Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(33): e202201402, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35604354

RESUMO

Invited for the cover of this issue is the collaborative research team coordinated by Arie van der Lee at the University of Montpellier. The image depicts chiral channels with highly mobile water molecules resulting from the robust self-organization of a simple achiral acetamide. Fully reversible release and re-uptake of water molecules takes place near ambient conditions, with efficient water transport and a good selectivity against NaCl suggesting it to be an efficient candidate for desalination processes. Read the full text of the article at 10.1002/chem.20200383.


Assuntos
Aquaporinas , Água , Acetamidas
2.
Chemistry ; 28(33): e202200383, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35420228

RESUMO

Achiral 2-hydroxy-N-(diphenylmethyl)acetamide (HNDPA) crystallizes in the P61 chiral space group as a hydrate, building up permeable chiral crystalline helical water channels. The crystallization-driven chiral self-resolution process is highly robust, with the same air-stable crystalline form readily obtained under a variety of conditions. Interestingly, the HNDPA supramolecular helix inner pore is filled by a helical water wire. The whole edifice is mainly stabilized by robust hydrogen bonds involving the HNDPA amide bonds and CH… π interactions between the HNDPA phenyl groups. The crystalline structure shows breathing behavior, with completely reversible release and re-uptake of water inside the chiral channel under ambient conditions. Importantly, the HNDPA channel is able to transport water very efficiently and selectively under biomimetic conditions. With a permeability per channel of 3.3 million water molecules per second in large unilamellar vesicles (LUV) and total selectivity against NaCl, the HNDPA channel is a very promising functional nanomaterial for future applications.


Assuntos
Aquaporinas , Água , Acetamidas , Cristalização , Ligação de Hidrogênio , Água/química
3.
Chemistry ; 26(22): 4988-4996, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31841248

RESUMO

Ruthenium nanocatalysis can provide effective deuteration and tritiation of oxazole, imidazole, triazole and carbazole substructures in complex molecules using D2 or T2 gas as isotopic sources. Depending on the substructure considered, this approach does not only represent a significant step forward in practice, with notably higher isotope uptakes, a broader substrate scope and a higher solvent applicability compared to existing procedures, but also the unique way to label important heterocycles using hydrogen isotope exchange. In terms of applications, the high incorporation of deuterium atoms, allows the synthesis of internal standards for LC-MS quantification. Moreover, the efficacy of the catalyst permits, even under subatmospheric pressure of T2 gas, the preparation of complex radiolabeled drugs owning high molar activities. From a fundamental point of view, a detailed DFT-based mechanistic study identifying undisclosed key intermediates, allowed a deeper understanding of C-H (and N-H) activation processes occurring at the surface of metallic nanoclusters.


Assuntos
Deutério/química , Compostos Heterocíclicos/química , Hidrogênio/química , Imidazóis/química , Rutênio/química , Catálise
4.
Langmuir ; 33(22): 5456-5463, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28489394

RESUMO

Gold nanowires with a mean diameter of 1.7 nm were synthesized by reduction of HAuCl4 in a solution of oleylamine (OY) in hexane. A bilayer of oleylammonium chloride/oleylamine at the surface of the raw nanowires was evidenced by NMR and diffusion ordered spectroscopy (DOSY) experiments. After washing a monolayer of oleylammonium chloride remained at the surface of the nanowires. The oleylammonium chloride layer could be progressively replaced by a phosphine shell as evidenced with NMR and DOSY experiments, which are in good agreement with the adsorption energies given by density functional theory calculations. The nanowires crystallize into hexagonal superlattices with a lattice parameter that can be tailored depending on the ligand shell. Small-angle X-ray scattering showed the following lattice parameters: Au@OY+Cl-(OY) (a = 7.2 nm) > Au@TOPO/OY (a = 6.6 nm) > Au@ OY+Cl- (a = 4.1 nm) > Au@TOP (a = 3.75 nm). This is one of a few examples of surface modification of ultrathin nanowires that does not alter their morphology. Moreover, the nanowires coated with phosphines exhibited long time stability (at the opposite of other ligands like thiols) opening the way to more complex functionalization.

5.
Angew Chem Int Ed Engl ; 54(36): 10474-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26371960

RESUMO

The activation of C-H bonds has revolutionized modern synthetic chemistry. However, no general strategy for enantiospecific C-H activation has been developed to date. We herein report an enantiospecific C-H activation reaction followed by deuterium incorporation at stereogenic centers. Mechanistic studies suggest that the selectivity for the α-position of the directing heteroatom results from a four-membered dimetallacycle as the key intermediate. This work paves the way to novel molecular chemistry on nanoparticles.

6.
Langmuir ; 30(39): 11670-80, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25259402

RESUMO

Describing and understanding surface chemistry on the atomic scale is of primary importance in predicting and rationalize nanoparticle morphology as well as their physical and chemical properties. Here we present the results of comprehensive density functional theory studies on the adsorption of several small organic species, representing the major species (H2, Cl2, HCl, NH3, NH4Cl, and CH3COOH), present in the reaction medium during colloidal iron nanoparticle synthesis on various low-index iron surface models, namely, (100), (110), (111), (211), and (310). All of the tested ligands strongly interact with the proposed surfaces. Surface energies are calculated and ligand effects on the morphologies are presented, including temperature effects, based on a thermodynamic approach combined with the Wulff construction scheme. The importance of taking into account vibrational contributions during the calculation of surface energies after adsorption is clearly demonstrated. More importantly, we find that thermodynamic ligand effects can be ruled out as the unique driving force in the formation of recently experimentally observed iron cubic nanoparticles.

7.
Chemphyschem ; 14(13): 3026-33, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23658058

RESUMO

In the last years, the combination of (2)H solid-state NMR techniques with quantum-chemical calculations has evolved into a powerful spectroscopic tool for the characterization of the state of hydrogen on the surfaces of heterogeneous catalysts. In the present minireview, a brief summary of this development is given, in which investigations of the structure and dynamics of hydrogen in molecular complexes, clusters and nanoparticle systems are presented, aimed to understand the reaction mechanisms on the surface of hydrogenation catalysts. The surface state of deuterium/hydrogen is analyzed employing a combination of variable-temperature (2)H static and magic-angle spinning (MAS) solid-state NMR techniques, in which the dominant quadrupolar interactions of deuterium give information on the binding situation and local symmetry of deuterium/hydrogen on molecular species. Using a correlation database from molecular complexes and clusters, the possibility to distinguish between terminal Ru-D, bridged Ru2-D, three-fold Ru3-D, and interstitial Ru6-D is demonstrated. Combining these results with quantum-chemical density functional theory (DFT) calculations allows the interpretation of (2)H solid-state data of complex "real world" nanostructures, which yielded new insights into reaction pathways at the molecular level.

8.
Phys Chem Chem Phys ; 15(40): 17383-94, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24022656

RESUMO

(31)P-(13)C REDOR NMR measurements allowed a reasonable approximation of distances between stabilizing ligands and carbon monoxide (CO) molecules on the surface of phosphine-stabilized ruthenium nanoparticles (RuNPs). The studied systems are RuNPs in the size range of 1-2 nm stabilized with 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine (PPh3) and exposed to a CO atmosphere. This study sheds some light on the interactions between CO and phosphine molecules as well as on their binding geometries on the surface of the RuNPs. As information on the ligand location and mobility is precious for the understanding of the chemical and catalytic properties of nanoparticles, these results support the interest of using sophisticated NMR tools to investigate their surface chemistry.

9.
Nanoscale Horiz ; 7(6): 607-615, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35389405

RESUMO

The synthesis of metallic nanoparticles (MNP) with high surface area and controlled shape is of paramount importance to increase their catalytic performance. The detailed growing process of NP is mostly unknown and understanding the specific steps would pave the way for a rational synthesis of the desired MNP. Here we take advantage of the stabilization properties exerted by the tetragonal prismatic supramolecular nanocapsule 8·(BArF)8 to develop a synthetic methodology for sub-nanometric RuNP (0.6-0.7 nm). The catalytic properties of these sub-nanometric nanoparticles were tested on the hydrogenation of styrene, obtaining excellent selectivity for the hydrogenation of the alkene moiety. In addition, the encapsulation of [Ru5] clusters inside the nanocapsule is strikingly observed in most of the experimental conditions, as ascertained by HR-MS. Moreover, a thorough DFT study enlightens the nature of the [Ru5] clusters as tb-Ru5H2(η6-PhH)2(η6-pyz)3 (2) trapped by two arene moieties of the clip, or as tb-Ru5H2(η1-pyz)6(η6-pyz)3 (3) trapped between the two Zn-porphyrin units of the nanocapsule. Both options fulfill the Wade-Mingos counting rules, i.e. 72 CVEs for the closotb. The trapped [Ru5] metallic clusters are proposed to be the first-grown seeds of subsequent formation of the subnanometric RuNP. Moreover, the double role of the nanocapsule in stabilising ∼0.7 nm NPs and also in hosting ultra-small Ru clusters, is unprecedented and may pave the way towards the synthesis of ultra-small metallic clusters for catalytic purposes.

10.
Chem Sci ; 13(44): 13046-13059, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425494

RESUMO

The search for new ligands capable of modifying the metal nanoparticle (MNP) catalytic behavior is of increasing interest. Herein we present the first example of RuNPs stabilized with non-planar heptagon-containing saddle-shaped nanographenes (Ru@1 and Ru@2). The resemblance to graphene-supported MNPs makes these non-planar nanographene-stabilized RuNPs very attractive systems to further investigate graphene-metal interactions. A combined theoretical/experimental study allowed us to explore the coordination modes and dynamics of these nanographenes at the Ru surface. The curvature of these saddle-shaped nanographenes makes them efficient MNP stabilizers. The resulting RuNPs were found to be highly active catalysts for the hydrogenation of aromatics, including platform molecules derived from biomass (i.e. HMF) or liquid organic hydrogen carriers (i.e. N-indole). A significant ligand effect was observed since a minor modification on the hept-HBC structure (C[double bond, length as m-dash]CH2 instead of C[double bond, length as m-dash]O) was reflected in a substantial increase in the MNP activity. Finally, the stability of these canopied RuNPs was investigated by multiple addition experiments, proving to be stable catalysts for at least 96 h.

11.
Chemistry ; 17(41): 11467-77, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21922575

RESUMO

The nitric acid oxidation of multiwalled carbon nanotubes leading to surface carboxylic groups has been investigated both experimentally and theoretically. The experimental results show that such a reaction involves the initial rapid formation of carbonyl groups, which are then transformed into phenol or carboxylic groups. At room temperature, this reaction takes place on the most reactive carbon atoms. At higher temperatures a different mechanism would operate, as evidenced by the difference in activation energies. Experimental data can be partially related to first-principles calculations, showing a multistep functionalization mechanism. The theoretical aspects of the present article have led us to propose the most efficient pathway leading to carboxylic acid functional groups on the surface. Starting from mono-vacancies, it ends up with the synergistic formation of dangling -COOH groups and the enlargement of the vacancies.

12.
Phys Chem Chem Phys ; 13(45): 20199-207, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21993614

RESUMO

It is now well-known that (2)H solid-state NMR techniques can bring a better understanding of the interaction of deuterium with metal atoms in organometallic mononuclear complexes, clusters or nanoparticles. In that context, we have recently obtained experimental quadrupolar coupling constants and asymmetry parameters characteristic of deuterium atoms involved in various bonding situations in ruthenium clusters, namely D(4)Ru(4)(CO)(12), D(2)Ru(6)(CO)(18) and other related compounds [Gutmann et al., J. Am. Chem. Soc., 2010, 132, 11759], which are model compounds for edge-bridging (µ-H) and face-capping (µ(3)-H) coordination types on ruthenium surfaces. The present work is in line with density functional theory (DFT) calculations of the electric field gradient (EFG) tensors in deuterated organometallic ruthenium complexes. The comparison of quadrupolar coupling constants shows an excellent agreement between calculated and observed values. This confirms that DFT is a method of choice for the analysis of deuterium NMR spectra. Such calculations are achieved on a large number of ruthenium clusters in order to obtain quadrupolar coupling constants characteristic of a given coordination type: terminal-D, η(2)-D(2), µ-D, µ(3)-D as well as µ(4)-D and µ(6)-D (i.e. interstitial deuterides). Given the dependence of such NMR parameters mainly on local symmetry, these results are expected to remain valid for large assemblies of ruthenium atoms, such as organometallic ruthenium nanoparticles.

13.
Nanoscale Adv ; 3(15): 4471-4481, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36133455

RESUMO

To shed light on the factors governing the stability and surface properties of iron nanoparticles, a series of iron nanoparticles has been produced by hydrogenation of two different iron amido complexes: the bis[bis(trimethylsilyl)amido] Fe(ii), [Fe(N(SiMe3)2)2]2, and the bis(diphenylamido) Fe(ii), [Fe(NPh2)2]. Nanostructured materials of bcc structure, or nanoparticles displaying average sizes below 3 nm and a polytetrahedral structure, have been obtained. Depending on the synthesis conditions, the magnetization of the nanoparticles was either significantly lower than that of bulk iron, or much higher as for clusters elaborated under high vacuum conditions. Unexpectedly, hydrogenation of aromatic groups of the ligands of the [Fe(NPh2)2] precursor has been observed in some cases. Confrontation of the experimental results with DFT calculations made on polytetrahedral Fe91 model clusters bearing hydrides, amido and/or amine ligands at their surface, has shown that amido ligands can play a key role in the stabilisation of the nanoparticles in solution while the hydride surface coverage governs their surface magnetic properties. This study indicates that magnetic measurements give valuable indicators of the surface properties of iron nanoparticles in this size range, and beyond, of their potential reactivity.

14.
Nanoscale ; 13(14): 6902-6915, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885491

RESUMO

Formation of stable carbides during CO bond dissociation on small ruthenium nanoparticles (RuNPs) is demonstrated, both by means of DFT calculations and by solid state 13C NMR techniques. Theoretical calculations of chemical shifts in several model clusters are employed in order to secure experimental spectroscopic assignations for surface ruthenium carbides. Mechanistic DFT investigations, carried out on a realistic Ru55 nanoparticle model (∼1 nm) in terms of size, structure and surface composition, reveal that ruthenium carbides are obtained during CO hydrogenation. Calculations also indicate that carbide formation via hydrogen-assisted hydroxymethylidyne (COH) pathways is exothermic and occurs at reasonable kinetic cost on standard sites of the RuNPs, such as 4-fold ones on flat terraces, and not only in steps as previously suggested. Another novel outcome of the DFT mechanistic study consists of the possible formation of µ6 ruthenium carbides in the tip-B5 site, similar examples being known only for molecular ruthenium clusters. Moreover, based on DFT energies, the possible rearrangement of the surface metal atoms around the same tip-site results in a µ-Ru atom coordinated to the remaining RuNP moiety, reminiscent of a pseudo-octahedral metal center on the NP surface.

15.
JACS Au ; 1(2): 187-200, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-34467283

RESUMO

Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensors, medical diagnostics, information storage, and catalysis applications. Herein, the control of the synthesis of sub-2-nm gold NPs is achieved by the formation of dense networks, which are assembled in a single step reaction by employing ditopic polymantanethiols. By using 1,1'-bisadamantane-3,3'-dithiol (BAd-SH) and diamantane-4,9-dithiol (DAd-SH), serving both as bulky surface stabilizers and short-sized linkers, we provide a simple method to form uniformly small gold NPs (1.3 ± 0.2 nm to 1.6 ± 0.3 nm) embedded in rigid frameworks. These NP arrays are organized alongside short interparticular distances ranging from 1.9 to 2.7 nm. The analysis of gold NP surfaces and their modification were achieved in joint experimental and theoretical studies, using notably XPS, NMR, and DFT modeling. Our experimental studies and DFT analyses highlighted the necessary oxidative surface reorganization of individual nanoparticles for an effective enyne cycloisomerization. The modifications at bulky stabilizing ligands allow surface steric decongestion for the alkyne moiety activation but also result in network alteration by overoxidation of sulfurs. Thus, sub-2-nm nanoparticles originating from networks building create convenient conditions for generating reactive Au(I) surface single-sites-in the absence of silver additives-useful for heterogeneous gold-catalyzed enyne cyclization. These nanocatalysts, which as such ease organic products separation, also provide a convenient access for building further polycyclic complexity, owing to their high reactivity and selectivity.

16.
J Am Chem Soc ; 132(33): 11759-67, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20684514

RESUMO

The (2)H quadrupolar interaction is a sensitive tool for the characterization of deuterium-metal binding states. In the present study, experimental solid-state (2)H MAS NMR techniques are used in the investigations of two ruthenium clusters, D(4)Ru(4)(CO)(12) (1) and D(2)Ru(6)(CO)(18) (2), which serve as model compounds for typical two-fold, three-fold, and octahedral coordination sites on metal surfaces. By line-shape analysis of the (2)H MAS NMR measurements of sample 1, a quadrupolar coupling constant of 67 +/- 1 kHz, an asymmetry parameter of 0.67 +/- 0.1, and an isotropic chemical shift of -17.4 ppm are obtained. In addition to the neutral complex, sample 2 includes two ionic clusters, identified as anionic [DRu(6)(CO)(18)](-) (2(-)) and cationic [D(3)Ru(6)(CO)(18)](+) (2(+)). By virtue of the very weak quadrupolar interaction (<2 kHz) and the strong low-field shift (+16.8 ppm) of 2(-), it is shown that the deuteron is located in the symmetry center of the octahedron spanned by the six ruthenium atoms. For the cationic 2(+), the quadrupolar interaction is similar to that of the neutral 2. Quantum chemical DFT calculations at different model structures for these ruthenium clusters were arranged in order to help in the interpretation of the experimental results. It is shown that the (2)H nuclear quadrupolar interaction is a sensitive tool for distinguishing the binding state of the deuterons to the transition metal. Combining the data from the polynuclear complexes with the data from mononuclear complexes, a molecular ruler for quadrupolar interactions is created. This ruler now permits the solid-state NMR spectroscopic characterization of deuterium adsorbed on the surfaces of catalytically active metal nanoparticles.


Assuntos
Hidrogênio/química , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Compostos Organometálicos/química , Teoria Quântica , Rutênio/química , Catálise , Espectroscopia de Ressonância Magnética , Propriedades de Superfície
17.
J Phys Chem A ; 114(21): 6322-30, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20462244

RESUMO

Grafting catalysts on a surface leads to heterogeneous catalysts with well-defined active sites. However, the grafting mode of a lanthanum complex onto silica remains unknown. To shed light on this grafting reaction, different studies have been achieved in the framework of density functional theory. The silica substrate hydroxylated at 700 degrees C has been simulated both by molecular and periodic models. The created molecular models are in agreement with the rigidity of the ligand, the surface density of silanol groups, and the different spectroscopic data of a silica surface partially dehydroxylated at 700 degrees C. Two possible models of surface have henceforth been considered: the first one with one isolated silanol and the second one with two vicinal silanols linked by a siloxane bridge. The thermodynamics of a grafting reaction of lanthanum catalysts on these models has also been investigated. This reaction leads to thermodynamically stable structures that reveal different types of grafting: monografted, bigrafted, or bigrafted after breaking of a Si-O-Si bridge. Similarly to experimental approaches, coordination of triphenylphosphine oxide (O=PPh(3)) has also been considered as a probe of the grafting mode. A good agreement between the theoretical and the experimental spectroscopic values has systematically been found, but none of the grafting modes seem to be more relevant. Accordingly, it is necessary to consider in subsequent studies that all grafting modes coexist, increasing the difficulty to theoretically investigate multistep reactions.

18.
Chem Commun (Camb) ; 56(29): 4059-4062, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32195508

RESUMO

A hybrid material made of mononuclear organophosphorus polypyridyl ruthenium complexes covalently bonded to ruthenium nanoparticles has been synthesized via a one-pot organometallic procedure and finely characterized. These results open new avenues to access unique hybrid transition metal nanomaterials.

19.
Nanoscale ; 11(19): 9392-9409, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31038521

RESUMO

Given that the properties of metal nanoparticles (NPs) depend on several parameters (namely, morphology, size, surface composition, crystalline structure, etc.), a computational model that brings a better understanding of a structure-property relationship at the nanoscale is a significant plus in order to explain the surface properties of metal NPs and also their catalytic viability, in particular, when envisaging a new stabilizing agent. In this study we combined experimental and theoretical tools to obtain a mapping of the surface of ruthenium NPs stabilized by ethanoic acid as a new capping ligand. For this purpose, the organometallic approach was applied as the synthesis method. The morphology and crystalline structure of the obtained particles was characterized by state-of-the art techniques (TEM, HRTEM, WAXS) and their surface composition was determined by various techniques (solution and solid-state NMR, IR, chemical titration, DFT calculations). DFT calculations of the vibrational features of model NPs and of the chemical shifts of model clusters allowed us to secure the spectroscopic experimental assignations. Spectroscopic data as well as DFT mechanistic studies showed that ethanoic acid lies on the metal surface as ethanoate, together with hydrogen atoms. The optimal surface composition determined by DFT calculations appeared to be ca. [0.4-0.6] H/Rusurf and 0.4 ethanoate/RuSurf, which was corroborated by experimental results. Moreover, for such a composition, a hydrogen adsorption Gibbs free energy in the range -2.0 to -3.0 kcal mol-1 was calculated, which makes these ruthenium NPs a promising nanocatalyst for the hydrogen evolution reaction in the electrolysis of water.

20.
J Am Chem Soc ; 130(22): 6920-1, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18461944

RESUMO

A trinuclear rare-earth metal hydride complex was synthesized from the dialkyl complex supported by a monoanionic [NNNN] macrocycle and shown to catalyze the hydrosilylation of olefins efficiently.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa