Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Bioorg Chem ; 130: 106215, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384067

RESUMO

Discoidin domain receptors (DDRs) are one of the less explored targets for the treatment of cancer which belong to receptor tyrosine kinases family. Discoidin domain receptors (DDRs) are a collagen-activated receptor tyrosine kinase and essential for controlling cellular functions like proliferation, morphogenesis, adhesion, differentiation, invasion, matrix remodeling, and migration. Although there are many targets and their inhibitors are reported which treat cancer. But most of drugs were amalgamated with moderate to severe side effects. This results in untreated cancerous cells. One of the reasons that cancer is considered challenging to treat because the targets were mutating rapidly and the inhibitor become less potent. The target identification is a tedious task for the researchers from the early 1990 s till date. When it comes to cancer, there has not been any magical stick to treat it undisputedly. Therefore, need for discovery of new receptor may helpful to overcome these difficulties. The development of DDR inhibitors has received a lot of attention ever since the target was discovered. In this review we have reported the development of most promising DDR1 and DDR2 small molecule inhibitors from the perspective of medicinal chemistry. We have also discussed about the clinical trials, recent patents, selectivity biological activity, and structure-activity relationship (SAR) of DDR1 and DDR2 inhibitors.


Assuntos
Antineoplásicos , Receptores com Domínio Discoidina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores com Domínio Discoidina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/química , Relação Estrutura-Atividade
2.
Mol Divers ; 27(6): 2605-2631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36437421

RESUMO

PPARα and PPARγ are isoforms of the nuclear receptor superfamily which regulate glucose and lipid metabolism. Activation of PPARα and PPARγ receptors by exogenous ligands could transactivate the expression of PPARα and PPARγ-dependent genes, and thereby, metabolic pathways get triggered, which are helpful to ameliorate treatment for the type 2 diabetes mellitus, and related metabolic complications. Herein, by understanding the structural requirements for ligands to activate PPARα and PPARγ proteins, we developed a multilevel in silico-based virtual screening protocol to identify novel chemical scaffolds and further design and synthesize two distinct series of glitazone derivatives with advantages over the classical PPARα and PPARγ agonists. Moreover, the synthesized compounds were biologically evaluated for PPARα and PPARγ transactivation potency from nuclear extracts of 3T3-L1 cell. Furthermore, glucose uptake assay on L6 cells confirmed the potency of the synthesized compounds toward glucose regulation. Percentage lipid-lowering potency was also assessed through triglyceride estimate from 3T3-L1 cell extracts. Results suggested the ligand binding mode was in orthosteric fashion as similar to classical agonists. Thus molecular docking and molecular dynamics (MD) simulation experiments were executed to validate our hypothesis on mode of ligands binding and protein complex stability. Altogether, the present study developed a newer protocol for virtual screening and enables to design of novel glitazones for activation of PPARα and PPARγ-mediated pathways. Accordingly, present approach will offer benefit as a therapeutic strategy against type 2 diabetes mellitus and associated metabolic complications.


Assuntos
Diabetes Mellitus Tipo 2 , Simulação de Dinâmica Molecular , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , PPAR alfa/agonistas , PPAR alfa/metabolismo , Simulação de Acoplamento Molecular , Agonistas PPAR-gama , PPAR gama/agonistas , PPAR gama/metabolismo , Glucose/uso terapêutico
3.
Mol Divers ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470921

RESUMO

BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors. The development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In depth description about different heterocyclic scaffolds (quinoline, imidazole, pyridine, triazole, pyrrole etc.) as BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies.

4.
Chem Biodivers ; 20(9): e202300515, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37563848

RESUMO

The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors.


Assuntos
Antineoplásicos , Quinases da Família src , Quinases da Família src/química , Quinases da Família src/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Química Farmacêutica , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
5.
Arch Pharm (Weinheim) ; 353(2): e1900192, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31808979

RESUMO

Hsp90, as a key molecular chaperone, plays an important role in modulating the activity of many cell signaling proteins and is an attractive target for anticancer therapeutics. Herein, we report the discovery of N-pyridoyl-Δ2 -pyrazoline analogs as novel Hsp90 inhibitors by integrated approaches of drug design, organic synthesis, cell biology, and qualitative proteomic analysis. Novel chemical compounds were designed and optimized in the adenosine triphosphate-binding site of Hsp90; lead optimized compounds were found to have significant interactions with Asp93 and other amino acids crucial for Hsp90 inhibition. The designed compounds were synthesized by a two-step procedure; different aromatic aldehydes were reacted with various acetophenones to form substituted 1,3-diphenyl-prop-2-enones (Ic-Io), which upon reaction with isonicotinic acid hydrazide in the presence of glacial acetic acid form N-pyridoyl-Δ2 -pyrazoline compounds (PY1-PY13). Compounds PY3, PY2, and PY1 were identified as potential leads amongst the series, with promising anticancer activity against human breast cancer and melanoma cells, and the ability to inhibit Hsp90 similar to radicicol by drug-affinity responsive target stability proteomic analysis in a whole-cell assay.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pirazóis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Pharmacol Res ; 115: 65-77, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27641928

RESUMO

Activation of toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) triggers an innate immune response, via cytokine production and inflammasome activation. Herein, we have investigated the modulatory effect of the natural limonoid gedunin on TLR activation in vitro and in vivo. Intraperitoneal (i.p.) pre- and post-treatments of C57BL/6 mouse with gedunin impaired the influx of mononuclear cells, eosinophils and neutrophils, as well as the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide (NO), triggered by lipopolysaccharide (LPS) in mouse pleura. Accordingly, in vitro post-treatment of immortalized murine macrophages with gedunin also impaired LPS-induced production of such mediators. Gedunin diminished LPS-induced expression of the nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) on pleural leukocytes in vivo and in immortalized macrophages in vitro. In line with this, gedunin inhibited LPS-induced caspase-1 activation and the production of IL-1ß in vivo and in vitro. In addition, gedunin treatment triggered the generation of the anti-inflammatory factors IL-10 and heme oxigenase-1 (HO-1) at resting conditions or upon stimulation. We also demonstrate that gedunin effect is not restricted to TLR4-mediated response, since this compound diminished TNF-α, IL-6, NO, NLRP3 and IL-1ß, as well as enhanced IL-10 and HO-1, by macrophages stimulated with the TLR2 and TLR3 agonists, palmitoyl-3-Cys-Ser-(Lys)4 (PAM3) and polyriboinosinic:polyribocytidylic acid (POLY I:C), in vitro. In silico modeling studies revealed that gedunin efficiently docked into caspase-1, TLR2, TLR3 and to the myeloid differentiation protein-2 (MD-2) component of TLR4. Overall, our data demonstrate that gedunin modulates TLR4, TLR3 and TLR2-mediated responses and reveal new molecular targets for this compound.


Assuntos
Inflamassomos/efeitos dos fármacos , Mediadores da Inflamação/farmacologia , Inflamação/tratamento farmacológico , Limoninas/farmacologia , Substâncias Protetoras/farmacologia , Receptores Toll-Like/metabolismo , Animais , Citocinas , Inflamassomos/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
J Mol Graph Model ; 118: 108340, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208592

RESUMO

B-Raf protein is a serine-threonine kinase and an important signal transduction molecule of the MAPK signaling pathway that mediates signals from RAS to MEK, ultimately promoting various essential cellular functions. The B-Raf kinase domain is divided into two subdomains: a small N-terminal lobe and a large C-terminal lobe, with a deep catalytic cleft between them. The N-terminal lobe contains a phosphate-binding loop (P-loop) and nucleotide-binding pocket, while the C-terminal lobe binds the protein substrates and contains the catalytic loop. The ligand pharmacophore was generated by using 17 different natural products and the receptor pharmacophore was generated by using protein structures. The reported natural product B-Raf inhibitors were analyzed according to the pharmacophore analysis (HipHop fit), virtual screening tools by Lipinski's rule of five. Thirteen out of seventeen molecules share the best ligand based pharmacophoric model (HipHop_5). The best receptor based pharmacophoric model came as AADHR. The compounds were docked against the B-Raf receptors (PDB ID: 3OG7, 4XV2, 5C9C). The compound DHSilB with cDOCKER interaction energy of -62.7 kcal/mol, -83.3 kcal/mol, -73.6 kcal/mol as well as the compound DHSilA with cDOCKER interaction energy of -63.9 kcal/mol, -63.2 kcal/mol, -74.7 kcal/mol showed satisfactory interaction with the respective receptors. Finally, the MD simulation was run for 100 ns for the top docked compounds DHSilA and DHSilB with the B-Raf proteins (PDB ID: 3OG7, 4XV2 and 5C9C). After the MD simulation run for 100 ns, the ligand 2,3-dehydrosilybin A (DHSilA) was found to be more stable in terms of the trajectories of RMSD, RMSF, Rg and H-bonds.


Assuntos
Produtos Biológicos , Simulação de Dinâmica Molecular , Ligantes , Simulação de Acoplamento Molecular , Produtos Biológicos/farmacologia , Proteínas Proto-Oncogênicas B-raf
8.
ACS Omega ; 8(7): 6825-6837, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844520

RESUMO

Herein, we rationally designed and developed two novel glitazones (G1 and G2) to target peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) signaling through peroxisome proliferator-activated receptors (PPAR)-γ agonism as a therapeutic for Parkinson's disease (PD). The synthesized molecules were analyzed by mass spectrometry and NMR spectroscopy. The neuroprotective functionality of the synthesized molecules was assessed by a cell viability assay in lipopolysaccharide-intoxicated SHSY5Y neuroblastoma cell lines. The ability of these new glitazones to scavenge free radicals was further ascertained via a lipid peroxide assay, and pharmacokinetic properties were verified using in silico absorption, distribution, metabolism, excretion, and toxicity analyses. The molecular docking reports recognized the mode of interaction of the glitazones with PPAR-γ. The G1 and G2 exhibited a noticeable neuroprotective effect in lipopolysaccharide-intoxicated SHSY5Y neuroblastoma cells with the half-maximal inhibitory concentration value of 2.247 and 4.509 µM, respectively. Both test compounds prevented 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced motor impairment in mice, as demonstrated by the beam walk test. Further, treating the diseased mice with G1 and G2 resulted in significant restoration of antioxidant enzymes glutathione and superoxide and reduced the intensity of lipid peroxidation inside the brain tissues. Histopathological analysis of the glitazones-treated mice brain revealed a reduced apoptotic region and a rise in the number of viable pyramidal neurons and oligodendrocytes. The study concluded that G1 and G2 showed promising results in treating PD by activating PGC-1α signaling in brain via PPAR-γ agonism. However, more extensive research is necessary for a better understanding of functional targets and signaling pathways.

9.
Bioorg Med Chem Lett ; 22(2): 820-3, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22222039

RESUMO

The existing NSAIDs having number of toxicities emphasises the need for discovery of new non-toxic anti-inflammatory agents. In this Letter, we present the simple two step chemical synthesis, in vivo pharmacological screening and docking study of few N-(benzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide analogs. Different amino benzothiazoles were chloroacetylated and further reacted with substituted piperazines in presence of a base to get N-(benzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide analogs (A1-C4). These compounds were evaluated for anti-inflammatory activity by carragenan induced paw oedema method. Promising compounds were screened for toxicity by evaluating the ulcerogenic potential. Molecular docking experiments were carried out against COX-2 enzyme using Surflex-Dock GeomX programme of Sybyl software on Dell T-1500 workstation to confirm the mechanism of action of active compounds among the series. In silico study reveal the binding interactions of N-(benzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide analogs with COX-2 protein and is in agreement with the in vivo anti-inflammatory activity.


Assuntos
Acetamidas/síntese química , Acetamidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Acetamidas/química , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Benzotiazóis/química , Inibidores de Ciclo-Oxigenase 2/química , Descoberta de Drogas , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
10.
Artif Cells Nanomed Biotechnol ; 50(1): 59-70, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35261304

RESUMO

Current treatment for Rheumatoid arthritis (RA) utilizes Disease-modifying antirheumatic drugs, non-steroidal anti-inflammatory drugs or its combination, to decrease joint inflammation. In the present study, naproxen (NAP) and sulfapyridine (SULF) ethosomes were prepared by a thin-film hydration technique using PL90G and cholesterol, later crosslinked with carbopol®934. The ethosomes and ethosomal hydrogel were evaluated for rheological properties, physico-chemical analysis, in vitro and in vivo study. The results show, NAP and SULF ethosomes exhibited an average vesicle size between 251.1 ± 1.80-343.5 ± 3.23 nm and 269.0 ± 1.17-358.8 ± 1.22 nm, respectively, with good stability (zeta potential > 30 mV) and polydispersity index. Differential scanning calorimeter and Fourier transform infrared studies reveal no significant changes in the drug properties of ethosomes. Transmission electron microscopy analysis discloses spherical shape vesicles below 200 nm. The entrapment efficiency of NAP and SULF ethosomes was above 66%, and NAP-SULF ethosomes-hydrogel (EH) exhibited a sustained release effect (>8 h). In vivo studies on NAP-SULF EH shows significant inhibition of inflammation (84.63%), with less paw volume (0.1935 ± 0.08 ml) on induced arthritis Albino Wistar rats, (p < .01). NAP-SULF EH was stable at 25 °C ± 0.5 for 3-months. To conclude, a hybrid composite of NAP-SULF in hydrogel carrier prevents inflammation effectively, and could be novel for trans delivery of drugs in RA.


Assuntos
Artrite Reumatoide , Absorção Cutânea , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Adjuvante de Freund , Hidrogéis/química , Lipossomos/metabolismo , Naproxeno/metabolismo , Naproxeno/farmacologia , Naproxeno/uso terapêutico , Ratos , Ratos Wistar , Pele/metabolismo , Sulfapiridina/metabolismo , Sulfapiridina/farmacologia
11.
Curr Neuropharmacol ; 20(5): 893-915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34751120

RESUMO

Peroxisome proliferator-activated receptors (PPARs) activity has significant implications for the development of novel therapeutic modalities against neurodegenerative diseases. Although PPAR-α, PPAR-ß/δ, and PPAR-γ nuclear receptor expressions are significantly reported in the brain, their implications in brain physiology and other neurodegenerative diseases still require extensive studies. PPAR signaling can modulate various cell signaling mechanisms involved in the cells contributing to on- and off-target actions selectively to promote therapeutic effects as well as the adverse effects of PPAR ligands. Both natural and synthetic ligands for the PPARα, PPARγ, and PPARß/δ have been reported. PPARα (WY 14.643) and PPARγ agonists can confer neuroprotection by modulating mitochondrial dynamics through the redox system. The pharmacological effect of these agonists may deliver effective clinical responses by protecting vulnerable neurons from Aß toxicity in Alzheimer's disease (AD) patients. Therefore, the current review delineated the ligands' interaction with 3D-PPARs to modulate neuroprotection, and also deciphered the efficacy of numerous drugs, viz. Aß aggregation inhibitors, vaccines, and γ-secretase inhibitors against AD; this review elucidated the role of PPAR and their receptor isoforms in neural systems, and neurodegeneration in human beings. Further, we have substantially discussed the efficacy of PPREs as potent transcription factors in the brain, and the role of PPAR agonists in neurotransmission, PPAR gamma coactivator-1α (PGC-1α) and mitochondrial dynamics in neuroprotection during AD conditions. This review concludes with the statement that the development of novel PPARs agonists may benefit patients with neurodegeneration, mainly AD patients, which may help mitigate the pathophysiology of dementia, subsequently improving overall the patient's quality of life.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tiazolidinedionas , Reposicionamento de Medicamentos , Humanos , Ligantes , Dinâmica Mitocondrial , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Oxirredução , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR alfa/uso terapêutico , PPAR gama/agonistas , Qualidade de Vida , Tiazolidinedionas/uso terapêutico
12.
Eur J Med Chem ; 189: 112063, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31972392

RESUMO

Heat shock protein (HSP)90 is the most abundant HSPs, which are chaperone molecules whose major roles are cell protection and maintenance by means of aiding the folding, the stabilization and the remodeling of a wide range of proteins. A few hundreds of proteins depend on HSP90 chaperone activity, including kinases and transcriptional factors that play essential roles in cancer and inflammation, so that HSP90-targeted therapies have been considered as a potential strategy for the treatment of cancer and inflammatory-associated diseases. HSP90 inhibition by natural, semi-synthetic and synthetic compounds have yield promising results in pre-clinical studies and clinical trials for different types of cancers and inflammation. Natural products are a huge source of biologically active compounds widely used in drug development due to the great diversity of their metabolites which are capable to modulate several protein functions. HSP90 inhibitors have been isolated from bacteria, fungi and vegetal species. These natural compounds have a noteworthy ability to modulate HSP90 activity as well as serve as scaffolds for the development of novel synthetic or semi-synthetic inhibitors. Over a hundred clinical trials have evaluated the effect of HSP90 inhibitors as adjuvant treatment against different types of tumors and, currently, new studies are being developed to gain sight on novel promising and more effective approaches for cancer treatment. In this review, we present the naturally occurring HSP90 inhibitors and analogues, discussing their anti-cancer and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Humanos , Inflamação/patologia , Neoplasias/patologia
13.
Arch Pharm Res ; 32(3): 431-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19387588

RESUMO

Breast cancer is the second most common type of cancer after lung cancer and the fifth most common cause of cancer death. Several structural classes of compounds were discovered against tumor, but many of the existing antitumor agents exhibit severe side effects. Hence there is a need to identify a novel chemical entity having a broad range of therapeutic activity with fewer side effects. In this direction, several imidazolyl-(4-oxoquinazolin-3(4H)-yl)-acetamides 1-4(a-d) were screened for their antitumor activity against Ehrlich Ascites Carcinoma (EAC) using in-vitro and in-vivo models. Compounds 4b, 4d, and 3a showed highly significant antitumor activity against EAC in comparison with vincristine as standard.


Assuntos
Acetamidas/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Imidazóis/farmacologia , Quinazolinas/farmacologia , Acetamidas/toxicidade , Animais , Antineoplásicos/toxicidade , Peso Corporal/efeitos dos fármacos , Carcinoma de Ehrlich/sangue , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Testes Hematológicos , Imidazóis/toxicidade , Dose Letal Mediana , Camundongos , Quinazolinas/toxicidade , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Eur J Med Chem ; 143: 1277-1300, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126724

RESUMO

Dual-targeting/Multi-targeting of oncoproteins by a single drug molecule represents an efficient, logical and alternative approach to drug combinations. An increasing interest in this approach is indicated by a steady upsurge in the number of articles on targeting dual/multi proteins published in the last 5 years. Combining different inhibitors that destiny specific single target is the standard treatment for cancer. A new generation of dual or multi-targeting drugs is emerging, where a single chemical entity can act on multiple molecular targets. Dual/Multi-targeting agents are beneficial for solving limited efficiencies, poor safety and resistant profiles of an individual target. Designing dual/multi-target inhibitors with predefined biological profiles present a challenge. The latest advances in bioinformatic tools and the availability of detailed structural information of target proteins have shown a way of discovering multi-targeting molecules. This neoteric artifice that amalgamates the molecular docking of small molecules with protein-based common pharmacophore to design multi-targeting inhibitors is gaining great importance in anticancer drug discovery. Current review focus on the discoveries of dual targeting agents in cancer therapy using rational, computational, proteomic, bioinformatics and polypharmacological approach that enables the discovery and rational design of effective and safe multi-target anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Terapia de Alvo Molecular/métodos , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Humanos , Ligantes
15.
Int J Biol Macromol ; 82: 663-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26424207

RESUMO

We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.


Assuntos
DNA/química , DNA/metabolismo , Rutênio/química , Rutênio/metabolismo , Animais , Linhagem Celular Tumoral , Clivagem do DNA , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Rutênio/toxicidade , Soroalbumina Bovina/química
16.
Int J Biol Macromol ; 80: 253-9, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-26116388

RESUMO

The ubiquitously expressed heat shock protein 90 is an encouraging target for the development of novel anticancer agents. In a program directed towards uncovering novel chemical scaffolds against Hsp90, we performed molecular docking studies using Tripos-Sybyl drug designing software by including the required conserved water molecules. The results of the docking studies predicted Mannich bases derived from 2,4-dihydroxy acetophenone/5-chloro 2,4-dihydroxy acetophenone as potential Hsp90 inhibitors. Subsequently, a few of them were synthesized (1-6) and characterized by IR, (1)H NMR, (13)C NMR and mass spectral analysis. The synthesized Mannich compounds were evaluated for their potential to suppress Hsp90 ATPase activity by the colorimetric Malachite green assay. Subsequently, the molecules were screened for their antiproilferative effect against PC3 pancreatic carcinoma cells by adopting the 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The activity profile of the identified derivatives correlated well with their docking results.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Simulação de Acoplamento Molecular , Acetofenonas/química , Adenosina Trifosfatases/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Proteínas de Choque Térmico HSP90/química , Humanos , Bases de Mannich/síntese química , Bases de Mannich/química , Bases de Mannich/metabolismo , Bases de Mannich/farmacologia , Conformação Proteica , Água/química
17.
Med Chem ; 9(4): 553-9, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22946530

RESUMO

A series of substituted 2-(6-methoxynapthalen-2-yl) propanoic acid (naproxen) analogs were synthesized. (S)- naproxen (1) was treated with thionyl chloride to yield acid chloride (2) which was then reacted with different heterocyclic moieties and aryl acids to yield the (S)-naproxen analogs (3a-k). All the compounds were screened for antiinflammatory activity using in vivo rat paw oedema model and most of the active ones were investigated for their ulcerogenic potential. In silico studies (molecular modeling and docking) were carried out to recognize the hypothetical binding motif of the title compounds with the cyclooxygenase isoenzymes (COX-1 and COX-2) employing Maestro (Version 9.1, Schrodinger, LLC.) software. 2-(1-(2(2-methoxynaphthalen-6-yl)propanoyl)-1H-indol-2-yl) acetic acid (3k) was found to be the most active compound amongst the series with inhibition of paw edema volume by 62.1%, in silico sitemap score of -0.40kcal/mol and ulcerogenic index as least as 1.19.


Assuntos
Anti-Inflamatórios/química , Simulação por Computador , Inibidores de Ciclo-Oxigenase 2/química , Ácidos Indolacéticos/química , Naproxeno/análogos & derivados , Naproxeno/química , Animais , Anti-Inflamatórios/farmacologia , Desenho de Fármacos , Ácidos Indolacéticos/farmacologia , Masculino , Modelos Moleculares , Naproxeno/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa