Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400284, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38967216

RESUMO

Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.

2.
Langmuir ; 39(44): 15808-15816, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885070

RESUMO

Although core-shell microparticles with a hard core and soft shell are often used to fabricate photonic crystal films, they are rarely applied to construct steady amorphous colloidal array (ACA) patterns. In this work, a series of monodisperse core-shell microparticles with a polystyrene (PS) core and poly(methyl methacrylate-butyl acrylate) (P(MMA-BA)) shell have been successfully synthesized, and the glass transition temperatures (Tg) of the shell layer have been well regulated. The synthesized core-shell microparticles were then used to fabricate ACA patterns via a convenient infiltration-driven assembly method. The results showed that the Tg of the shell significantly affected the microstructure of the amorphous colloidal arrays (ACAs). During the assembly process, the microparticles quickly contacted each other and the lower-Tg shells could merge with each other to form a continuous film. In this situation, the PS core was embedded and ranked in the P(MMA-BA) film, and both the refractive index contrast and order degree of the colloidal array became relatively low, resulting in a poor structural color. However, when the Tg of the shell layer was moderately high, a short-range ordered array was prepared via infiltration-driven assembly, thereby displaying a bright structural color. More importantly, the shell layers could merge with each other to some extent after short-time heating, resulting in fine mechanical stability. In brief, this study provides a facile and environmental approach to construct steady ACA patterns, which is promising in printing and painting industries.

3.
Langmuir ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36621519

RESUMO

Numerous cationic magnetic nanoparticles (MNPs) have previously been developed for demulsifying oil-in-water (O/W) emulsion, and results showed that the cationic MNPs could effectively flocculate and remove the negatively charged oil droplets via charge attraction; however, to the best of our knowledge, there are no research reports regarding the synergetic influence of both the positive charge density and interfacial activity of MNPs on the demulsification performance. In this study, three tertiary amine polymer-grafted MNPs, namely, poly(2-dimethylaminoethyl acrylate)-grafted MNPs (M-PDMAEA), poly(2-dimethylamino)ethyl methacrylate)-grafted MNPs (M-PDMAEMA), and poly(2-diethylaminoethyl methacrylate)-grafted MNPs (M-PDEAEMA), were synthesized and evaluated for their demulsification performance. Results demonstrated that a high positive charge density and superior interfacial activity of MNPs could cause partial oil droplet re-dispersion when excessive MNPs were introduced, leading to a lower magnetic separation efficiency and narrower demulsification window. Herein, a demulsification window is defined as a range of nanoparticle dosages in which the MNPs can effectively demulsify the O/W emulsion under certain conditions. For highly positively charged MNPs, their good interfacial activity could aggravate the formation of a narrower demulsification window. When tertiary amine polymer-grafted MNPs carried a lower positive charge density or weak interfacial activity, that is, M-PDMAEA at pH 4.0, M-PDMAEMA at pH 5.0-9.0, and M-PDEAEMA at pH 9.0-10.0, wide demulsification windows were observed. Additionally, a recycling experiment suggested that MNPs could maintain high demulsification efficiency up to at least five cycles, indicating their satisfactory recyclability. The three tertiary amine polymer-grafted MNPs can be potentially used for efficient demulsification from surfactant-free O/W emulsion in various pH ranges.

4.
Biomacromolecules ; 24(1): 344-357, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563170

RESUMO

Although the supramolecular helical structures of biomacromolecules have been studied, the examples of supramolecular systems that are assembled using coils to form helical polymer chains are still limited. Inspired by enhanced helical chirality at the supramolecular level in metal coordination-induced protein folding, a series of alanine-based coil copolymers (poly-(l-co-d)-ala-NH2) carrying (l)- and (d)-alanine pendants were synthesized as a fresh research model to study the cooperative processes between homochirality property and metal coordination. The complexes of poly-(l-co-d)-ala-NH2 and metal ions underwent a coil-to-helix transition and exhibited remarkable nonlinear effects based on the enantiomeric excess of the monomer unit in the copolymers, affording enhanced helical chirality compared to poly-(l-co-d)-ala-NH2. More importantly, the synergistic effect of amplification of asymmetry and metal coordination triggered the formation of a helical molecular orbital on the polymer backbone via the coordination with the d orbital of copper ions. Thus, the helical chirality enhancement degree of poly-(l-co-d)-ala-NH2/Cu2+ complexes (31.4) is approximately 3 times higher than that of poly-(l-co-d)-ala-NH2/Ag+ complexes (9.8). This study not only provides important mechanistic insights into the enhancement of helical chirality for self-assembly but also establishes a new strategy for studying the homochiral amplification of asymmetry in biological supramolecular systems.


Assuntos
Alanina , Metais , Metais/química , Substâncias Macromoleculares , Alanina/química , Polímeros/química , Íons , Dobramento de Proteína
5.
Langmuir ; 38(13): 4001-4013, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290732

RESUMO

Hollow structures in TiO2 materials can enhance the photocatalytic properties by reducing the diffusion length and improving the accessibility of active sites for the reactants. However, existing approaches for preparing hollow TiO2 materials have two drawbacks that restrict their engineering applicability: first, a heavy reliance on templates to form a hollow structure, which makes the preparation laborious, complicated, and costly; second, difficult-to-achieve high crystallization while maintaining the small grain size in calcinated TiO2, which is crucial for enhancing photocatalytic activity. Herein, a simple, effective method is proposed that not only enables the preparation of hybrid TiO2-SiO2 hollow spheres without the template fabrication and removal process via microemulsion technology but also achieves both high crystallization and a small grain size in calcinated TiO2 at once through the calcination of amorphous TiO2 with organosilane at a high temperature of 850 °C. The prepared TiO2-SiO2 hollow spheres with tunable sizes demonstrate high photocatalytic activity with a maximum k value of 133.74 × 10-3 min-1, which is superior to commercial photocatalyst P25 (k = 114.97 × 10-3 min-1). In addition, Au can be doped in the hybrid TiO2-SiO2 shell to gain Au-doped hollow spheres that show a high k value of up to 694.14 × 10-3 min-1, which is 6 times larger than that of P25 and much better than that reported in the literature. This study not only provides an effective approach to stabilize and tune the grain growth of the TiO2 photocatalyst during calcination but also enables the simple preparation of hollow TiO2-based materials with controllable hollow nanostructures.

6.
J Am Chem Soc ; 143(30): 11620-11630, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286968

RESUMO

Cellulose is the most abundant renewable natural polymer on earth, but it does not conduct electricity, which limits its application expansion. The existing methods of making cellulose conductive are combined with another conductive material or high-temperature/high-pressure carbonization of the cellulose itself, while in the traditional method of sulfuric acid hydrolysis to extract nanocellulose, it is usually believed that a too high temperature will destroy cellulose and lead to experimental failure. Now, based on a new research perspective, by controlling the continuous reaction process and isolating oxygen, we directly extracted intrinsically conductive cellulose nanofiber (CNF) from biomass, where the confined range molecular chains of CNF were converted to highly graphitized carbon at only 90 °C and atmospheric pressure, while large-scale twisted graphene films can be synthesized bottom-up from CNFene suspensions, called CNFene (cellulose nanofiber-graphene). The conductivity of the best CNFene can be as high as 1.099 S/cm, and the generality of this synthetic route has been verified from multiple biomass cellulose sources. By comparing the conventional high-pressure hydrothermal and high-temperature pyrolysis methods, this study avoided the dangerous high-pressure environment and saved 86.16% in energy. These findings break through the conventional notion that nanocellulose cannot conduct electricity by itself and are expected to extend the application potential of pure nanocellulose to energy storage, catalysis, and sensing.

7.
Langmuir ; 37(41): 12179-12187, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34632776

RESUMO

Avermectin (AVM) is a highly effective and safe biopesticide but is very sensitive to ultraviolet (UV) light and exhibits poor water solubility. Developing green and multifunctional adjuvants is important for the protection and controlled release of AVM. In this work, a number of water-soluble enzymatic hydrolysis lignins (W-EHLs) were prepared via grafting basic amino acids and used as emulsifiers with co-surfactants to prepare high-internal phase emulsions (HIPEs). The results showed that W-EHLs with co-surfactants could be prepared with HIPEs that contained 90 vol % green oil phases such as turpentine, and the stability of the HIPEs first increased and then decreased when the rate of grafting of basic amino acids on lignin increased from 0.26 to 1.46 mmol/g. The more polar oil droplets were less deformable due to their higher viscosity, thereby affording a stability advantage to HIPEs. Subsequently, the relations between the stability and interfacial viscoelasticity of the emulsion were effectively correlated by interfacial rheology, droplet size, and physical stability tests. The results showed that HIPEs with smaller droplets had poor fluidity and strong interfacial viscoelasticity due to their higher droplet packing density, which resulted in good macroscopic stability. Like the AVM carrier, the retention rate of AVM in HIPEs was 80.1% after UV radiation for 72 h, which represented the highest UV protection efficiency in AVM delivery systems. The release curves showed that the rate of release of AVM from HIPEs was adjusted by controlling the pH value of the medium. In addition, the release of HIPEs is completely in accord with both diffusion and the matrix erosion mechanism. The strategy could be extended to other sensitive pesticides and used to promote the development of sustainable agriculture.


Assuntos
Aminoácidos Básicos , Lignina , Biomassa , Preparações de Ação Retardada , Emulsões , Ivermectina/análogos & derivados
8.
Langmuir ; 31(14): 4341-50, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25804935

RESUMO

Janus Pd/SiO2 nanocomposite particles (NCPs) were successfully synthesized through a combination of the sol-gel process of tetramethoxysilane in inverse miniemulsions and in situ reduction of Pd salts via a gas diffusion process of hydrazine. The formation of Pd nanoparticles (NPs) was verified by X-ray diffraction. The Janus morphology of the Pd/SiO2 NCPs was confirmed by microscopic observation. The Pd/SiO2 NCPs displayed a mesoporous structure. The content of Pd NPs in the NCPs could be conveniently adjusted by the K2PdCl4 loading. A formation mechanism of the Janus Pd/SiO2 NCPs was proposed. The mesoporous Janus Pd/SiO2 NCPs show good catalytic activity toward the reduction of p-nitrophenol with NaBH4.

9.
Genes (Basel) ; 15(2)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397172

RESUMO

Artificial hybrid breeding can optimize parental traits to cultivate excellent hybrids with enhanced economic value. In this study, we investigated the growth performance and transcriptomes of Gymnocypris przewalskii (♀) and Gymnocypris eckloni (♂) and their F1 hybrid fishes. Hatched individuals of G. przewalskii (GP) and G. eckloni (GE) of the same size and their F1 hybrids (GH) were separately cultured for eight months in three cement tanks (n = 3). The growth indexes were measured, which showed that the growth rate of the groups was GE > GH > GP, while the survival rate was GH > GE > GP. The RNA-Seq data analysis of the muscles from the three Gymnocypris fish strains revealed that gene transcription has a significant impact on F1 hybrid fish and its parents. The differentially expressed genes (DEGs) in GH show less differences with GP, but more with GE. qRT-PCR was used to confirm the expression profiles of the chosen DEGs, and the results showed positive correlations with the RNA-seq data. KEGG enrichment results indicated that the DEGs were related to a variety of molecular functions, such as glycolysis/gluconeogenesis, arachidonic acid formation, citrate cycle, and the MAPK, PI3K-Akt, or mTOR signal pathways. Subsequent analysis indicated that there may be a significant correlation between the differential expression of IGF2 and a difference in the growth of GE and GP.


Assuntos
Cyprinidae , Fosfatidilinositol 3-Quinases , Animais , Fosfatidilinositol 3-Quinases/genética , Filogenia , Cyprinidae/genética , Perfilação da Expressão Gênica , Transcriptoma/genética
10.
PLoS One ; 19(6): e0303419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857228

RESUMO

The Butuo Black Sheep (BBS) is well-known for its ability to thrive at high altitudes, resist diseases, and produce premium-quality meat. Nonetheless, there is insufficient data regarding its genetic diversity and population-specific Single nucleotide polymorphisms (SNPs). This paper centers on the genetic diversity of (BBS). The investigation conducted a whole-genome resequencing of 33 BBS individuals to recognize distinct SNPs exclusive to BBS. The inquiry utilized bioinformatic analysis to identify and explain SNPs and pinpoint crucial mutation sites. The findings reveal that reproductive-related genes (GHR, FSHR, PGR, BMPR1B, FST, ESR1), lipid-related genes (PPARGC1A, STAT6, DGAT1, ACACA, LPL), and protein-related genes (CSN2, LALBA, CSN1S1, CSN1S2) were identified as hub genes. Functional enrichment analysis showed that genes associated with reproduction, immunity, inflammation, hypoxia, PI3K-Akt, and AMPK signaling pathways were present. This research suggests that the unique ability of BBS to adapt to low oxygen levels in the plateau environment may be owing to mutations in a variety of genes. This study provides valuable insights into the genetic makeup of BBS and its potential implications for breeding and conservation efforts. The genes and SPNs identified in this study could serve as molecular markers for BBS.


Assuntos
Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Ovinos/genética , Variação Genética , Adaptação Fisiológica/genética
11.
Int J Biol Macromol ; 266(Pt 1): 130838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521322

RESUMO

Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.


Assuntos
Antibacterianos , Carboximetilcelulose Sódica , Dissulfetos , Escherichia coli , Molibdênio , Nanofibras , Fotoquimioterapia , Staphylococcus aureus , Molibdênio/química , Molibdênio/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Fotoquimioterapia/métodos , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia Fototérmica/métodos , Bandagens
12.
Langmuir ; 29(22): 6509-18, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23679054

RESUMO

Aqueous core-silica shell nanocapsules were successfully prepared using liquid droplets containing transition-metal salt as templates in inverse miniemulsions. The formation of the silica shell was attributed to the interfacial deposition of silica species induced by the presence of the transition-metal salt. In addition to the control of the particle morphology, the incorporated transition-metal salts could be used to derivatize the particles and confer additional functionalities to the hollow silica particles. To demonstrate the derivatization, the magnetic hollow silica particles were prepared by converting iron salts to magnetic iron oxides by heat treatment. The particle morphology, size, and size distribution were characterized by transmission electron microscopy and scanning electron microscopy. The results show that the particle properties strongly depend on the type and the amount of salts, the amount of tetraethoxysilane (TEOS), the pH of the droplets, and the ratios of 2-hydroxyethyl methacrylate to aqueous HCl solution. The specific surface area and pore properties were characterized by N2 sorption measurements. The pore properties and specific surface area could be tuned by varying the amount of salt. Levels of elements and of iron oxides in the magnetic hollow particles were measured by energy-dispersive X-ray spectroscopy. Iron was distributed homogenously with silicon and oxygen in the sample. The magnetization measured by a magnetic property measurement system confirmed the successful conversion of the iron salts to magnetic iron oxides.


Assuntos
Nanocápsulas/química , Dióxido de Silício/química , Cobalto/química , Emulsões , Compostos Férricos/química , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Imãs , Metacrilatos/química , Microscopia Eletrônica de Transmissão , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Porosidade , Silanos/química
13.
J Colloid Interface Sci ; 651: 849-860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37573731

RESUMO

Self-assembly leveraged by nature enables the sophisticated generation of a wide range of nanoparticles (NPs) with rich architectures and morphologies. However, existing artificial self-assembly platforms largely only allow for the fabrication of single type of NPs with limited structures, due to their inability to define interfacial interaction between seeds and growth materials, which is critically important to gain controllable growth patterns of the grown materials on the seeds' surface. Here, we report a versatile super-assembly platform that shows the capabilities to fabricate diverse NPs with tunable topological architectures and surface morphologies, e.g., molecular-like NPs, hollow asymmetric NPs, patchy NPs, etc. We unprecedentedly discovered the powerful functions of polyvinylpyrrolidone (PVP), which enable us to well define interfacial interaction between growth materials and seeds to achieve the controllable and tunable generation of various complex topological growth patterns. Moreover, the nucleation pattern (island nucleation or layered nucleation) of the patches can be thermodynamically modulated via the polarity of the solvent, while the number and size of the patches can be kinetically tuned by the ratio of polystyrene (PS), precursor, and catalyst. Interestingly, the hollow NPs can be generated by single-one processing step in our platform, unlike the multiple steps laboriously and widely employed by previously reported fabrication platforms. In addition, we demonstrate that our annealed NPs can not only selectively reflect visible light, and show well-controlled colors from gray, blue, to green, but also exhibit excellent photothermal conversion performances with a high photothermal conversion efficiency of 68.7% that are superior to currently routinely reported of 40%. This super-assembly platform can serve as a powerful toolset to sophisticatedly create varied NPs with tunable hierarchical architectures and controllable surface morphologies, which would significantly benefit the development of drug delivery, nanomaterial assembly, nano pigments, nanoreactors, and beyond.

14.
Materials (Basel) ; 16(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37763433

RESUMO

Oil agents produced from the degreasing treatment of synthetic fibers are typical pollutants in wastewater from printing and dyeing, which may cause large-scale environmental pollution without proper treatment. Purifying oily dye wastewater (DTY) at a low cost is a key problem at present. In this study, biochar microspheres with oil removal ability were prepared and derived from waste bamboo chips using the hydrothermal method. The structure of the biochar microsphere was regulated by activation and modification processes. Biochar microspheres were characterized, and their adsorption behaviors for oily dye wastewater were explored. The results show that the adsorption efficiency of biochar microspheres for oily dye wastewater (DTY) was improved significantly after secondary pyrolysis and the lauric acid grafting reaction. The maximum COD removal quantity of biochar microspheres for DTY was 889 mg/g with a removal rate of 86.06% in 30 min. In addition, the kinetics showed that chemisorption was the main adsorption manner. Considering the low cost of raw materials, the application of biochar microspheres could decrease the cost of oily wastewater treatment and avoid environmental pollution.

15.
J Mater Chem B ; 11(33): 8046-8055, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37539498

RESUMO

In most circumstances, wounds face the challenges of bacterial invasions and inappropriate inflammatory responses when they lack proper wound management. Endowing dressings with both antibacterial and anti-inflammatory functions is a compelling strategy for resolving the above issues. However, seizing the right moment to change the dressings and providing satisfactory management of wounds are still urgently required. Herein, an antibacterial and anti-inflammatory nanofibrous mat is proposed by encapsulating antibiotic gentamicin sulfate (GS) and anti-inflammatory drug ibuprofen (IB) into nanofibers via a coaxial electrospinning technique and is further decorated with Prussian blue nanocrystals (PBNCs) to enhance anti-inflammatory activity and, more importantly, to monitor bacterial infections and guide dressing changes in a timely manner. Such a nanofibrous mat releases most of the therapeutic drugs within 120 min and reveals excellent antibacterial activity and anti-inflammatory ability. Specifically, it can destroy both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), as well as conspicuously reduce the production of reactive oxygen species (ROS) and the expression of pro-inflammatory cytokines in macrophages. In addition, the nanofibrous mat can be used for point-of-use diagnosis of living bacteria relying on the naked eye or color analysis, which exhibits the potential of monitoring wound infection and guiding dressing changes promptly. This finding demonstrates the theranostic applications of multifunctional nanofibrous mats in wound healing.


Assuntos
Nanofibras , Nanofibras/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células RAW 264.7 , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Biol Macromol ; 242(Pt 3): 125144, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268080

RESUMO

Diabetic ulcer is a severe complication of diabetes that can lead to amputation due to the overproduction of pro-inflammatory factors and reactive oxygen species (ROS). In this study, a composite nanofibrous dressing was developed by combining Prussian blue nanocrystals (PBNCs) and heparin sodium (Hep) through electrospinning, electrospraying, and chemical deposition. The nanofibrous dressing (PPBDH) was designed to take advantage of the excellent pro-inflammatory factor-adsorbing capability of Hep and the ROS-scavenging capabilities of PBNCs, resulting in synergistic treatment. It is worth noting that the nanozymes were firmly anchored to the fiber surfaces through slight polymer swelling caused by the solvent during electrospinning, thereby guaranteeing the preservation of the enzyme-like activity levels of PBNCs. The PPBDH dressing was found to be effective in reducing intracellular ROS levels, protecting cells from ROS-induced apoptosis, and capturing excessive pro-inflammatory factors, including chemoattractant protein-1 (MCP-1) and interleukin-1ß (IL-1ß). Furthermore, a chronic wound healing evaluation conducted in vivo demonstrated that the PPBDH dressing was able to effectively alleviate the inflammatory response and accelerate wound healing. This research presents an innovative approach to fabricate nanozyme hybrid nanofibrous dressings, which have great potential in accelerating the healing of chronic and refractory wounds with uncontrolled inflammation.


Assuntos
Diabetes Mellitus , Nanofibras , Humanos , Espécies Reativas de Oxigênio/farmacologia , Nanofibras/química , Heparina/farmacologia , Cicatrização , Bandagens , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
17.
ACS Omega ; 8(41): 38481-38493, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867710

RESUMO

The excessive use of antibiotics and consequent bacterial resistance have emerged as crucial public safety challenges for humanity. As a promising antibacterial treatment, using reactive oxygen species (ROS) can effectively address this problem and has the advantages of being highly efficient and having low toxicity. Herein, electrospinning and electrospraying were employed to fabricate magnesium oxide (MgO)-based nanoparticle composited polycaprolactone (PCL) nanofibrous dressings for the chemodynamic treatment of bacteria-infected wounds. By utilizing electrospraying, erythrocyte-like monoporous PCL microspheres incorporating silver (Ag)- and copper (Cu)-doped MgO nanoparticles were generated, and the unique microsphere-filament structure enabled efficient anchoring on nanofibers. The composite dressings produced high levels of ROS, as confirmed by the 2,7-dichloriflurescin fluorescent probe. The sustained generation of ROS resulted in efficient glutathione oxidation and a remarkable bacterial killing rate of approximately 99% against Staphylococcus aureus (S. aureus). These dressings were found to be effective at treating externally infected wounds. The unique properties of these composite nanofibrous dressings suggest great potential for their use in the medical treatment of bacteria-infected injuries.

18.
Polymers (Basel) ; 16(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38201726

RESUMO

The recent advancements in communication technology have facilitated the widespread deployment of electronic communication equipment globally, resulting in the pervasive presence of electromagnetic pollution. Consequently, there is an urgent necessity to develop a thin, lightweight, efficient, and durable electromagnetic interference (EMI) shielding material capable of withstanding severe environmental conditions. In this paper, we propose an innovative and scalable method for preparing EMI shielding films with a tunable sandwich structure. The film possesses a nylon mesh (NM) backbone, with AgNWs serving as the shielding coating and aramid nanofibers (ANFs) acting as the cladding layer. The prepared film was thin and flexible, with a thickness of only 0.13 mm. AgNWs can easily form a conductive network structure, and when the minimum addition amount was 0.2 mg/cm2, the EMI SE value reached 28.7 dB, effectively shielding 99.884% of electromagnetic waves and thereby meeting the commercial shielding requirement of 20 dB. With an increase in dosage up to 1.0 mg/cm2, the EMI SE value further improved to reach 50.6 dB. The NAAANF film demonstrated remarkable robustness in the face of complex usage environments as a result of the outstanding thermal, acid, and alkali resistance properties of aramid fibers. Such a thin, efficient, and environmentally resistant EMI shielding film provided new ideas for the broad EMI shielding market.

19.
Langmuir ; 28(17): 7023-32, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22489967

RESUMO

Mesoporous silica capsules with submicrometer sizes were successfully prepared via the interfacial hydrolysis and condensation reactions of tetraethoxysilane (TEOS) in inverse miniemulsion by using hydrophilic liquid droplets as template. The inverse miniemulsions containing pH-controlled hydrophilic droplets were first prepared via sonication by using poly(ethylene-co-butylene)-b-poly(ethylene oxide) (P(E/B)-PEO) or SPAN 80 as surfactant. TEOS was directly introduced to the continuous phase of an inverse miniemulsion. The silica shell was formed by the deposition of silica on the surface of droplets. The formation of capsule morphology was confirmed by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The mesoporous structure was verified by nitrogen sorption measurements. The specific surface area could be tuned by the variation of the amount of cetyltrimethylammonium bromide (CTAB) and TEOS, and the pore size by the amount of CTAB. The influences of synthetic parameters on the particle size and morphology were investigated in terms of the amount of CTAB, pH value in the droplets, TEOS amount, surfactant amount, and type of solvent with low polarity. A formation mechanism of silica capsules was proposed.


Assuntos
Microtecnologia/métodos , Tamanho da Partícula , Transição de Fase , Dióxido de Silício/química , Soluções Tampão , Cápsulas , Cetrimônio , Compostos de Cetrimônio/química , Emulsões , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Silanos/química , Solventes/química , Tensoativos/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-35666674

RESUMO

Enhanced UV radiation shielding is realized by cross-linking the light-responsive copolymer poly(di(ethylene glycol)methyl ether methacrylate-co-oligo(ethylene glycol)methyl ether methacrylate-co-ethylene glycol methacrylate-co-6-(4-phenylazo-phenoxy)hexyl methacrylate), abbreviated as PMOEA, with silk fabrics. Owing to the existence of the azobenzene component in 6-(4-phenylazo-phenoxy)hexyl methacrylate, UV radiation can be significantly absorbed in an aqueous PMOEA solution by the trans-cis isomerization of azobenzene. After immobilization onto the silk fabrics by the cross-linker 1,2,3,4-butanetetracarboxylic acid, the cross-linked copolymer-coated silk fabrics present an enhanced capability of UV radiation absorption. More than 70% of the UV radiation is efficiently shielded by the cross-linked copolymer-coated silk fabrics, which is double that of the original silk fabrics. Considering the limited amount of the light-responsive copolymer applied (5 wt %), UV protection is successfully realized for the silk fabrics. In addition, the cross-linked copolymer layer also forms covalent bonds with the hydroxyl and amino groups on the silk fabrics. Wrinkles on the silk fabrics, typically caused by the movement of the silk chains, are suppressed by the formed covalent bonds, significantly hindering such chain movement. Therefore, the wrinkle resistance capability is also improved by cross-linking PMOEA on silk fabrics. As the glass transition temperature of the copolymer is lower than room temperature, the hand feel of silk fabrics is not affected by the cross-linking layer. Based on these advantages, the cross-linked copolymer-coated silk fabrics can be used for light clothes to shield against UV radiation from the sun during outdoor activities in summer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa