RESUMO
BACKGROUND: Wheat (Triticum aestivum L.) is one of the most important cereal crop species worldwide, but its growth and development are adversely influenced by drought stress. However, the application of trace elements is known to improve plant physiology under water-limited conditions. In this study, the effects of drought stress on wheat plants were investigated, with a focus on potential mitigation by foliar application of selenium nanoparticles (Se(np)) and sodium selenate (Na2SeO4). The experiment was conducted in a net house using a completely randomized design with four replications. The treatments involved three levels of drought stress (mild, moderate, and severe) started at 30 days after sowing (DAS), with foliar sprays of Se(np) and Se (both 25 µM) initiated at 27 DAS and repeated 4 times at 7-day intervals until 55 DAS. RESULTS: Drought stress significantly reduced plant growth, whereas Se(np) and Se sprays enhanced it. Drought stress induced chlorophyll degradation, increased malondialdehyde and hydrogen peroxide levels, impaired membrane stability, and caused electrolyte leakage. Severe drought stress reduced the levels of antioxidants (e.g., proline, ascorbate, and glutathione by 4.18-fold, 80%, and 45%) and the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, and others). Conversely, treatment with Se(np) and Se restored these parameters, for example, 1.23-fold higher total chlorophyll content with Se(np) treatment, 26% higher APX activity with Se treatment, 15% lower electrolyte leakage with Se treatment in wheat plants under severe drought stress. This Se-associated enhancement facilitated rapid scavenging of reactive oxygen species and reduced methylglyoxal toxicity, thereby diminishing oxidative stress and positively affecting the morphophysiological and biochemical responses of the plants under drought. CONCLUSIONS: Drought-stressed wheat plants exhibited reductions in physiological processes, including water uptake and photosynthetic activity. However, Se(np) and Se applied at 25 µM mitigated the detrimental effects of drought. The application of Se(np) was notably more effective than the application of Se in mitigating drought stress, indicating the potential of the application of Se(np) as a sustainable agricultural practice under water-limited conditions.
Assuntos
Nanopartículas , Estresse Oxidativo , Espécies Reativas de Oxigênio , Selênio , Triticum , Triticum/efeitos dos fármacos , Triticum/fisiologia , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Secas , Clorofila/metabolismo , Antioxidantes/metabolismo , Desidratação , Peróxido de Hidrogênio/metabolismoRESUMO
In the wake of rising earth temperature, chickpea crop production is haunted by the productivity crisis. Chickpea, a cool season legume manifests tolerance in several agro-physiological level, which is complex quantitative in nature, and regulated by multiple genes and genetic networks. Understanding the molecular genetic basis of this tolerance and identifying key regulators can leverage chickpea breeding against heat stress. This study employed a genomics-assisted breeding strategy utilizing multi-locus GWAS to identify 10 key genomic regions linked to traits contributing to heat stress tolerance in chickpea. These loci subsequently delineated few key candidates and hub regulatory genes, such as RAD23b, CIPK25, AAE19, CK1 and WRKY40, through integrated genomics, transcriptomics and interactive analyses. The differential transcript accumulation of these identified candidates in contrasting chickpea accessions suggests their potential role in heat stress tolerance. Differential ROS accumulation along with their scavengers' transcript abundance aligning with the expression of identified candidates in the contrasting chickpea accessions persuade their regulatory significance. Additionally, their functional significance is ascertained by heterologous expression and subsequent heat stress screening. The high confidence genomic loci and the superior genes and natural alleles delineated here has great potential for swift genomic interventions to enhance heat resilience and yield stability in chickpea.
RESUMO
Cotton is a major economic crop predominantly cultivated under rainfed situations. The accurate prediction of cotton yield invariably helps farmers, industries, and policy makers. The final cotton yield is mostly determined by the weather patterns that prevail during the crop growing phase. Crop yield prediction with greater accuracy is possible due to the development of innovative technologies which analyses the bigdata with its high-performance computing abilities. Machine learning technologies can make yield prediction reasonable and faster and with greater flexibility than process based complex crop simulation models. The present study demonstrates the usability of ML algorithms for yield forecasting and facilitates the comparison of different models. The cotton yield was simulated by employing the weekly weather indices as inputs and the model performance was assessed by nRMSE, MAPE and EF values. Results show that stacked generalised ensemble model and artificial neural networks predicted the cotton yield with lower nRMSE, MAPE and higher efficiency compared to other models. Variable importance studies in LASSO and ENET model found minimum temperature and relative humidity as the main determinates of cotton yield in all districts. The models were ranked based these performance metrics in the order of Stacked generalised ensemble > ANN > PCA ANN > SMLR ANN > LASSO> ENET > SVM > PCA SMLR > SMLR SVM > SMLR. This study shows that stacked generalised ensembling and ANN method can be used for reliable yield forecasting at district or county level and helps stakeholders in timely decision-making.
Assuntos
Previsões , Gossypium , Aprendizado de Máquina , Redes Neurais de Computação , Tempo (Meteorologia) , Gossypium/crescimento & desenvolvimento , Chuva , Análise de Regressão , Modelos TeóricosRESUMO
Over the past century of maize (Zea mays L.) breeding, grain yield progress has been the result of improvements in several other intrinsic physiological and morphological traits. In this study, we describe (i) the contribution of kernel weight (KW) to yield genetic gain across multiple agronomic settings and breeding programs, and (ii) the physiological bases for improvements in KW for US hybrids. A global-scale literature review concludes that rates of KW improvement in US hybrids were similar to those of other commercial breeding programs but extended over a longer period of time. There is room for a continued increase of kernel size in maize for most of the genetic materials analysed, but the trade-off between kernel number and KW poses a challenge for future yield progress. Through phenotypic characterization of Pioneer Hi-Bred ERA hybrids in the USA, we determine that improvements in KW have been predominantly related to an extended kernel-filling duration. Likewise, crop improvement has conferred on modern hybrids greater KW plasticity, expressed as a better ability to respond to changes in assimilate availability. Our analysis of past trends and current state of development helps to identify candidate targets for future improvements in maize.
Assuntos
Melhoramento Vegetal , Zea mays , Grão Comestível/genética , Fenótipo , Zea mays/fisiologiaRESUMO
Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.
Assuntos
Secas , Termotolerância , Clorofila/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteômica , Espécies Reativas de Oxigênio , Estresse Fisiológico , Termotolerância/genéticaRESUMO
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Assuntos
Melhoramento Vegetal , Triticum , Aclimatação , Adaptação Fisiológica , Resposta ao Choque TérmicoRESUMO
MAIN CONCLUSION: This study confirms a high level of metabolic resistance to the herbicide chlorsulfuron, inherited by a single dominant gene in a sorghum genotype (GL-1). Chlorsulfuron, an acetolactate synthase (ALS)-inhibitor, effectively controls post-emergence grass and broadleaf weeds but is not registered for use in sorghum because of crop injury. The objectives of this study were to characterize the inheritance and mechanism of chlorsulfuron resistance in the sorghum genotype GL-1. Chlorsulfuron dose-response experiments were conducted using GL-1 along with BTx623 (susceptible check), and Pioneer 84G62 (commercial sorghum hybrid). The F1 and F2 progeny were generated by crossing GL-1 with BTx623. To assess if the target site alterations bestow resistance, the ALS gene, the molecular target of chlorsulfuron, was sequenced from GL-1. The role of cytochrome P450 (CYP) in metabolizing chlorsulfuron, using malathion, a CYP-inhibitor was tested. The chlorsulfuron dose-response assay indicated that GL-1 and F1 progeny were ~ 20-fold more resistant to chlorsulfuron relative to BTx623. The F2 progenies segregated 3:1 (resistance: susceptibility) suggesting that chlorsulfuron resistance in GL-1 is a single dominant trait. No mutations in the ALS gene were detected in the GL-1; however, a significant reduction in biomass accumulation was found in plants pre-treated with malathion indicating that metabolism of chlorsulfuron contributes to resistance in GL-1. Also, GL-1 is highly susceptible to other herbicides (e.g., mesotrione and tembotrione) compared to Pioneer 84G62, suggesting the existence of a negative cross-resistance in GL-1. Overall, these results confirm a high level of metabolic resistance to chlorsulfuron inherited by a single dominant gene in GL-1 sorghum. These results have potential for developing chlorsulfuron-tolerant sorghum hybrids, with the ability to improve post-emergence weed control.
Assuntos
Resistência a Herbicidas , Sorghum , Sulfonamidas , Triazinas , Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Sorghum/efeitos dos fármacos , Sorghum/genética , Sulfonamidas/toxicidade , Triazinas/toxicidadeRESUMO
Rapid increases in minimum night temperature than in maximum day temperature is predicted to continue, posing significant challenges to crop productivity. Rice and wheat are two major staples that are sensitive to high night-temperature (HNT) stress. This review aims to (i) systematically compare the grain yield responses of rice and wheat exposed to HNT stress across scales, and (ii) understand the physiological and biochemical responses that affect grain yield and quality. To achieve this, we combined a synthesis of current literature on HNT effects on rice and wheat with information from a series of independent experiments we conducted across scales, using a common set of genetic materials to avoid confounding our findings with differences in genetic background. In addition, we explored HNT-induced alterations in physiological mechanisms including carbon balance, source-sink metabolite changes and reactive oxygen species. Impacts of HNT on grain developmental dynamics focused on grain-filling duration, post-flowering senescence, changes in grain starch and protein composition, starch metabolism enzymes and chalk formation in rice grains are summarized. Finally, we highlight the need for high-throughput field-based phenotyping facilities for improved assessment of large-diversity panels and mapping populations to aid breeding for increased resilience to HNT in crops.
Assuntos
Oryza/fisiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Triticum/fisiologia , Agricultura/métodos , Grão Comestível/fisiologia , Temperatura Alta , Oryza/química , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Amido/química , Triticum/químicaRESUMO
The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.
Assuntos
Afídeos/fisiologia , Defesa das Plantas contra Herbivoria/genética , Sorghum/genética , Animais , Suscetibilidade a Doenças , Grão Comestível/genética , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genótipo , Controle Biológico de Vetores/métodos , Melhoramento Vegetal/métodos , Sorghum/parasitologia , TranscriptomaRESUMO
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Assuntos
Aclimatação/fisiologia , Grão Comestível/fisiologia , Fabaceae/fisiologia , Poaceae/fisiologia , Estresse Fisiológico/fisiologia , Agricultura , Mudança Climática , Secas , Clima Extremo , Oryza/fisiologia , Salinidade , Temperatura , Triticum/fisiologia , Zea mays/fisiologiaRESUMO
Gradually increasing temperatures at global and local scales are causing heat stress for cool and summer-season food legumes, such as lentil (Lens culinaris Medik.), which is highly susceptible to heat stress, especially during its reproductive stages of development. Hence, suitable strategies are needed to develop heat tolerance in this legume. In the present study, we tested the effectiveness of heat priming (HPr; 6 h at 35 °C) the lentil seeds and a foliar treatment of γ-aminobutyric acid (GABA; 1 mM; applied twice at different times), singly or in combination (HPr+GABA), under heat stress (32/20 °C) in two heat-tolerant (HT; IG2507, IG3263) and two heat-sensitive (HS; IG2821, IG2849) genotypes to mitigate heat stress. The three treatments significantly reduced heat injury to leaves and flowers, particularly when applied in combination, including leaf damage assessed as membrane injury, cellular oxidizing ability, leaf water status, and stomatal conductance. The combined HPr+GABA treatment significantly improved the photosynthetic function, measured as photosynthetic efficiency, chlorophyll concentration, and sucrose synthesis; and significantly reduced the oxidative damage, which was associated with a marked up-regulation in the activities of enzymatic antioxidants. The combined treatment also facilitated the synthesis of osmolytes, such as proline and glycine betaine, by upregulating the expression of their biosynthesizing enzymes (pyrroline-5-carboxylate synthase; betaine aldehyde dehydrogenase) under heat stress. The HPr+GABA treatment caused a considerable enhancement in endogenous levels of GABA in leaves, more so in the two heat-sensitive genotypes. The reproductive function, measured as germination and viability of pollen grains, receptivity of stigma, and viability of ovules, was significantly improved with combined treatment, resulting in enhanced pod number (21-23% in HT and 35-38% in HS genotypes, compared to heat stress alone) and seed yield per plant (22-24% in HT and 37-40% in HS genotypes, in comparison to heat stress alone). The combined treatment (HPr+GABA) was more effective and pronounced in heat-sensitive than heat-tolerant genotypes for all the traits tested. This study offers a potential solution for tackling and protecting heat stress injury in lentil plants.
Assuntos
Aclimatação , Resposta ao Choque Térmico , Temperatura Alta , Lens (Planta)/fisiologia , Característica Quantitativa Herdável , Sementes/fisiologia , Ácido gama-Aminobutírico/metabolismo , Lens (Planta)/efeitos dos fármacos , Oxirredução , Estresse Oxidativo , Fotossíntese , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Reprodução , Sementes/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologiaRESUMO
Cultivars with efficient root systems play a major role in enhancing resource use efficiency, particularly water absorption, and thus in drought tolerance. In this study, a diverse wheat association panel of 136 wheat accessions including mini core subset was genotyped using Axiom 35k Breeders' Array to identify genomic regions associated with seedling stage root architecture and shoot traits using multi-locus genome-wide association studies (ML-GWAS). The association panel revealed a wide variation of 1.5- to 50-fold and were grouped into six clusters based on 15 traits. Six different ML-GWAS models revealed 456 significant quantitative trait nucleotides (QTNs) for various traits with phenotypic variance in the range of 0.12-38.60%. Of these, 87 QTNs were repeatedly detected by two or more models and were considered reliable genomic regions for the respective traits. Among these QTNs, eleven were associated with average diameter and nine each for second order lateral root number (SOLRN), root volume (RV) and root length density (RLD). A total of eleven genomic regions were pleiotropic and each controlled two or three traits. Some important candidate genes such as Formin homology 1, Ubiquitin-like domain superfamily and ATP-dependent 6-phosphofructokinase were identified from the associated genomic regions. The genomic regions/genes identified in this study could potentially be targeted for improving root traits and drought tolerance in wheat.
Assuntos
Estudo de Associação Genômica Ampla , Osmorregulação/genética , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Triticum/genética , Secas , Variação Genética , Poliploidia , Plântula/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimentoRESUMO
Sorghum is one of the staple crops for millions of people in Sub-Saharan Africa (SSA) and South Asia (SA). The future climate in these sorghum production regions is likely to have unexpected short or long episodes of drought and/or high temperature (HT), which can cause significant yield losses. Therefore, to achieve food and nutritional security, drought and HT stress tolerance ability in sorghum must be genetically improved. Drought tolerance mechanism, stay green, and grain yield under stress has been widely studied. However, novel traits associated with drought (restricted transpiration and root architecture) need to be explored and utilized in breeding. In sorghum, knowledge on the traits associated with HT tolerance is limited. Heat shock transcription factors, dehydrins, and genes associated with hormones such as auxin, ethylene, and abscisic acid and compatible solutes are involved in drought stress modulation. In contrast, our understanding of HT tolerance at the omic level is limited and needs attention. Breeding programs have exploited limited traits with narrow genetic and genomic resources to develop drought or heat tolerant lines. Reproductive stages of sorghum are relatively more sensitive to stress compared to vegetative stages. Therefore, breeding should incorporate appropriate pre-flowering and post-flowering tolerance in a broad genetic base population and in heterotic hybrid breeding pipelines. Currently, more than 240 QTLs are reported for drought tolerance-associated traits in sorghum prospecting discovery of trait markers. Identifying traits and better understanding of physiological and genetic mechanisms and quantification of genetic variability for these traits may enhance HT tolerance. Drought and HT tolerance can be improved by better understanding mechanisms associated with tolerance and screening large germplasm collections to identify tolerant lines and incorporation of those traits into elite breeding lines. Systems approaches help in identifying the best donors of tolerance to be incorporated in the SSA and SA sorghum breeding programs. Integrated breeding with use of high-throughput precision phenomics and genomics can deliver a range of drought and HT tolerant genotypes that can improve yield and resilience of sorghum under drought and HT stresses.
Assuntos
Resistência à Doença/genética , Resposta ao Choque Térmico/genética , Melhoramento Vegetal , Característica Quantitativa Herdável , Sorghum , Desidratação/genética , Sorghum/genética , Sorghum/crescimento & desenvolvimentoRESUMO
CONTEXT: The global COVID-19 pandemic has produced a variety of unanticipated shocks to farming and socio-economic systems around the world. In case of Senegal, the country was already facing number of challenges at the inception of the pandemic, including high rates of poverty, prevalence of food insecurity, combined with other biophysical and socioeconomic challenges faced generally in Sub-Saharan Africa. OBJECTIVE: To understand farmer perceptions of the potential impacts of COVID-19 on agricultural systems and social well-being of smallholder farmers in Senegal. Particular attention was given to potential vulnerabilities and resilience in the targeted farming systems. METHODS: A survey was developed to better understand smallholder farmer perceptions regarding the anticipated impacts of COVID-19 on their agriculture practices and social well-being. The survey was administered (between June 5 and June 20) with smallholder farmers (n = 872) in 14 regions covering all agroecological zones. Variables of interest included perceptions of potential impact on farming systems, agricultural productivity, communities, economics, markets, labor, gendered division of labor, food security, and community well-being. RESULTS AND CONCLUSIONS: Across the three farming systems examined (cropping, livestock, and horticulture) significant majorities expressed concerns related to access to inputs, ability to plant (cropping, horticulture), reduction of yields (cropping, horticulture), ability to feed livestock, ability to sell livestock, and the ability to hire labor (horticulture). The majority of respondents also expressed concern that COVID-19 would make it more difficult to get enough food on a regular basis for their household (82.5%); that the markets where they purchase food will either be closed or significantly disrupted (79.5%); that the price of food would increase (73.5%); and the market where they sell their produce/livestock will be either closed or significantly disrupted (73.2%). SIGNIFICANCE: Anticipated impacts of COVID-19 on agriculture will be felt on both the biophysical aspects such as production and access to inputs and socioeconomic aspects such as access to labor, markets, or rapid shifts in demand. Results support the need to use farming systems approach to gather perceived and actual impacts of COVID-19 and warrants a more in-depth examination of agronomic and biophysical issues as well as the impact on the livelihoods and social well-being of families at community and household levels. Further examination will help identify the characteristics that strengthen smallholder farming systems resilience to adjust to anticipated and unanticipated shocks, such as COVID-19, to decrease the negative impacts and increase the rate of recovery.
RESUMO
CONTEXT: The rapid emergence of COVID-19 could have direct and indirect impacts on food production systems and livelihoods of farmers. From the farming perspective, disruption of critical input availability, supply chains and labor, influence crop management. Disruptions to food systems can affect (a) planting area; and (b) crop yields. OBJECTIVES: To quantify the impacts of COVID-19 on major cereal crop's production and their cascading impact on national economy and related policies. METHODS: We used the calibrated crop simulation model (DSSAT suite) to project the impact of potential changes in planting area and grain yield of four major cereal crops (i.e., rice, maize, sorghum, and millet) in Senegal and Burkina Faso in terms of yield, total production, crop value and contribution to agricultural gross domestic product (GDP). Appropriate data (i.e., weather, soil, crop, and management practices) for the specific agroecological zones were used as an input in the model. RESULTS AND CONCLUSIONS: The simulated yields for 2020 were then used to estimate crop production at country scale for the matrix of different scenarios of planting area and yield change (-15, -10, -5, 0, +5, +10%). Depending on the scenario, changes in total production of four cereals combined at country levels varied from 1.47 M tons to 2.47 M tons in Senegal and 4.51 M tons to 7.52 M tons in Burkina Faso. The economic value of all four cereals under different scenarios ranged from $771 Million (M) to $1292 M in Senegal and from $1251 M to $2098 M in Burkina Faso. These estimated total crop values under different scenarios were compared with total agricultural GDP of the country (in 2019 terms which was $3995 M in Senegal and $3957 M in Burkina Faso) to assess the economic impact of the pandemic on major cereal grain production. Based on the scenarios, the impact on total agricultural GDP can change -7% to +6% in Senegal and - 8% to +9% in Burkina Faso. SIGNIFICANCE: Results obtained from this modeling exercise will be valuable to policymakers and end-to-end value chain practitioners to prepare and develop appropriate policies to cope or manage the impact of COVID-19 on food systems.
RESUMO
Context: The COVID-19 pandemic has been affecting health and economies across the world, although the nature of direct and indirect effects on Asian agrifood systems and food security has not yet been well understood. Objectives: This paper assesses the initial responses of major farming and food systems to COVID-19 in 25 Asian countries, and considers the implications for resilience, food and nutrition security and recovery policies by the governments. Methods: A conceptual systems model was specified including key pathways linking the direct and indirect effects of COVID-19 to the resilience and performance of the four principal Asian farming and food systems, viz, lowland rice based; irrigated wheat based; hill mixed; and dryland mixed systems. Based on this framework, a systematic survey of 2504 key informants (4% policy makers, 6% researchers or University staff, 6% extension workers, 65% farmers, and 19% others) in 20 Asian countries was conducted and the results assessed and analysed. Results and conclusion: The principal Asian farming and food systems were moderately resilient to COVID-19, reinforced by government policies in many countries that prioritized food availability and affordability. Rural livelihoods and food security were affected primarily because of disruptions to local labour markets (especially for off-farm work), farm produce markets (notably for perishable foods) and input supply chains (i.e., seeds and fertilisers). The overall effects on system performance were most severe in the irrigated wheat based system and least severe in the hill mixed system, associated in the latter case with greater resilience and diversification and less dependence on external inputs and long market chains. Farming and food systems' resilience and sustainability are critical considerations for recovery policies and programmes, especially in relation to economic performance that initially recovered more slowly than productivity, natural resources status and social capital. Overall, the resilience of Asian farming and food systems was strong because of inherent systems characteristics reinforced by public policies that prioritized staple food production and distribution as well as complementary welfare programmes. With the substantial risks to plant- and animal-sourced food supplies from future zoonoses and the institutional vulnerabilities revealed by COVID-19, efforts to improve resilience should be central to recovery programmes. Significance: This study was the first Asia-wide systems assessment of the effects of COVID-19 on agriculture and food systems, differentiating the effects of the pandemic across the four principal regional farming and food systems in the region.
RESUMO
BACKGROUND: Understanding root system morphology in bread wheat is critical for identifying root traits to breed cultivars with improved resource uptake and better adaptation to adverse environments. Variability in root morphological traits at early vegetative stages was examined among 184 bread wheat genotypes originating from 37 countries grown in a semi-hydroponic phenotyping system. RESULTS: At the onset of tillering (Z2.1, 35 days after transplanting), plants had up to 42 cm in shoot height and 158 cm long in root depth. Phenotypic variation existed for both shoot and root traits, with a maximal 4.3-fold difference in total root length and 5-fold difference in root dry mass among the 184 genotypes. Of the 41 measured traits, 24 root traits and four shoot traits had larger coefficients of variation (CV ≥ 0.25). Strong positive correlations were identified for some key root traits (i.e., root mass, root length, and these parameters at different depths) and shoot traits (i.e., shoot mass and tiller number) (P ≤ 0.05). The selected 25 global traits (at whole-plant level) contributed to one of the five principal components (eigenvalues> 1) capturing 83.0% of the total variability across genotypes. Agglomerative hierarchical clustering analysis separated the 184 genotypes into four (at a rescaled distance of 15) or seven (at a rescaled distance of 10) major groups based on the same set of root traits. Strong relationships between performance traits (dry mass) with several functional traits such as specific root length, root length intensity and root tissue density suggest their linkage to plant growth and fitness strategies. CONCLUSIONS: Large phenotypic variability in root system morphology in wheat genotypes was observed at the tillering stage using established semi-hydroponic phenotyping techniques. Phenotypic differences in and trait correlations among some interesting root traits may be considered for breeding wheat cultivars with efficient water acquisition and better adaptation to abiotic stress.
Assuntos
Raízes de Plantas/anatomia & histologia , Triticum/anatomia & histologia , Variação Biológica da População , Pão , Raízes de Plantas/genética , Triticum/genéticaRESUMO
BACKGROUND: Short episodes of high temperature (HT) stress during reproductive stages of development cause significant yield losses in wheat (Triticum aestivum L.). Two independent experiments were conducted to quantify the effects of HT during anthesis and grain filling periods on photosynthesis, leaf lipidome, and yield traits in wheat. In experiment I, wheat genotype Seri82 was exposed to optimum temperature (OT; 22/14 °C; day/night) or HT (32/22 °C) for 14 d during anthesis stage. In experiment II, the plants were exposed to OT or HT for 14 d during the grain filling stage. During the HT stress, chlorophyll index, thylakoid membrane damage, stomatal conductance, photosynthetic rate and leaf lipid composition were measured. At maturity, grain yield and its components were quantified. RESULTS: HT stress during anthesis or grain filling stage decreased photosynthetic rate (17 and 25%, respectively) and grain yield plant- 1 (29 and 44%, respectively), and increased thylakoid membrane damage (61 and 68%, respectively) compared to their respective control (OT). HT stress during anthesis or grain filling stage increased the molar percentage of less unsaturated lipid species [36:5- monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)]. However, at grain filling stage, HT stress decreased the molar percentage of more unsaturated lipid species (36:6- MGDG and DGDG). There was a significant positive relationship between photosynthetic rate and grain yield plant- 1, and a negative relationship between thylakoid membrane damage and photosynthetic rate. CONCLUSIONS: The study suggests that maintaining thylakoid membrane stability, and seed-set per cent and individual grain weight under HT stress can improve the photosynthetic rate and grain yield, respectively.
Assuntos
Grão Comestível/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Fotossíntese , Triticum/fisiologia , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Flores/metabolismo , Flores/fisiologia , Resposta ao Choque Térmico , Temperatura Alta/efeitos adversos , Metabolismo dos Lipídeos/fisiologia , Fotossíntese/fisiologia , Transpiração Vegetal , Triticum/crescimento & desenvolvimento , Triticum/metabolismoRESUMO
Addressing the complex issues related to climate change requires multiple innovative approaches to identify research priorities involving multidisciplinary research teams. Participatory approaches with a variety of perspectives were used to gain insights into critical issues such as defining and understanding sustainable intensification, climate smart agriculture, and soil fertility prioritization in sub-Saharan Africa. This analysis drew on the foundation principles of participatory research and fundamental facilitation skills, while grounded in scientific knowledge and understanding of these complex issues. This approach essentially incorporates the relevant principles of participatory learning and action, primarily designed for development projects, with a new set of players within the research and policy domain. The results of three case studies that utilized participatory techniques with a set of multidisciplinary research teams are presented. The case studies were: (i) Feed the Future Sustainable Intensification Innovation Lab (SIIL) proposal development grounded in country-led and national priorities in Bangladesh, Tanzania, and Cambodia; (ii) climate smart agriculture and sustainable intensification assessment and priority setting in Rwanda; and (iii) soil fertility prioritization in sub-Saharan Africa. We discuss how the future directions of such initiatives were shaped for improved outcomes.
Assuntos
Agricultura/métodos , Mudança Climática , Solo/química , África Subsaariana , Bangladesh , Camboja , PesquisaRESUMO
Soil fertility provides the foundation for nutritious food production and resilient and sustainable livelihoods. A comprehensive survey and summit meeting were conducted with the aims of understanding barriers to enhancing soil fertility in sub-Saharan Africa and providing evidence-based recommendations. The focus regions were West Africa, East Africa, the Great Lakes region, and Ethiopia. Overall recommendations were developed with four emerging themes: (1) strengthening inorganic fertilizer-based systems, (2) access to and use of quality organic inputs, (3) capacity building along the entire knowledge-transfer value chain, and (4) strengthening farming systems research and development across biophysical and socio-economic factors. The evidence-based process and methodology for prioritizing these recommendations makes these findings useful for setting out action plans for future investments and strategies. Access to inorganic fertilizer, its use, and related implementation issues were prominent considerations; nevertheless, biophysical and socio-economic barriers and solutions were identified as equally important to building soil fertility and natural resources. Soil management initiatives should focus on providing holistic solutions covering both biophysical and socio-economic aspects along the entire value chain of actors and creating an enabling environment for adoption. A broader view of soil fertility improvement using all available options including both inorganic and organic sources of nutrients and farming system approaches are highly recommended.