. We delineate the impact of population heterogeneity on the predictive accuracy and pattern stability in 2 separate clinical cohorts: the Autism Brain Imaging Data Exchange (ABIDE, n = 297) and the Healthy Brain Network (HBN, n = 551). Across various analysis scenarios, our results uncover the extent to which cross-validated prediction performances are interlocked with diversity. The instability of extracted brain patterns attributable to diversity is located preferentially in regions part of the default mode network. Collectively, our findings highlight the limitations of prevailing deconfounding practices in mitigating the full consequences of population diversity.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Aprendizado de Máquina Supervisionado
2.
PLoS Comput Biol ; 19(7): e1011230, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498959

RESUMO

The Canadian Open Neuroscience Platform (CONP) takes a multifaceted approach to enabling open neuroscience, aiming to make research, data, and tools accessible to everyone, with the ultimate objective of accelerating discovery. Its core infrastructure is the CONP Portal, a repository with a decentralized design, where datasets and analysis tools across disparate platforms can be browsed, searched, accessed, and shared in accordance with FAIR principles. Another key piece of CONP infrastructure is NeuroLibre, a preprint server capable of creating and hosting executable and fully reproducible scientific publications that embed text, figures, and code. As part of its holistic approach, the CONP has also constructed frameworks and guidance for ethics and data governance, provided support and developed resources to help train the next generation of neuroscientists, and has fostered and grown an engaged community through outreach and communications. In this manuscript, we provide a high-level overview of this multipronged platform and its vision of lowering the barriers to the practice of open neuroscience and yielding the associated benefits for both individual researchers and the wider community.


Assuntos
Neurociências , Canadá , Publicações , Comunicação
3.
Neuroimage ; 263: 119612, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070839

RESUMO

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.


Assuntos
Conectoma , Processamento Eletrônico de Dados , Neuroimagem , Software , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Software/normas , Processamento Eletrônico de Dados/métodos , Processamento Eletrônico de Dados/normas
4.
Nat Rev Neurosci ; 18(2): 115-126, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28053326

RESUMO

Functional neuroimaging techniques have transformed our ability to probe the neurobiological basis of behaviour and are increasingly being applied by the wider neuroscience community. However, concerns have recently been raised that the conclusions that are drawn from some human neuroimaging studies are either spurious or not generalizable. Problems such as low statistical power, flexibility in data analysis, software errors and a lack of direct replication apply to many fields, but perhaps particularly to functional MRI. Here, we discuss these problems, outline current and suggested best practices, and describe how we think the field should evolve to produce the most meaningful and reliable answers to neuroscientific questions.


Assuntos
Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Neuroimagem Funcional/estatística & dados numéricos , Neuroimagem Funcional/tendências , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Imageamento por Ressonância Magnética/tendências , Guias de Prática Clínica como Assunto/normas , Reprodutibilidade dos Testes , Software/normas , Estatística como Assunto
5.
Neuroimage ; 245: 118683, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715319

RESUMO

Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Algoritmos , Humanos
6.
Cereb Cortex ; 30(4): 2307-2320, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109272

RESUMO

We analyzed the genomic architecture of neuroanatomical diversity using magnetic resonance imaging and single nucleotide polymorphism (SNP) data from >26 000 individuals from the UK Biobank project and 5 other projects that had previously participated in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our results confirm the polygenic architecture of neuroanatomical diversity, with SNPs capturing from 40% to 54% of regional brain volume variance. Chromosomal length correlated with the amount of phenotypic variance captured, r ~ 0.64 on average, suggesting that at a global scale causal variants are homogeneously distributed across the genome. At a local scale, SNPs within genes (~51%) captured ~1.5 times more genetic variance than the rest, and SNPs with low minor allele frequency (MAF) captured less variance than the rest: the 40% of SNPs with MAF <5% captured

Assuntos
Encéfalo/diagnóstico por imagem , Interação Gene-Ambiente , Variação Genética/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos de Coortes , Estudo de Associação Genômica Ampla/tendências , Humanos , Imageamento por Ressonância Magnética/tendências
7.
Neuroimage ; 216: 116330, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704292

RESUMO

Naturalistic stimuli show significant potential to inform behavioral, cognitive, and clinical neuroscience. To date, this impact is still limited by the relative inaccessibility of both generated neuroimaging data as well as the supporting naturalistic stimuli. In this perspective, we highlight currently available naturalistic datasets and technical solutions such as DataLad that continue to advance our ability to share this data. We also review scientific and sociological challenges in selecting naturalistic stimuli for reproducible research. Overall, we encourage researchers to share their naturalistic datasets to the full extent possible under local copyright law.


Assuntos
Bases de Dados Factuais/tendências , Disseminação de Informação , Neurociências/tendências , Setor Público/tendências , Humanos , Disseminação de Informação/métodos , Neurociências/métodos
8.
Neuroimage ; 206: 116226, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593792

RESUMO

Accurate prediction of individuals' brain age is critical to establish a baseline for normal brain development. This study proposes to model brain development with a novel non-negative projective dictionary learning (NPDL) approach, which learns a discriminative representation of multi-modal neuroimaging data for predicting brain age. Our approach encodes the variability of subjects in different age groups using separate dictionaries, projecting features into a low-dimensional manifold such that information is preserved only for the corresponding age group. The proposed framework improves upon previous discriminative dictionary learning methods by incorporating orthogonality and non-negativity constraints, which remove representation redundancy and perform implicit feature selection. We study brain development on multi-modal brain imaging data from the PING dataset (N = 841, age = 3-21 years). The proposed analysis uses our NDPL framework to predict the age of subjects based on cortical measures from T1-weighted MRI and connectome from diffusion weighted imaging (DWI). We also investigate the association between age prediction and cognition, and study the influence of gender on prediction accuracy. Experimental results demonstrate the usefulness of NDPL for modeling brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Adolescente , Adulto , Fatores Etários , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Fatores Sexuais , Adulto Jovem
9.
PLoS Comput Biol ; 14(11): e1006565, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496171

RESUMO

To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological manipulations that engage brain systems associated with specific cognitive processes. In order to build comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals: on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand precisely describing the function of any given brain region. Here we introduce a new analysis framework that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function. The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Neuroimagem Funcional/métodos , Neuroimagem/métodos , Área Sob a Curva , Teorema de Bayes , Bases de Dados Factuais , Audição , Humanos , Imageamento por Ressonância Magnética , Destreza Motora , Curva ROC , Reprodutibilidade dos Testes
10.
Cereb Cortex ; 28(3): 1049-1063, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28168274

RESUMO

The transition from adolescent to adult cognition and emotional control requires neurodevelopmental maturation likely involving intrinsic functional networks (IFNs). Normal neurodevelopment may be vulnerable to disruption from environmental insult such as alcohol consumption commonly initiated during adolescence. To test potential disruption to IFN maturation, we used resting-state functional magnetic resonance imaging (rs-fMRI) in 581 no-to-low alcohol-consuming and 117 moderate-to-high-drinking youth. Functional seed-to-voxel connectivity analysis assessed age, sex, and moderate alcohol drinking on default-mode, executive-control, salience, reward, and emotion networks and tested cognitive and motor coordination correlates of network connectivity. Among no-to-low alcohol-consuming adolescents, executive-control frontolimbicstriatal connectivity was stronger in older than younger adolescents, particularly boys, and predicted better ability in balance, memory, and impulse control. Connectivity patterns in moderate-to-high-drinking youth were tested mainly in late adolescence when drinking was initiated. Implicated was the emotion network with attenuated connectivity to default-mode network regions. Our cross-sectional rs-fMRI findings from this large cohort of adolescents show sexual dimorphism in connectivity and suggest neurodevelopmental rewiring toward stronger and spatially more distributed executive-control networking in older than younger adolescents. Functional network rewiring in moderate-to-high-drinking adolescents may impede maturation of affective and self-reflection systems and obscure maturation of complex social and emotional behaviors.


Assuntos
Envelhecimento/fisiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/fisiopatologia , Função Executiva/fisiologia , Caracteres Sexuais , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Testes Neuropsicológicos , Oxigênio/sangue , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 113(14): 3879-84, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001827

RESUMO

Dysfunctional reward processing is implicated in various mental disorders, including attention deficit hyperactivity disorder (ADHD) and addictions. Such impairments might involve different components of the reward process, including brain activity during reward anticipation. We examined brain nodes engaged by reward anticipation in 1,544 adolescents and identified a network containing a core striatal node and cortical nodes facilitating outcome prediction and response preparation. Distinct nodes and functional connections were preferentially associated with either adolescent hyperactivity or alcohol consumption, thus conveying specificity of reward processing to clinically relevant behavior. We observed associations between the striatal node, hyperactivity, and the vacuolar protein sorting-associated protein 4A (VPS4A) gene in humans, and the causal role of Vps4 for hyperactivity was validated in Drosophila Our data provide a neurobehavioral model explaining the heterogeneity of reward-related behaviors and generate a hypothesis accounting for their enduring nature.


Assuntos
Antecipação Psicológica/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Mapeamento Encefálico , Corpo Estriado/fisiopatologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Recompensa , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Consumo de Bebidas Alcoólicas/psicologia , Animais , Criança , Drosophila , Feminino , Previsões , Estudo de Associação Genômica Ampla , Haplótipos/genética , Humanos , Masculino , Motivação , Testes Neuropsicológicos
12.
J Neurosci ; 37(40): 9657-9666, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28877969

RESUMO

The nicotinic system plays an important role in cognitive control and is implicated in several neuropsychiatric conditions. However, the contributions of genetic variability in this system to individuals' cognitive control abilities are poorly understood and the brain processes that mediate such genetic contributions remain largely unidentified. In this first large-scale neuroimaging genetics study of the human nicotinic receptor system (two cohorts, males and females, fMRI total N = 1586, behavioral total N = 3650), we investigated a common polymorphism of the high-affinity nicotinic receptor α4ß2 (rs1044396 on the CHRNA4 gene) previously implicated in behavioral and nicotine-related studies (albeit with inconsistent major/minor allele impacts). Based on our prior neuroimaging findings, we expected this polymorphism to affect neural activity in the cingulo-opercular (CO) network involved in core cognitive control processes including maintenance of alertness. Consistent across the cohorts, all cortical areas of the CO network showed higher activity in heterozygotes compared with both types of homozygotes during cognitive engagement. This inverted U-shaped relation reflects an overdominant effect; that is, allelic interaction (cumulative evidence p = 1.33 * 10-5). Furthermore, heterozygotes performed more accurately in behavioral tasks that primarily depend on sustained alertness. No effects were observed for haplotypes of the surrounding CHRNA4 region, supporting a true overdominant effect at rs1044396. As a possible mechanism, we observed that this polymorphism is an expression quantitative trait locus modulating CHRNA4 expression levels. This is the first report of overdominance in the nicotinic system. These findings connect CHRNA4 genotype, CO network activation, and sustained alertness, providing insights into how genetics shapes individuals' cognitive control abilities.SIGNIFICANCE STATEMENT The nicotinic acetylcholine system plays a central role in neuromodulatory regulation of cognitive control processes and is dysregulated in several neuropsychiatric disorders. Despite this functional importance, no large-scale neuroimaging genetics studies have targeted the contributions of genetic variability in this system to human brain activity. Here, we show the impact of a common polymorphism of the high-affinity nicotinic receptor α4ß2 that is consistent across brain activity and behavior in two large human cohorts. We report a hitherto unknown overdominant effect (allelic interaction) at this locus, where the heterozygotes show higher activity in the cingulo-opercular network underlying alertness maintenance and higher behavioral alertness performance than both homozygous groups. This gene-brain-behavior relationship informs about the biological basis of interindividual differences in cognitive control.


Assuntos
Cognição/fisiologia , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Rede Nervosa/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Receptores Nicotínicos/genética , Adolescente , Córtex Cerebral/fisiologia , Estudos de Coortes , Feminino , Estudos de Associação Genética/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia
14.
Proc Natl Acad Sci U S A ; 112(27): 8463-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26106164

RESUMO

Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22-40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Acústica , Algoritmos , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Descanso/fisiologia , Som
15.
Behav Brain Sci ; 41: e131, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064546

RESUMO

Making replication studies widely conducted and published requires new incentives. Academic awards can provide such incentives by highlighting the best and most important replications. The Organization for Human Brain Mapping (OHBM) has led such efforts by recently introducing the OHBM Replication Award. Other communities can adopt this approach to promote replications and reduce career cost for researchers performing them.


Assuntos
Distinções e Prêmios , Humanos , Pesquisadores
16.
Neuroimage ; 153: 399-409, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28232121

RESUMO

Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function.


Assuntos
Bases de Dados Factuais , Disseminação de Informação/métodos , Neuroimagem , Sistemas de Gerenciamento de Base de Dados , Humanos , Armazenamento e Recuperação da Informação
18.
Cereb Cortex ; 26(3): 933-942, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25331601

RESUMO

Rumination, an internal cognitive state characterized by recursive thinking of current self-distress and past negative events, has been found to correlate with the development of depressive disorders. Here, we investigated the feasibility of using connectivity for distinguishing different emotional states induced by a novel free-streaming, subject-driven experimental paradigm. Connectivity between 78 functional regions of interest (ROIs) within 14 large-scale networks and 6 structural ROIs particularly relevant to emotional processing were used for classifying 4 mental states in 19 healthy controls. The 4 mental states comprised: An unconstrained period of mind wandering; a ruminative mental state self-induced by recalling a time of personal disappointment; a euphoric mental state self-induced by recalling what brings the subject joy; and a sequential episodic recollection of the events of the day. A support vector machine achieved accuracies ranging from 89% to 94% in classifying pairs of different mental states. We reported the most significant brain connections that best discriminated these mental states. In particular, connectivity changes involving the amygdala were found to be important for distinguishing the rumination condition from the other mental states. Our results demonstrated that connectivity-based classification of subject-driven emotional states constitutes a novel and effective approach for studying ruminative behavior.


Assuntos
Afeto/fisiologia , Encéfalo/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Memória Episódica , Rememoração Mental/fisiologia , Vias Neurais/fisiologia , Testes Neuropsicológicos , Descanso , Máquina de Vetores de Suporte , Pensamento/fisiologia
19.
Neuroimage ; 124(Pt B): 1242-1244, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25869863

RESUMO

NeuroVault.org is dedicated to storing outputs of analyses in the form of statistical maps, parcellations and atlases, a unique strategy that contrasts with most neuroimaging repositories that store raw acquisition data or stereotaxic coordinates. Such maps are indispensable for performing meta-analyses, validating novel methodology, and deciding on precise outlines for regions of interest (ROIs). NeuroVault is open to maps derived from both healthy and clinical populations, as well as from various imaging modalities (sMRI, fMRI, EEG, MEG, PET, etc.). The repository uses modern web technologies such as interactive web-based visualization, cognitive decoding, and comparison with other maps to provide researchers with efficient, intuitive tools to improve the understanding of their results. Each dataset and map is assigned a permanent Universal Resource Locator (URL), and all of the data is accessible through a REST Application Programming Interface (API). Additionally, the repository supports the NIDM-Results standard and has the ability to parse outputs from popular FSL and SPM software packages to automatically extract relevant metadata. This ease of use, modern web-integration, and pioneering functionality holds promise to improve the workflow for making inferences about and sharing whole-brain statistical maps.


Assuntos
Mapeamento Encefálico/estatística & dados numéricos , Bases de Dados Factuais , Disseminação de Informação , Acesso à Informação , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa