Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Cell Mol Med ; 28(8): e18301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652212

RESUMO

X-linked nephrogenic diabetes insipidus (X-NDI) is a rare congenital disease caused by inactivating mutations of the vasopressin type-2 receptor (AVPR2), characterized by impaired renal concentrating ability, dramatic polyuria, polydipsia and risk of dehydration. The disease, which still lacks a cure, could benefit from the pharmacologic stimulation of other GPCRs, activating the cAMP-intracellular pathway in the kidney cells expressing the AVPR2. On the basis of our previous studies, we here hypothesized that the ß3-adrenergic receptor could be such an ideal candidate. We evaluated the effect of continuous 24 h stimulation of the ß3-AR with the agonist BRL37344 and assessed the effects on urine output, urine osmolarity, water intake and the abundance and activation of the key renal water and electrolyte transporters, in the mouse model of X-NDI. Here we demonstrate that the ß3-AR agonism exhibits a potent antidiuretic effect. The strong improvement in symptoms of X-NDI produced by a single i.p. injection of BRL37344 (1 mg/kg) was limited to 3 h but repeated administrations in the 24 h, mimicking the effect of a slow-release preparation, promoted a sustained antidiuretic effect, reducing the 24 h urine output by 27%, increasing urine osmolarity by 25% and reducing the water intake by 20%. At the molecular level, we show that BRL37344 acted by increasing the phosphorylation of NKCC2, NCC and AQP2 in the renal cell membrane, thereby increasing electrolytes and water reabsorption in the kidney tubule of X-NDI mice. Taken together, these data suggest that human ß3-AR agonists might represent an effective possible treatment strategy for X-NDI.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Masculino , Animais , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Antidiuréticos/farmacologia , Antidiuréticos/uso terapêutico , Capacidade de Concentração Renal/efeitos dos fármacos , Polidipsia/tratamento farmacológico , Polidipsia/etiologia
2.
J Transl Med ; 21(1): 340, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217929

RESUMO

BACKGROUND: We previously demonstrated that an Italian family affected by a severe dilated cardiomyopathy (DCM) with history of sudden deaths at young age, carried a mutation in the Lmna gene encoding for a truncated variant of the Lamin A/C protein (LMNA), R321X. When expressed in heterologous systems, such variant accumulates into the endoplasmic reticulum (ER), inducing the activation of the PERK-CHOP pathway of the unfolded protein response (UPR), ER dysfunction and increased rate of apoptosis. The aim of this work was to analyze whether targeting the UPR can be used to revert the ER dysfunction associated with LMNA R321X expression in HL-1 cardiac cells. METHODS: HL-1 cardiomyocytes stably expressing LMNA R321X were used to assess the ability of 3 different drugs targeting the UPR, salubrinal, guanabenz and empagliflozin to rescue ER stress and dysfunction. In these cells, the state of activation of both the UPR and the pro-apoptotic pathway were analyzed monitoring the expression levels of phospho-PERK, phospho-eIF2α, ATF4, CHOP and PARP-CL. In addition, we measured ER-dependent intracellular Ca2+ dynamics as indicator of proper ER functionality. RESULTS: We found that salubrinal and guanabenz increased the expression levels of phospho-eIF2α and downregulated the apoptosis markers CHOP and PARP-CL in LMNA R321X-cardiomyocytes, maintaining the so-called adaptive UPR. These drugs also restored ER ability to handle Ca2+ in these cardiomyocytes. Interestingly, we found that empagliflozin downregulated the apoptosis markers CHOP and PARP-CL shutting down the UPR itself through the inhibition of PERK phosphorylation in LMNA R321X-cardiomyocytes. Furthermore, upon empagliflozin treatment, ER homeostasis, in terms of ER ability to store and release intracellular Ca2+ was also restored in these cardiomyocytes. CONCLUSIONS: We provided evidence that the different drugs, although interfering with different steps of the UPR, were able to counteract pro-apoptotic processes and to preserve the ER homeostasis in R321X LMNA-cardiomyocytes. Of note, two of the tested drugs, guanabenz and empagliflozin, are already used in the clinical practice, thus providing preclinical evidence for ready-to-use therapies in patients affected by the LMNA R321X associated cardiomyocytes.


Assuntos
Lamina Tipo A , Miócitos Cardíacos , Humanos , Apoptose , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Guanabenzo/farmacologia , Homeostase , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Resposta a Proteínas não Dobradas
3.
Mar Drugs ; 21(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623719

RESUMO

Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly profitable as a nanostructured material for drug delivery applications. Despite this, the studies reported so far in the literature are generally limited to the development of biohybrid systems for drug delivery by oral or parenteral administration. Here we demonstrate the suitability of diatomaceous earth properly functionalized on the surface with n-octyl chains as an efficient system for local drug delivery to skin tissues. Naproxen was selected as a non-steroidal anti-inflammatory model drug for experiments performed both in vitro by immersion of the drug-loaded DE in an artificial sweat solution and, for the first time, by trans-epidermal drug permeation through a 3D-organotypic tissue that better mimics the in vivo permeation mechanism of drugs in human skin tissues. Octyl chains were demonstrated to both favour the DE adhesion onto porcine skin tissues and to control the gradual release and the trans-epidermal permeation of Naproxen within 24 h of the beginning of experiments. The evidence of the viability of human epithelial cells after permeation of the drug released from diatomaceous earth, also confirmed the biocompatibility with human skin of both Naproxen and mesoporous biosilica from diatom microalgae, disclosing promising applications of these drug-delivery systems for therapies of skin diseases.


Assuntos
Diatomáceas , Microalgas , Humanos , Animais , Suínos , Naproxeno , Terra de Diatomáceas , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios não Esteroides
4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674662

RESUMO

We previously reported the novel finding that ß3-AR is functionally expressed in the renal tubule and shares its cellular localization with the vasopressin receptor AVPR2, whose physiological stimulation triggers antidiuresis by increasing the plasma membrane expression of the water channel AQP2 and the NKCC2 symporter in renal cells. We also showed that pharmacologic stimulation of ß3-AR is capable of triggering antidiuresis and correcting polyuria, in the knockout mice for the AVPR2 receptor, the animal model of human X-linked nephrogenic diabetes insipidus (XNDI), a rare genetic disease still missing a cure. Here, to demonstrate that the same response can be evoked in humans, we evaluated the effect of treatment with the ß3-AR agonist mirabegron on AQP2 and NKCC2 trafficking, by evaluating their urinary excretion in a cohort of patients with overactive bladder syndrome, for the treatment of which the drug is already approved. Compared to baseline, treatment with mirabegron significantly increased AQP2 and NKCC2 excretion for the 12 weeks of treatment. This data is a step forward in corroborating the hypothesis that in patients with XNDI, treatment with mirabegron could bypass the inactivation of AVPR2, trigger antidiuresis and correct the dramatic polyuria which is the main hallmark of this disease.


Assuntos
Diabetes Insípido Nefrogênico , Diabetes Mellitus , Camundongos , Animais , Humanos , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Poliúria/tratamento farmacológico , Agonistas Adrenérgicos beta
5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675161

RESUMO

Lysosomes are acidic Ca2+ storage organelles that actively generate local Ca2+ signaling events to regulate a plethora of cell functions. Here, we characterized lysosomal Ca2+ signals in mouse renal collecting duct (CD) cells and we assessed their putative role in aquaporin 2 (AQP2)-dependent water reabsorption. Bafilomycin A1 and ML-SA1 triggered similar Ca2+ oscillations, in the absence of extracellular Ca2+, by alkalizing the acidic lysosomal pH or activating the lysosomal cation channel mucolipin 1 (TRPML1), respectively. TRPML1-dependent Ca2+ signals were blocked either pharmacologically or by lysosomes' osmotic permeabilization, thus indicating these organelles as primary sources of Ca2+ release. Lysosome-induced Ca2+ oscillations were sustained by endoplasmic reticulum (ER) Ca2+ content, while bafilomycin A1 and ML-SA1 did not directly interfere with ER Ca2+ homeostasis per se. TRPML1 activation strongly increased AQP2 apical expression and depolymerized the actin cytoskeleton, thereby boosting water flux in response to an hypoosmotic stimulus. These effects were strictly dependent on the activation of the Ca2+/calcineurin pathway. Conversely, bafilomycin A1 led to perinuclear accumulation of AQP2 vesicles without affecting water permeability. Overall, lysosomal Ca2+ signaling events can be differently decoded to modulate Ca2+-dependent cellular functions related to the dock/fusion of AQP2-transporting vesicles in principal cells of the CD.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Lisossomos , Água , Animais , Camundongos , Aquaporina 2/genética , Aquaporina 2/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Macrolídeos/farmacologia , Macrolídeos/metabolismo , Água/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo
6.
J Cell Mol Med ; 25(23): 10902-10915, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773379

RESUMO

Mutations in Lamin A/C gene (lmna) cause a wide spectrum of cardiolaminopathies strictly associated with significant deterioration of the electrical and contractile function of the heart. Despite the continuous flow of biomedical evidence, linking cardiac inflammation to heart remodelling in patients harbouring lmna mutations is puzzling. Therefore, we profiled 30 serum cytokines/chemokines in patients belonging to four different families carrying pathogenic lmna mutations segregating with cardiac phenotypes at different stages of severity (n = 19) and in healthy subjects (n = 11). Regardless lmna mutation subtype, high levels of circulating granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6) were found in all affected patients' sera. In addition, elevated levels of Interleukins (IL) IL-1Ra, IL-1ß IL-4, IL-5 and IL-8 and the granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured in a large subset of patients associated with more aggressive clinical manifestations. Finally, the expression of the pro-inflammatory 70 kDa heat shock protein (Hsp70) was significantly increased in serum exosomes of patients harbouring the lmna mutation associated with the more severe phenotype. Overall, the identification of patient subsets with overactive or dysregulated myocardial inflammatory responses could represent an innovative diagnostic, prognostic and therapeutic tool against Lamin A/C cardiomyopathies.


Assuntos
Citocinas/metabolismo , Cardiopatias/metabolismo , Inflamação/metabolismo , Adulto , Cardiolipinas/metabolismo , Linhagem Celular , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360717

RESUMO

Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.


Assuntos
Diabetes Mellitus/terapia , Soluções para Diálise/uso terapêutico , Intolerância à Glucose/terapia , Resistência à Insulina , Falência Renal Crônica/terapia , Diálise Peritoneal , Soluções para Diálise/efeitos adversos , Glucose/efeitos adversos , Glucose/uso terapêutico , Humanos , Peritônio
8.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830416

RESUMO

We previously showed that mesothelial cells in human peritoneum express the water channel aquaporin 1 (AQP1) at the plasma membrane, suggesting that, although in a non-physiological context, it may facilitate osmotic water exchange during peritoneal dialysis (PD). According to the three-pore model that predicts the transport of water during PD, the endothelium of peritoneal capillaries is the major limiting barrier to water transport across peritoneum, assuming the functional role of the mesothelium, as a semipermeable barrier, to be negligible. We hypothesized that an intact mesothelial layer is poorly permeable to water unless AQP1 is expressed at the plasma membrane. To demonstrate that, we characterized an immortalized cell line of human mesothelium (HMC) and measured the osmotically-driven transmesothelial water flux in the absence or in the presence of AQP1. The presence of tight junctions between HMC was investigated by immunofluorescence. Bioelectrical parameters of HMC monolayers were studied by Ussing Chambers and transepithelial water transport was investigated by an electrophysiological approach based on measurements of TEA+ dilution in the apical bathing solution, through TEA+-sensitive microelectrodes. HMCs express Zo-1 and occludin at the tight junctions and a transepithelial vectorial Na+ transport. Real-time transmesothelial water flux, in response to an increase of osmolarity in the apical solution, indicated that, in the presence of AQP1, the rate of TEA+ dilution was up to four-fold higher than in its absence. Of note, we confirmed our data in isolated mouse mesentery patches, where we measured an AQP1-dependent transmesothelial osmotic water transport. These results suggest that the mesothelium may represent an additional selective barrier regulating water transport in PD through functional expression of the water channel AQP1.


Assuntos
Aquaporina 1/genética , Transporte Biológico/genética , Epitélio/metabolismo , Peritônio/metabolismo , Aquaporinas/genética , Linhagem Celular , Regulação da Expressão Gênica/genética , Humanos , Diálise Peritoneal/normas , Peritônio/patologia , Sódio/metabolismo
9.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374405

RESUMO

The main reason why peritoneal dialysis (PD) still has limited use in the management of patients with end-stage renal disease (ESRD) lies in the fact that the currently used glucose-based PD solutions are not completely biocompatible and determine, over time, the degeneration of the peritoneal membrane (PM) and consequent loss of ultrafiltration (UF). Here we evaluated the biocompatibility of a novel formulation of dialytic solutions, in which a substantial amount of glucose is replaced by two osmometabolic agents, xylitol and l-carnitine. The effect of this novel formulation on cell viability, the integrity of the mesothelial barrier and secretion of pro-inflammatory cytokines was evaluated on human mesothelial cells grown on cell culture inserts and exposed to the PD solution only at the apical side, mimicking the condition of a PD dwell. The results were compared to those obtained after exposure to a panel of dialytic solutions commonly used in clinical practice. We report here compelling evidence that this novel formulation shows better performance in terms of higher cell viability, better preservation of the integrity of the mesothelial layer and reduced release of pro-inflammatory cytokines. This new formulation could represent a step forward towards obtaining PD solutions with high biocompatibility.


Assuntos
Carnitina/química , Soluções para Diálise/química , Epitélio/metabolismo , Glucose/metabolismo , Diálise Peritoneal/métodos , Bicarbonatos/farmacologia , Materiais Biocompatíveis , Sobrevivência Celular , Citocinas/metabolismo , Humanos , Inflamação , Falência Renal Crônica , Microscopia Confocal , Peritônio/efeitos dos fármacos , Junções Íntimas/metabolismo , Ultrafiltração , Xilitol/química
10.
J Cell Mol Med ; 23(9): 6331-6342, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31361068

RESUMO

The K+ voltage-gated channel subfamily H member 2 (KCNH2) transports the rapid component of the cardiac delayed rectifying K+ current. The aim of this study was to characterize the biophysical properties of a C-terminus-truncated KCNH2 channel, G1006fs/49 causing long QT syndrome type II in heterozygous members of an Italian family. Mutant carriers underwent clinical workup, including 12-lead electrocardiogram, transthoracic echocardiography and 24-hour ECG recording. Electrophysiological experiments compared the biophysical properties of G1006fs/49 with those of KCNH2 both expressed either as homotetramers or as heterotetramers in HEK293 cells. Major findings of this work are as follows: (a) G1006fs/49 is functional at the plasma membrane even when co-expressed with KCNH2, (b) G1006fs/49 exerts a dominant-negative effect on KCNH2 conferring specific biophysical properties to the heterotetrameric channel such as a significant delay in the voltage-sensitive transition to the open state, faster kinetics of both inactivation and recovery from the inactivation and (c) the activation kinetics of the G1006fs/49 heterotetrameric channels is partially restored by a specific KCNH2 activator. The functional characterization of G1006fs/49 homo/heterotetramers provided crucial findings about the pathogenesis of LQTS type II in the mutant carriers, thus providing a new and potential pharmacological strategy.


Assuntos
Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Mutação/genética , Adolescente , Adulto , Linhagem Celular , Membrana Celular/genética , Criança , Eletrocardiografia/métodos , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo , Transporte Proteico/genética , Adulto Jovem
11.
J Cell Mol Med ; 23(2): 1034-1049, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30426662

RESUMO

The urokinase-type plasminogen activator (uPA) receptor (uPAR) participates to the mechanisms causing renal damage in response to hyperglycaemia. The main function of uPAR in podocytes (as well as soluble uPAR -(s)uPAR- from circulation) is to regulate podocyte function through αvß3 integrin/Rac-1. We addressed the question of whether blocking the uPAR pathway with the small peptide UPARANT, which inhibits uPAR binding to the formyl peptide receptors (FPRs) can improve kidney lesions in a rat model of streptozotocin (STZ)-induced diabetes. The concentration of systemically administered UPARANT was measured in the plasma, in kidney and liver extracts and UPARANT effects on dysregulated uPAR pathway, αvß3 integrin/Rac-1 activity, renal fibrosis and kidney morphology were determined. UPARANT was found to revert STZ-induced up-regulation of uPA levels and activity, while uPAR on podocytes and (s)uPAR were unaffected. In glomeruli, UPARANT inhibited FPR2 expression suggesting that the drug may act downstream uPAR, and recovered the increased activity of the αvß3 integrin/Rac-1 pathway indicating a major role of uPAR in regulating podocyte function. At the functional level, UPARANT was shown to ameliorate: (a) the standard renal parameters, (b) the vascular permeability, (c) the renal inflammation, (d) the renal fibrosis including dysregulated plasminogen-plasmin system, extracellular matrix accumulation and glomerular fibrotic areas and (e) morphological alterations of the glomerulus including diseased filtration barrier. These results provide the first demonstration that blocking the uPAR pathway can improve diabetic kidney lesion in the STZ model, thus suggesting the uPA/uPAR system as a promising target for the development of novel uPAR-targeting approaches.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Estreptozocina/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Inflamação/metabolismo , Rim/metabolismo , Masculino , Podócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
12.
Cell Physiol Biochem ; 48(2): 847-862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30032151

RESUMO

BACKGROUND/AIMS: We recently showed that the ß3-adrenoreceptor (ß3AR) is expressed in mouse kidney collecting ducts (CD) cells along with the type-2 vasopressin receptor (AVPR2). Interestingly, a single injection of a ß3AR selective agonist promotes a potent antidiuretic effect in mice. Before considering the feasibility of chronic ß3AR agonism to induce antidiuresis in vivo, we aimed to evaluate in vitro the signaling and desensitization profiles of human ß3AR. METHODS: Human ß3AR desensitization was compared with that of human AVPR2 in cultured renal cells. Video imaging and FRET experiments were performed to dissect ß3AR signaling under acute and chronic stimulation. Plasma membrane localization of ß3AR, AVPR2 and AQP2 after agonist stimulation was studied by confocal microscopy. Receptors degradation was evaluated by Western blotting. RESULTS: In renal cells acute stimulation with the selective ß3AR agonist mirabegron, induced a dose-dependent increase in cAMP. Interestingly, chronic exposure to mirabegron promoted a significant increase of intracellular cAMP up to 12 hours. In addition, a slow and slight agonist-induced internalization and a delayed downregulation of ß3AR was observed under chronic stimulation. Furthermore, chronic exposure to mirabegron promoted apical expression of AQP2 also up to 12 hours. Conversely, long-term stimulation of AVPR2 with dDAVP showed short-lasting receptor signaling, rapid internalization and downregulation and apical AQP2 expression for no longer than 3 h. CONCLUSIONS: Overall, we conclude that ß3AR is less prone than AVPR2 to agonist-induced desensitization in renal collecting duct epithelial cells, showing sustained cAMP production, preserved membrane localization and delayed degradation after 12 hours agonist exposure. These results may be important for the potential use of chronic pharmacological stimulation of ß3AR to promote antidiuresis overcoming in vivo renal concentrating defects caused by inactivating mutations of the AVPR2.


Assuntos
Acetanilidas/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Aquaporina 2/metabolismo , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Túbulos Renais Coletores/citologia , Camundongos , Microscopia Confocal , Receptores Adrenérgicos beta 3/química , Receptores de Vasopressinas/metabolismo
13.
Int J Mol Sci ; 19(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642457

RESUMO

Dandelion (Taraxacum officinale Weber ex F.H.Wigg.) has been used for centuries as an ethnomedical remedy. Nonetheless, the extensive use of different kinds of dandelion extracts and preparations is based on empirical findings. Some of the tissue-specific effects reported for diverse dandelion extracts may result from their action on intracellular signaling cascades. Therefore, the aim of this study was to evaluate the effects of an ethanolic dandelion root extract (DRE) on Ca2+ signaling in human embryonic kidney (HEK) 293 cells. The cytotoxicity of increasing doses of crude DRE was determined by the Calcein viability assay. Fura-2 and the fluorescence resonance energy transfer (FRET)-based probe ERD1 were used to measure cytoplasmic and intraluminal endoplasmic reticulum (ER) Ca2+ levels, respectively. Furthermore, a green fluorescent protein (GFP)-based probe was used to monitor phospholipase C (PLC) activation (pleckstrin homology [PH]-PLCδ-GFP). DRE (10-400 µg/mL) exposure, in the presence of external Ca2+, dose-dependently increased intracellular Ca2+ levels. The DRE-induced Ca2+ increase was significantly reduced in the absence of extracellular Ca2+. In addition, DRE caused a significant Ca2+ release from the ER of intact cells and a concomitant translocation of PH-PLCδ-GFP. In conclusion, DRE directly activates both the release of Ca2+ from internal stores and a significant Ca2+ influx at the plasma membrane. The resulting high Ca2+ levels within the cell seem to directly stimulate PLC activity.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Extratos Vegetais/farmacologia , Taraxacum/química , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Extratos Vegetais/química , Raízes de Plantas/química , Fosfolipases Tipo C/metabolismo
14.
Cell Physiol Biochem ; 44(4): 1559-1577, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29197877

RESUMO

BACKGROUND/AIMS: Truncating LMNA gene mutations occur in many inherited cardiomyopathy cases, but the molecular mechanisms involved in the disease they cause have not yet been systematically investigated. Here, we studied a novel frameshift LMNA variant (p.D243Gfs*4) identified in three members of an Italian family co-segregating with a severe form of cardiomyopathy with conduction defects. METHODS: HEK293 cells and HL-1 cardiomyocytes were transiently transfected with either Lamin A or D243Gfs*4 tagged with GFP (or mCherry). D243Gfs*4 expression, cellular localization and its effects on diverse cellular mechanisms were evaluated with western blotting, laser-scanning confocal microscopy and video-imaging analysis in single cells. RESULTS: When expressed in HEK293 cells, GFP- (or mCherry)-tagged LMNA D243Gfs*4 colocalized with calnexin within the ER. ER mislocalization of LMNA D243Gfs*4 did not significantly induce ER stress response, abnormal Ca2+ handling and apoptosis when compared with HEK293 cells expressing another truncated mutant of LMNA (R321X) which similarly accumulates within the ER. Of note, HEK293-LMNA D243Gfs*4 cells showed a significant reduction of connexin 43 (CX43) expression level, which was completely rescued by activation of the WNT/ß-catenin signaling pathway. When expressed in HL-1 cardiomyocytes, D243Gfs*4 significantly impaired the spontaneous Ca2+ oscillations recorded in these cells as result of propagation of the depolarizing waves through the gap junctions between non-transfected cells surrounding a cell harboring the mutation. Furthermore, mCh-D243Gfs*4 HL-1 cardiomyocytes showed reduced CX43-dependent Lucifer Yellow (LY) loading and propagation. Of note, activation of ß-catenin rescued both LY loading and LMNA D243Gfs*4 -HL-1 cells spontaneous activity propagation. CONCLUSION: Overall, the present results clearly indicate the involvement of the aberrant CX43 expression/activity as a pathogenic mechanism for the conduction defects associated to this LMNA truncating alteration.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Cardiomiopatias/genética , Lamina Tipo A/genética , Apoptose , Sequência de Bases , Cálcio/metabolismo , Calnexina/metabolismo , Doença do Sistema de Condução Cardíaco/complicações , Doença do Sistema de Condução Cardíaco/patologia , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Linhagem Celular , Conexina 43 , Retículo Endoplasmático/metabolismo , Feminino , Junções Comunicantes/metabolismo , Células HEK293 , Humanos , Lamina Tipo A/metabolismo , Repetições de Microssatélites/genética , Microscopia Confocal , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Linhagem , Polimorfismo de Nucleotídeo Único , Imagem com Lapso de Tempo , Via de Sinalização Wnt
15.
Int J Mol Sci ; 18(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125546

RESUMO

Under physiological conditions, excessive loss of water through the urine is prevented by the release of the antidiuretic hormone arginine-vasopressin (AVP) from the posterior pituitary. In the kidney, AVP elicits a number of cellular responses, which converge on increasing the osmotic reabsorption of water in the collecting duct. One of the key events triggered by the binding of AVP to its type-2 receptor (AVPR2) is the exocytosis of the water channel aquaporin 2 (AQP2) at the apical membrane the principal cells of the collecting duct. Mutations of either AVPR2 or AQP2 result in a genetic disease known as nephrogenic diabetes insipidus, which is characterized by the lack of responsiveness of the collecting duct to the antidiuretic action of AVP. The affected subject, being incapable of concentrating the urine, presents marked polyuria and compensatory polydipsia and is constantly at risk of severe dehydration. The molecular bases of the disease are fully uncovered, as well as the genetic or clinical tests for a prompt diagnosis of the disease in newborns. A real cure for nephrogenic diabetes insipidus (NDI) is still missing, and the main symptoms of the disease are handled with s continuous supply of water, a restrictive diet, and nonspecific drugs. Unfortunately, the current therapeutic options are limited and only partially beneficial. Further investigation in vitro or using the available animal models of the disease, combined with clinical trials, will eventually lead to the identification of one or more targeted strategies that will improve or replace the current conventional therapy and grant NDI patients a better quality of life. Here we provide an updated overview of the genetic defects causing NDI, the most recent strategies under investigation for rescuing the activity of mutated AVPR2 or AQP2, or for bypassing defective AVPR2 signaling and restoring AQP2 plasma membrane expression.


Assuntos
Aquaporina 2/genética , Arginina Vasopressina/genética , Diabetes Insípido Nefrogênico/genética , Receptores de Vasopressinas/genética , Diabetes Insípido Nefrogênico/fisiopatologia , Diabetes Insípido Nefrogênico/terapia , Exocitose/genética , Humanos , Mutação
16.
J Cell Mol Med ; 20(11): 2194-2207, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27421120

RESUMO

Mutations in the Lamin A/C gene (LMNA), which encodes A-type nuclear Lamins, represent the most frequent genetic cause of dilated cardiomyopathy (DCM). This study is focused on a LMNA nonsense mutation (R321X) identified in several members of an Italian family that produces a truncated protein isoform, which co-segregates with a severe form of cardiomyopathy with poor prognosis. However, no molecular mechanisms other than nonsense mediated decay of the messenger and possible haploinsufficiency were proposed to explain DCM. Aim of this study was to gain more insights into the disease-causing mechanisms induced by the expression of R321X at cellular level. We detected the expression of R321X by Western blotting from whole lysate of a mutation carrier heart biopsy. When expressed in HEK293 cells, GFP- (or mCherry)-tagged R321X mislocalized in the endoplasmic reticulum (ER) inducing the PERK-CHOP axis of the ER stress response. Of note, confocal microscopy showed phosphorylation of PERK in sections of the mutation carrier heart biopsy. ER mislocalization of mCherry-R321X also induced impaired ER Ca2+ handling, reduced capacitative Ca2+ entry at the plasma membrane and abnormal nuclear Ca2+ dynamics. In addition, expression of R321X by itself increased the apoptosis rate. In conclusion, R321X is the first LMNA mutant identified to date, which mislocalizes into the ER affecting cellular homeostasis mechanisms not strictly related to nuclear functions.


Assuntos
Sinalização do Cálcio , Estresse do Retículo Endoplasmático , Lamina Tipo A/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Adulto , Apoptose , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Família , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Itália , Lamina Tipo A/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Linhagem , Adulto Jovem
17.
Kidney Int ; 90(3): 555-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27206969

RESUMO

To date, the study of the sympathetic regulation of renal function has been restricted to the important contribution of ß1- and ß2-adrenergic receptors (ARs). Here we investigate the expression and the possible physiologic role of ß3-adrenergic receptor (ß3-AR) in mouse kidney. The ß3-AR is expressed in most of the nephron segments that also express the type 2 vasopressin receptor (AVPR2), including the thick ascending limb and the cortical and outer medullary collecting duct. Ex vivo experiments in mouse kidney tubules showed that ß3-AR stimulation with the selective agonist BRL37344 increased intracellular cAMP levels and promoted 2 key processes in the urine concentrating mechanism. These are accumulation of the water channel aquaporin 2 at the apical plasma membrane in the collecting duct and activation of the Na-K-2Cl symporter in the thick ascending limb. Both effects were prevented by the ß3-AR antagonist L748,337 or by the protein kinase A inhibitor H89. Interestingly, genetic inactivation of ß3-AR in mice was associated with significantly increased urine excretion of water, sodium, potassium, and chloride. Stimulation of ß3-AR significantly reduced urine excretion of water and the same electrolytes. Moreover, BRL37344 promoted a potent antidiuretic effect in AVPR2-null mice. Thus, our findings are of potential physiologic importance as they uncover the antidiuretic effect of ß3-AR stimulation in the kidney. Hence, ß3-AR agonism might be useful to bypass AVPR2-inactivating mutations.


Assuntos
Túbulos Renais/fisiologia , Receptores Adrenérgicos beta 3/fisiologia , Eliminação Renal/fisiologia , Sistema Nervoso Simpático/fisiologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Aminofenóis/farmacologia , Animais , Aquaporina 2/metabolismo , AMP Cíclico/metabolismo , Eletrólitos/urina , Etanolaminas/farmacologia , Imunofluorescência , Taxa de Filtração Glomerular/fisiologia , Isoquinolinas/farmacologia , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta 3/genética , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Sulfonamidas/farmacologia
18.
Biol Cell ; 107(4): 98-110, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631355

RESUMO

BACKGROUND INFORMATION: The gain-of-function A843E mutation of the calcium sensing receptor (CaR) causes Bartter syndrome type 5. Patients carrying this CaR variant show a remarkably reduced renal NaCl reabsorption in the thick ascending limb (TAL) of Henle's loop resulting in renal loss of NaCl in the absence of mutations in renal Na(+) and Cl(-) ion transporters. The molecular mechanisms underlying this clinical phenotype are incompletely understood. We investigated, in human embryonic kidney 293 (HEK 293) cells and porcine kidney epithelial (LLC-PK1) cells, the functional cross-talk of CaR-A843E with the Na(+):K(+):2Cl(-) co-transporter, NKCC2, which provides NaCl reabsorption in the TAL. RESULTS: The expression of the CaR mutant did not alter the apical localisation of NKCC2 in LLC-PK1 cells. However, the steady-state NKCC2 phosphorylation and activity were decreased in cells transfected with CaR-A843E compared with the control wild-type CaR (CaR WT)-transfected cells. Of note, low-Cl(-)-dependent NKCC2 activation was also strongly inhibited upon the expression of CaR-A843E mutant. The use of either P450 ω-hydroxylase (CYP4)- or phospholipase A2 (PLA2)-blockers suggests that this effect is likely mediated by arachidonic acid (AA) metabolites. CONCLUSIONS: The data suggested that the activated CaR affects intracellular pathways modulating NKCC2 activity rather than NKCC2 intracellular trafficking in renal cells, and throw further light on the pathological role played by active CaR mutants in Bartter syndrome type 5.


Assuntos
Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Receptores de Detecção de Cálcio/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Linhagem Celular , Humanos , Mutação , Transporte Proteico/fisiologia , Suínos , Transfecção
19.
J Cell Mol Med ; 19(2): 265-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25594563

RESUMO

Statins competitively inhibit hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase, resulting in reduced plasma total and low-density lipoprotein cholesterol levels. Recently, it has been shown that statins exert additional 'pleiotropic' effects by increasing expression levels of the membrane water channels aquaporin 2 (AQP2). AQP2 is localized mainly in the kidney and plays a critical role in determining cellular water content. This additional effect is independent of cholesterol homoeostasis, and depends on depletion of mevalonate-derived intermediates of sterol synthetic pathways, i.e. farnesylpyrophosphate and geranylgeranylpyrophosphate. By up-regulating the expression levels of AQP2, statins increase water reabsorption by the kidney, thus opening up a new avenue in treating patients with nephrogenic diabetes insipidus (NDI), a hereditary disease that yet lacks high-powered and limited side effects therapy. Aspects related to water balance determined by AQP2 in the kidney, as well as standard and novel therapeutic strategies of NDI are discussed.


Assuntos
Diabetes Insípido Nefrogênico/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Animais , Aquaporina 2/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo
20.
Cell Physiol Biochem ; 35(3): 1070-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662477

RESUMO

BACKGROUND/AIMS: Thiazolidinediones are highly beneficial in the treatment of type II diabetes. However, they are also associated with edema and increased risk of congestive heart failure. Several studies demonstrated that rosiglitazone (RGZ) increases the abundance of aquaporin-2 (AQP2) at the plasma membrane of renal cells. The aim of this study was to investigate whether RGZ might activate a transduction pathway facilitating AQP2 membrane accumulation in renal cells. METHODS: We analyzed the effect of RGZ on renal AQP2 intracellular trafficking in MCD4 renal cells by confocal microscopy and apical surface biotinylation. Cytosolic Ca(2+) dynamics were measured by a video-imaging approach in single cell. Transient Receptor Potential (TRP) channels expression was determined by RT-PCR. RESULTS: We showed that in MCD4 cells, short-term exposure to RGZ dramatically increases the amount of apically expressed AQP2 independently on cAMP production, PKA activation and AQP2 phosphorylation. RGZ elicited a cytosolic Ca(2+) transient due to Ca(2+) influx prevented by ruthenium red, suggesting the involvement of TRP plasma membrane channels. We identified TRPV6 as the possible candidate mediating this effect. CONCLUSIONS: Taken together these results provide a possible molecular mechanism explaining the increased AQP2 membrane expression under RGZ treatment: in renal cells RGZ elicits Ca(2+) transients facilitating AQP2 exposure at the apical plasma membrane, thus increasing collecting duct water permeability. Importantly, this effect suggests an unexplored application of RGZ in the treatment of pathological states characterized by impaired AQP2 trafficking at the plasma membrane.


Assuntos
Aquaporina 2/biossíntese , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/genética , Tiazolidinedionas/administração & dosagem , Aquaporina 2/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Edema/induzido quimicamente , Edema/patologia , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Tiazolidinedionas/efeitos adversos , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa